End of Year Skies


New Moon for a New Year

The crescent Moon rises into the western evening sky as 2016 ends, while Venus shines bright, and Orion rises into the east.

Getting clear skies is a rare treat of late, but these are images from two such nights this week. On December 30, the thin waxing Moon appeared in the colourful twilight of a winter night. Despite the clouds and the Moon’s low altitude, the dark side of the Moon is plainly visible illuminated by Earthshine.

Venus in Twilight over Pioneer Grain Elevators

Venus is now brilliant as an evening star in the southwest. Here is it over the old wood grain elevators at Mossleigh, Alberta, some of the few of these landmarks left standing on the prairies.

Fainter Mars shines above Venus and over the month of January, Venus will climb up to meet Mars by month’s end for a fine conjunction with the crescent Moon as well. Watch through January as Venus and Mars converge.

Orion and Pioneer Grain Elevators

As the planets set into the southwest, Orion the Hunter rises into the east. Here it is over the Mossleigh elevators, illuminated by local lights.

Enjoy the winter skies as clouds permit!

Clear skies and Happy New Year!

— Alan, December 31, 2016 / © 2016 Alan Dyer / www.amazingsky.com

 

Free 2016 Sky Calendar


2016 Calendar Cover

Plan your cosmic year with my free 2016 Sky Calendar.

My Calendar lists all the best sky events for 2016, plus Moon phases, to help you plan your astronomical year.

Coming up we have:

• A fairly close approach of Mars

• A rare transit of Mercury

• A photogenic gathering of Mars, Saturn and Antares

… among many other sky events.

You can download the free PDF at

http://www.amazingsky.com/about-alan.html

Feel free to share the link to this page.

Happy New Year to all!

— Alan, December 29, 2015 / © 2015 Alan Dyer

Heads Up! – A Comet in the December Dawn


Dec 7 Venus & Moon

A new comet is coming into our morning sky, for our binocular viewing pleasure.

Comet Catalina, aka C/2013 US10, has emerged from behind the Sun and is beginning to rise into our northern hemisphere dawn sky. The new comet promises to be visible in binoculars, but likely won’t be obvious to the unaided eyes.

On the morning of December 7 the comet sits within a binocular field of the waning crescent Moon which itself sits just above brilliant Venus. That in itself will be a remarkable view, best appreciated in binoculars, and a fine photogenic sight for the camera.

The close conjunction of the crescent Moon with Venus alone will be enough of an attraction on December 7, but the comet should add to the scene.

December 7 Venus Occultation

Even more, later in the day the Moon actually passes in front of, or “occults,” Venus in the daytime sky for most of North America.

That occultation happens in the morning for western North America and in the early afternoon for eastern North America. However, you’ll need a telescope to see it well, and very clear blue skies.

Stellarium Occultation

Use planetarium software (the free Stellarium program, for example, shown above, if you do not own astronomy software) to simulate the sky and provide the occultation times for your location. Zoom into the Moon and run time back and forth on December 7 to see when Venus goes behind the Moon and reappears. The screen shot above is for Calgary.

Back to the Comet

Comet Catalina was discovered in October 2013 at the Catalina Observatory in Arizona. The comet spent the last few months in the southern hemisphere sky, but is now coming north and into our sky, but at dawn.

Comet Catalina Path

It rises higher and higher each morning  through December and into the new year. It may remain at fifth magnitude, bright enough to be easily visible in binoculars from a dark site, but likely not naked eye.

The chart above plots the comet at daily intervals, from December 4 to January 1. The comet is shown for December 15. Note that on the morning of January 1 it sits within a telescope field of the bright star Arcturus.

The distance from Earth to the comet decreases through December and early January, keeping the comet at a constant brightness even as it recedes from the Sun. We are closest to Catalina on January 17, at a far distance of 108 million km. But in late January the comet fades rapidly to become a telescope target.

To see Comet Catalina this month, get up 1 to 2 hours before sunrise and look southeast to east. But you will need dark skies to see it well. This will not be a good urban comet.

Nevertheless, as far as we know, this will be the best comet of 2016.

— Alan, December 2, 2015 / © 2015 Alan Dyer / www.amazingsky.com

 

Four Planets Along the Morning Ecliptic


Four planets in the morning sky, on October 20, 2015, along the ecliptic from bottom to top:  - Mercury (close to the horizon at lower left) - Mars (dim, below Jupiter) - Jupiter (fairly bright at upper right) - Venus (brightest of the four) I shot this from home in southern Alberta. This is a composite stack of 5 exposures from 15 seconds to 1 second to contain the range of brightness from the bright horizon to the dimmer sky up higher. All with the 35mm lens and Canon 6D at ISO 800.

Four planets appear in the dawn sky outlining the morning ecliptic.

This morning, October 20, I was able to capture four planets in the morning sky, arrayed along the ecliptic.

From bottom to top they are: Mercury (just past its point of greatest elongation from the Sun), dim Mars, bright Jupiter, and very bright Venus (just 6 days away from its point of greatest elongation from the Sun). Above Venus is Regulus, in Leo.

I’ve added in the labels and the line of the ecliptic, rising steeply out of the east in the autumn dawn sky.

Of course, there is a fifth unlabelled planet in the scene, quite close in the foreground.

The image below is an unlabeled version.

Four planets in the morning sky, on October 20, 2015, along the ecliptic from bottom to top:  - Mercury (close to the horizon at lower left) - Mars (dim, below Jupiter) - Jupiter (fairly bright at upper right) - Venus (brightest of the four) I shot this from home in southern Alberta. This is a composite stack of 5 exposures from 15 seconds to 1 second to contain the range of brightness from the bright horizon to the dimmer sky up higher. All with the 35mm lens and Canon 6D at ISO 800.

Mercury will be disappearing from view very quickly now as it drops back down toward the Sun.

But over the next week the three higher planets will converge into a tight triangle just 4.5 degrees apart. We won’t see these three planets this close together in a darkened sky until November 2111.

For more information on this week’s dawn sky planet dance see my previous blog entry.

TECHNICAL:
I shot the scene from home in southern Alberta. The image is a composite stack, with manually created masks (not an HDR stack), of 5 exposures, from 15 seconds to 1 second, to contain the range of brightness from the bright horizon to the dimmer star-filled sky higher up. All are with the 35mm lens and Canon 6D at ISO 800.

— Alan, October 20, 2015 / © 2015 Alan Dyer / www.amazingsky.com

Heads Up! — Planet Dance in the Dawn


Oct 17 Dawn Sky

Watch a trio of planets converge in the dawn sky. 

You might have already seen Venus shining brightly in the morning sky. And perhaps you’ve seen a slightly less bright object below it. That’s Jupiter.

But there’s a third, even dimmer planet accompanying Venus and Jupiter — reddish Mars. On the morning of Saturday, October 17 (chart above ⬆️) Mars and Jupiter pass just 1/2 degree apart, for a mismatched double “star” at dawn.

The planets put on an even better show in the following 10 days as all three converge to form a tight triangle of worlds in the morning sky.

Oct 23 Dawn Sky

On October 23 ⬆️, Venus, Mars and Jupiter appear in a close grouping just 4.5 degrees apart, close enough to each other to be easily contained in the field of typical binoculars, the circle shown in these charts.

Oct 25 Dawn Sky

Two mornings later, on October 25 ⬆️, Venus and Jupiter are at their closest apparent separation, just 1 degree apart, for a brilliant double “star” in the morning twilight. If you miss this morning, on the next morning, October 24, the two planets appear about the same distance apart as well.

Oct 28 Dawn Sky

By October 28 ⬆️, the three planets have switched positions, as Venus drops lower but Jupiter climbs higher. But they again appear in a triangle, 4.5 degrees wide.

The motion you’re seeing from day to day is due to a combination of the planets’ own orbital motions around the Sun, as well as our planet’s motion.

Keep in mind, the planets aren’t really close together in space. They lie tens, if not hundreds, of millions of kilometres apart. They appear close to each other in our sky because they lie along the same line of sight.

Do try to get up early enough — between 6 a.m. and 6:30 a.m. should do it — to look east to see the changing configuration of planets as they dance at dawn. Binoculars will provide the best view.

This is a rare sight! We won’t see these three planets this close to each other in a darkened sky until November 20, 2111!

— Alan, October 16, 2015 / © 2015 Alan Dyer / www.amazingsky.com

Heads Up! – Dawn Sky Delight


Oct 8 Dawn Planets

Look east this week to see a wonderful conjunction of the waning Moon with three planets in the morning sky.

A great dance of the planets is about to begin in the dawn sky.

Venus, Mars and Jupiter are now all prominent in the eastern sky before sunrise, with Venus by far the brightest. Below it shines slightly dimmer Jupiter. But between those two brightest of planets shines dim red Mars.

The three planets are converging for a mutual close meeting in the third week of October, when from October 23 to 28 the trio of planets will appear within a binocular field of each other.

But this week, with the three planets still spread out along a line, the Moon joins the scene to start the planet dance. It shines near Venus on the morning of October 8 (as shown here). and then near Mars and Jupiter on October 9.

Look east between 5:30 and 6:30 a.m. local time. All the planets are easy to see with unaided eye even in the city, but binoculars will frame the Moon-Venus pairing on October 8 and the Moon-Mars-Jupiter trio on October 9.

– Alan, October 8, 2015 / © 2015 Alan Dyer / www.amazingsky.com

How to See and Shoot the “Supermoon” Eclipse


Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400 for 4 seconds, single exposure, shortly after totality began.

On Sunday, September 27 the Moon undergoes a total eclipse, the last we’ll see until January 2018.

This is a sky event you don’t want to miss. Whether you photograph it or just enjoy the view, it will be a night to remember, as the Full Moon turns deep red during a total eclipse.

Note For this article I’m giving times and sky directions for North America. For Europe the eclipse occurs early in the morning of September 28, as the Moon sets into the west. But for here in North America the timing could not be better. Totality occurs in the evening of Sunday, September 27 as the Moon rises into the east. 

Courtesy Wikimedia Commons
Courtesy Wikimedia Commons

ECLIPSE BASICS

A total lunar eclipse occurs when the Moon — and it can only be Full — passes through the shadow cast into space by Earth. The Sun, Earth and Moon are in near-perfect alignment.

All total eclipses of the Moon consist of 3 main parts:

• The initial partial eclipse occurs as the Moon slowly enters the dark central portion of our planet’s shadow, the umbra. This lasts about an hour.

• Totality begins as the entire disk of the Moon is within the umbra. For this eclipse, totality lasts a generous 72 minutes.

• Totality ends as the Moon emerges from the umbra to begin the final partial eclipse lasting another hour.


Courtesy Fred Espenak/EclipseWise.com
Courtesy Fred Espenak/EclipseWise.com – All times are Eastern Daylight. Subtract 1 hour for Central Daylight, 2 hours for Mountain Daylight, 3 hours for Pacific Daylight Time. Times apply for anywhere in that time zone.

WHERE TO SEE IT

All of North America, indeed most of the western hemisphere, can see this eclipse. In North America, the farther east you live on the continent the later in your evening the eclipse occurs and the higher the Moon appears in the southeast.

For example, in the Eastern time zone, totality begins at 10:11 p.m. EDT and ends at 11:23 p.m. EDT, with mid-totality is at 10:47 p.m. EDT with the Moon about 35 degrees up, placing it high in the southeast sky for southern Ontario, for example.

For me in the Mountain time zone, the total eclipse begins at 8:11 p.m. MDT and ends at 9:23 p.m. MDT, with mid-totality is at 8:47 p.m. MDT, with the Moon just 13 degrees up in the east from here in southern Alberta. From my time zone, and from most location in the Rocky Mountain regions, the Moon rises with the initial partial phases in progress.

This is the total eclipse of the Moon, December 10, 2011, taken from the grounds of the Rothney Astrophysical Observatory, near Priddis Alberta, and looking west to the Rockies. This is a 2 second exposure at ISO 800 with the Canon 5DMkII and Canon 200mm lens at f/4. This was taken toward the end of totality at 7:48 am local time.
This is the total eclipse of the Moon, December 10, 2011, taken from the grounds of the Rothney Astrophysical Observatory, near Priddis Alberta, and looking west to the Rockies. This is a 2 second exposure at ISO 800 with the Canon 5DMkII and Canon 200mm lens at f/4.

For locations on the west coast viewers miss most of the partial eclipse phase before totality. Instead, the Moon rises as totality begins, making for a more challenging observation. Viewers on the coast will need clear skies and a low horizon to the east, but the reward could be a beautiful sight and images of a red Moon rising.


Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400. An HDR composite of 9 images from 1/125 second to 2 seconds, composited in Photoshop CS5. Vibrancy increased to show bring out the colour variations across the shadow and at the edge of the shadow. Taken at about 12:21 am MST on Dec 21, about 20 minutes before totality began, during the partial phase.
Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400. An HDR composite of 9 images from 1/125 second to 2 seconds, composited in Photoshop CS5. Taken at about 12:21 am MST on Dec 21, about 20 minutes before totality began, during the partial phase.

“SUPERMOON” ECLIPSE

This eclipse of the Moon is the last in a series of four total lunar eclipses that occurred at six-month intervals over the last two years. We won’t enjoy another such “tetrad” of total lunar eclipses until 2032-33.

But this eclipse is unique in that it also coincides with the annual Harvest Moon, the Full Moon closest to the autumnal equinox. Harvest Moons are known for their orange tint as they rise into what is sometimes a dusty autumn evening.

But what is making internet headlines is that this Full Moon is also the year’s “supermoon,” the Full Moon of 2015 that comes closest to Earth. In recent years these “perigee” Full Moons have been dubbed “supermoons.”

Call it what you will, it does make this Full Moon a little larger than usual, though the difference is virtually impossible to detect by eye. And it makes little difference to the circumstances or appearance of the eclipse itself.

Partial eclipse of the Moon at moonset, morning of June 26, 2010, at about 5:00 am. Shot with 200mm telephoto and 1.4x teleconvertor, for 1/15th sec at f/5 and ISO 100, using Canon 7D.
Partial eclipse of the Moon at moonset, morning of June 26, 2010, at about 5:00 am. Shot with 200mm telephoto and 1.4x teleconvertor, for 1/15th sec at f/5 and ISO 100, using Canon 7D. From western North America the Moon will rise in partial eclipse like this on September 27. 

HOW TO SEE IT

Just look up! You can enjoy the eclipse with the unaided eye, and even from within city limits.

Unlike eclipses of the Sun, the eclipsed Moon is perfectly safe to look at with whatever you wish to use to enhance the view. The best views are with binoculars or a telescope at low power.

Look for subtle variations in the red colouring across the disk of the Moon, and even tints of green or blue along the dark edge of the Earth’s advancing or retreating shadow during the partial phases.

If you can, travel to a dark site to enjoy the view of the stars and Milky Way brightening into view as the Full Moon reddens and the night turns dark.


HOW TO SHOOT IT

The total eclipse of the Moon, April 15, 2014 local time just after sunset from Australia, seen from Shingle Splitter's Point overlooking Lake Macquarie on the Central Coast of New South Wales, Australia. It was fortunate that we saw this eclipse at all as the sky was very cloudy and at times it was actually raining on us. But about 6 pm the Moon appeared as totality was ending. The Moon appears below Spica and below right of Mars. The lake has a red glitter path from the eclipsed Moon. This is an 8-second exposure at f/2.8 with the 50mm lens on the Canon 60Da at ISO 800.
The total eclipse of the Moon, April 15, 2014 local time just after sunset from Australia. This is an 8-second exposure at f/2.8 with the 50mm lens on the Canon 60Da at ISO 800.

1. On A Tripod

The easiest method is to use a camera on a tripod, with a remote release to fire the shutter and prevent vibration from blurring the image. What lens you use will depend on how you wish to frame the scene and how high the Moon is in your sky.

Lens Choice

From eastern North America you’ll need a wide-angle lens (14mm to 24mm) to frame the eclipsed Moon and the ground below. The Moon will appear as a small red dot.

While you can shoot the Moon with longer focal lengths it takes quite a long lens (>300mm) to really make it worthwhile shooting just the Moon itself isolated in empty sky. Better to include a landscape to put the Moon in context, even if the Moon is small.

From western North America the lower altitude of the Moon allows it to be framed above a scenic landscape with a longer 35mm to 50mm lens, yielding a larger lunar disk.

From the west coast you could use a telephoto lens (135mm to 200mm) to frame the horizon and the eclipsed Moon as it rises for a dramatic photo.

Focusing

Use Live View (and zoom in at 10x magnification) to manually focus on the horizon, distant lights, or bright stars. The Moon itself my be tough to focus on.

Exposure Times

Exposures will depend on how bright your sky is. Use ISO 400 to 800 and try metering the scene as a starting point if your sky is still lit by twilight. Use wide lens apertures (f/4 to f/2) if you can, to keep exposures times as a short as possible.

The apparent motion of the Moon as the sky turns from east to west will blur the image of the Moon in exposures lasting more than a few seconds, especially ones taken with telephoto lenses.

The maximum exposure you can use before trailing sets in is roughly 500 / lens focal length.


Total eclipse of the Moon, December 20/21, 2010, taken from home with Canon 5D MKII and 24mm lens at f2.8 for stack of 4 x 2 minutes at ISO 800. Taken during totality. The eclipsed Moon is the red object above Orion, and the stars appear bloated due to high haze and fog rolling in, visible at the bottom.
Total eclipse of the Moon, December 20/21, 2010, taken with Canon 5D MKII and 24mm lens at f2.8 for stack of 4 x 2 minutes at ISO 800. Taken during totality using a camera tracker.

2. On a Tracker or Equatorial Mount

If you can track the sky using a motorized tracker or telescope mount, you can take exposures up to a minute or more, to record the red Moon amid a starry sky.

For this type of shot, you’ll need to be at a dark site away from urban light pollution. But during totality the sky will be dark enough that the Milky Way will appear overhead. Use a wide-angle lens to capture the red Moon to the east of the summer Milky Way.


The total eclipse of the Moon, October 8, 2014, the Hunter’s Moon, as seen and shot from Writing-on-Stone Provincial Park, Alberta under mostly clear though slightly hazy skies, thus the glow around the Moon. The planet Uranus is the brightest dot left of the Moon at 8 o’clock position. Both the Moon and Uranus were at opposition. This was the second in a “tetrad” series of 4 total lunar eclipses in a row at six-month intervals in 2014 and 2015. I shot thus just after mid-totality though with the northern limb of the Moon still bright in this single 15-second exposure at ISO 400 with the Canon 60Da, and with the Officina Stellaire 80mm apo refractor at f/6. It was mounted on the Sky-Watcher HEQ5 mount tracking at the lunar rate. I chased into clear skies to see and shoot this eclipse.
The total eclipse of the Moon, October 8, 2014, the Hunter’s Moon, as seen and shot from Writing-on-Stone Provincial Park, Alberta. I shot this just after mid-totality in a single 15-second exposure at ISO 400 with the Canon 60Da, and with the 80mm apo refractor at f/6. It was mounted on the Sky-Watcher HEQ5 mount tracking at the lunar rate.

3. Through a Telescope

The most dramatic closeups of the eclipsed red Moon require attaching your camera body (with its lens removed) to a telescope. The telescope becomes the lens, providing a focal length of 600mm or more, far longer than any telephoto lens most of us own.

You’ll need the appropriate “prime focus” camera adapter and, to be blunt, if you don’t have one now, and have never shot the Moon though your telescope then plan on shooting with another method.

But even if you have experience shooting the Moon through your telescope, capturing sharp images of the dim red Moon demand special attention.

The telescope must be on a motorized mount tracking the sky, preferably at the “lunar,” not sidereal, drive rate. Focus on the Moon during the partial phases when it is easier to focus on the bright edge of the Moon.

Exposures during totality typically need to be 5 to 30 seconds at ISO 800 to 3200, depending on the focal ratio of your telescope. Take lots of exposures at various shutter speeds. You have over an hour to get it right!


The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in western Monument Valley, Utah. I shot the totality images at 6:01 a.m. MDT, during mid-totality during the very short 4 minutes of totality. The mid-totality image is a composite of 2 exposures: 30 seconds at f/2.8 and ISO 1600 for the sky and landscape, with the sky brightening blue from dawn twilight, and 1.5 seconds at f/5.6 and ISO 400 for the disk of the Moon itself. Also, layered in are 26 short exposures for the partial phases, most being 1/125th sec at f/8 and ISO 400, with ones closer to totality being longer, of varying durations. All are with the 24mm lens and Canon 6D on a static tripod, with the camera not moved through the entire sequence. The short duration of totality at this eclipse lent itself to a sequence with one total phase image flanked by partial phases. The rocks are illuminated by lights from the community - light pollution but photogenic in this case - and partly from dawn glow in the east.
The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in western Monument Valley, Utah. The mid-totality image is a composite of 2 exposures: 30 seconds at f/2.8 and ISO 1600 for the sky and landscape, with the sky brightening blue from dawn twilight, and 1.5 seconds at f/5.6 and ISO 400 for the disk of the Moon itself. Also, layered in are 26 short exposures for the partial phases, most being 1/125th sec at f/8 and ISO 400, with ones closer to totality being longer, of varying durations. All are with the 24mm lens and Canon 6D on a static tripod.

4. Time-Lapses

I’d suggest attempting time-lapses only if you have lots of experience with lunar eclipses.

Exposures can vary tremendously over the partial phases and then into totality. Any time-lapse taken through a telescope, or even with a wide-angle lens, will require a lot of manual attention to ensure each frame is well-exposed as the sky and Moon darken.

However, even if you do not get a complete set of frames suitable for a smooth, continuous time-lapse, selected frames taken every 5 to 10 minutes may work well in creating a multiple-exposure composite (as above), by layering exposures later in Photoshop.


Whatever method – or methods — you use, don’t get so wrapped up in fussing with cameras you forget to simply enjoy the eclipse for the beautiful sight it is.

This is the last total eclipse of the Moon anyone on Earth will see until January 31, 2018. So enjoy the view of the deep red Moon in the autumn sky.

— Alan, September 20, 2015 / © 2015 Alan Dyer / www.amazingsky.com