Rose of the Southern Sky


It’s been a month since my last post, a month with no new astrophotos from home. But I’ve got a backlog of RAW files to work through from the Chile trip a month ago. Here’s a new image from that shooting expedition. It’s of an area of the southern sky that lends itself to every focal length and framing variation — you can’t go wrong with the Carina Nebula!

This wonderful nebula in the deep-south Milky Way rewards any astrophotographer. For this shot I used a 135mm telephoto (Canon’s wonderful f/2 L-series lens) and the Canon 7D camera. The 7D is what I call a “stock” camera, used just as it comes off the dealer shelf. The 7D does a superb job capturing the red nebulosity and its faint outlying bits and pieces. It tends to record these clouds of glowing hydrogen as magenta in tone. By comparison, my other Canon camera is a “filter-modified” 5D MkII. You can see a shot of this same area of sky taken with the 5D MkII a few blogs back under The Best Nebula in the Sky, posted May 6. The 5D MkII’s modification (which replaces the filter in front of the sensor with a new astro-friendly one) allows it to record deep-red wavelengths and picks up more faint nebulosity, registering it more as red in tone. But both images look good and presentable.

This field is rich in objects — not only the main sprawling nebula but nearby star clusters and patches of dark dust clouds. It is one of the finest fields in the sky for binoculars, and this shot approximates the field of view of typical binos. I like to shoot a lot of objects with telephoto lenses — while the main subject is not frame-filling and in your face, it does match (at least in field of view) what you can see in binos, useful for illustrations and observing articles. Of course, the camera picks up  more stuff and colours even your bino-aided eyes can’t see.

This shot is a stack of five 2-minute exposures at f/2.8 with the 135mm telephoto, on the Canon 7D at ISO 1250. I used the little Kenko Sky Memo tracking platform for this, letting it track without any added guiding. It’s tracking was spot on, with nary any star trailing as it followed the target for 20 minutes or so.

— Alan, June 3, 2011 / Image © 2011 Alan Dyer

The Galactic Cathedral


We’re on our last full day in Chile, packing up and sorting out. I’ll finish off my Chile blog series with this parting shot — the entire southern Milky Way from horizon to horizon.

In this view, we’re looking straight up, with the horizon at the edges of the frame of the 15mm fish-eye lens. The glowing starclouds of Sagittarius and Scorpius, seen in close up in the previous blog post, are in the centre of the frame. The Southern Cross is at far right, the Northern Cross at far left.

This scene is a superb way to end a night of southern sky stargazing – just lying back and looking up at the entire panorama of the Galaxy. You really do get the sense that we are indeed living at the edge of the Galaxy, looking off into its bright core, and with its spiral arms wrapping around us.

It’s a galactic cathedral of stars.

– Alan, May 7, 2011 / Image  © 2011 Alan Dyer

The Starfields of Sagittarius and Scorpius


I can’t get enough of this region of sky. I can and do shoot this with every lens I have and with all kinds of framing (horizontally, vertically, or at a rakish angle, like here) and it always looks great.

These are the rich and stunning starfields toward the centre of the Milky Way in Sagittarius (bottom) and Scorpius (at top). Look for the pinkish nebulas dotted along the Milky Way, the bright starclouds, and the dark lanes of interstellar dust. It’s all part of the galactic recycling program that our Milky Way participates in, as stars explode, cast off dust and gas, which then clump into glowing nebulas and form new generations of stars.

I took this shot about 5 a.m. a couple of mornings ago, with this area directly overhead. It’s a stack of six 3-minute exposures with the 35mm lens and Canon 5D MkII camera. I took some shots through a soft focus filter to add the star glows.

– Alan, May 7, 2011 / Image © 2011 Alan Dyer

Springtime Cluster #2: Ancient M67


Poor old M67. Does anyone ever look at this cluster? I tend to ignore it, in favour of its brighter and bigger brother, the Beehive Cluster just to the north. Yet, this smaller cluster ranks with the best of the sky’s open star clusters for richness and brilliance. Only a few showpiece star clusters, like the Beehive and the Pleiades, beat M67.

Located in Cancer, M67 really deserves more respect – even a name! – as it stands out as one of the few prominent deep-sky objects in the otherwise sparse spring sky, at least sparse for bright targets for binoculars or a small telescope. Yes, if you love galaxies, the spring sky is heaven! There are thousands of galaxies to hunt down in spring, but most need a decent-sized telescope to do them justice. By contrast, M67 looks just fine in a small telescope. With a few hundred stars packed into an area the apparent size of the Full Moon this is one rich cluster.

M67 is called that because it is #67 in Charles Messier’s catalog of “things not to be confused as comets.” Messier came across this object in April 1780. Messier ‘s object #67 is one of the few open star clusters not embedded in the Milky Way. Like the Beehive, M67 sits well above the disk of our Galaxy’s spiral arms. We look up out of the plane of the Galaxy to view M67, sitting some 2600 light years away, over four times farther away than its neighbour in Cancer, the Beehive. Thus, M67 looks smaller than the Beehive because it is more distant.

M67 holds the distinction of being one of the oldest star clusters known. It’s been around for over 4 billion years. Its position well above the frenzied traffic jam of our Galaxy’s spiral arms helps M67 stay intact and together, an isolated island of stars in our spring sky.

This image was taken right after the M44 Beehive Cluster shot featured in my previous blog post, using the same gear. So the image scale is the same. You can see how much smaller M67 appears than M44. Because M67 was beginning to sink into the west when I took this, I bumped the camera up to ISO 1600 and used shorter 3 minute exposures and stacked five of them to smooth out noise. The telescope was the little 92mm TMB apo riding on the Astro-Physics 600E mount and flawlessly autoguided with the Santa Barbara Instruments SG-4 autoguider. I really love the SG-4 — just press one button and it’s guiding. True “Push Here Dummy” guiding!

— Alan Dyer, April 2011 / Image © 2011 Alan Dyer

The Neglected Small Magellanic Cloud


It sits not far away in the deep southern sky from its larger counterpart, but it must feel rather inferior and sadly neglected. Pity as this object does have lots to offer.

This is the Small Magellanic Cloud, a satellite galaxy to the Milky Way and a companion to the Large Magellanic Cloud — each is named for Ferdinand Magellan who noted them on his pioneering circumnavigation voyage of the world in the 16th century. The Small Cloud doesn’t contain the number and complexity of nebulas and clusters as does its larger brother, but it does have some lovely offerings, like the complex of cyan-coloured nebulas and related clusters at top.

However, the notable sights in this area of sky aren’t actually part of the SMC. The two globular clusters in the field lie much closer to us. NGC 362 is a nice globular at top, but it pales in comparison (every such object does) next to the amazing object known as 47 Tucanae, or NGC 104, the huge globular cluster at right. It is a wonderful sight in any telescope.

This is a stack of five 7-minute exposures with the Borg 77mm f/4 astrograph and Canon 5D MkII at ISO 800. I took this on my astrophoto trip to Australia in December 2010, a season when this object is ideally placed for viewing. Most times of the year, the SMC is dragging close to the horizon and lost in the murk, as least for shooting. That’s another reason the poor old SMC gets no respect!

— Alan, December 2010 / Image © 2010 Alan Dyer

The Wonder-filled Large Magellanic Cloud


It occupies only a binocular field or two in the sky but … Wow! What a field it is! This is one of the objects that makes a trip to the southern hemisphere for astronomy worth the trek alone. This satellite galaxy of our Milky Way is visible only from south of the equator. It contains so many clusters and nebulas, many in the same telescope field, that just sorting out what you are looking at takes a good star atlas (most don’t plot this region well). This is one of my best shots of the “LMC,” taken on my December Oz trip. It is with the Borg 77mm f/4 astrographic lens/telescope and the filter-modified Canon 5D MkII, that picks up much more red nebulosity (that emits deep red wavelengths) that stock cameras don’t record well.

Even so, I’m always amazed at how so many nebulas in the LMC, and in its smaller counterpart, the nearby Small Magellanic Cloud, record as magenta or cyan, rather than deep red. The most prominent object is the Tarantula Nebula at left of centre. It is an amazing sight in any telescope, especially with a nebula filter.

This is a stack of five 7-minute exposures at ISO 800, with the scope on the AP 400 mount and guided with the SG-4 autoguider. This is a single image, framed to take in all the best stuff of the LMC. But to really get it all in with any detail requires a multi-panel mosaic. I’ve done those on previous trips and was hoping to re-do one on this last trip, with the better, sharper camera, the 5D MkII, and with the LMC higher in the sky than on earlier trips. But the lack of clear nights curtailed my plans.

But I’m happy with this one. Nice and sharp and with oodles of nebulosity. But one can never exhaust what this object has to offer, both for imaging and for just looking with the eyepiece. So there’s always next time!

– Alan, December 2010 / Image © 2010 Alan Dyer