The tradition continued of chasing clear skies to see a lunar eclipse.
It wouldn’t be an eclipse without a chase. Total eclipses of the Sun almost always demand travel, often to the far side of the world, to stand in the narrow path of the Moon’s shadow.
By contrast, total eclipses of the Moon come to you — they can be seen from half the planet when the Full Moon glides through Earth’s shadow.
Assuming you have clear skies! That’s the challenge.
Of the 14 total lunar eclipses (TLEs) visible from here in Alberta since 2000, I have seen all but one, missing the January 21, 2000 TLE due to clouds.
But of the remaining 13 TLEs so far in the 21st century, I watched only three from home, the last home lunar eclipse being in December 2010.
The total lunar eclipse of May 26, 2021 here in the initial partial phases with it embedded in thin cloud. The clouds add a glow of iridescent colours around the Moon, with the part of the Moon’s disk in the umbral shadow a very deep, dim red. A subtle blue band appears along the umbral shadow line, usually attributed to ozone in Earth’s upper atmosphere. With the Canon 60Da and 200mm lens.
I viewed three TLEs (August 2007, February 2008, and December 2011) from the Rothney Observatory south-west of Calgary as part of public outreach programs I was helping with.
In April 2014, I was in Australia and viewed the eclipsed Moon rising in the evening sky over Lake Macquarie, NSW.
A year later, in April 2015, I was in Monument Valley, on the Arizona-Utah border for the short total eclipse of the Moon at dawn.
But of the eclipses I’ve seen from Alberta since 2014, I have had to chase into clear skies for all of them — to Writing-on-Stone Provincial Park in both October 2014 and September 2015, to the Crowsnest Pass for January 2018, and to Lloydminster for January 2019.
A selfie of the successful eclipse chaser bagging his trophy, the total lunar eclipse of January 20, 2019. This was from a site south of Lloydminster on the Alberta-Saskatchewan border, but just over into the Saskatchewan side.
The total lunar eclipse on the morning of May 26, 2021 was no exception.
Leading up to eclipse day prospects for finding clear skies anywhere near home in southern Alberta looked bleak. The province was under widespread cloud bringing much-needed rain. Good for farmers, but bad for eclipse chasers.
Then, two days prior to the eclipse a hole in the clouds was predicted to open up along the foothills in central Alberta just at the right time, at 4 a.m. The predictions stayed consistent a day later.
Environment Canada predictions, as displayed by the wonderful Astrospheric app, showed Rocky Mountain House (the red circle) on the edge of the retreating clouds.
So trusting the Environment Canada models that had served me well since 2014, I made plans to drive north the day before the eclipse to Rocky Mountain House, a sizeable town on Highway 11 west of Red Deer, where the foothills begin. “Rocky” was predicted to be on the edge of the clearing, with a large swath of clear sky in the right direction, to the southwest where the Moon would be.
Fortunately, COVID restrictions are not so severe here as to demand stay-at-home orders. I could travel, at least within Alberta. Hotels were open, but restaurants only for takeaway.
The Starry Night desktop planetarium program provided a preview of the eclipsed Moon’s location and movement, plus the field of view of lenses, to plan the main shots with an 85mm lens (the time-lapse) and a 200mm lens (the close-ups over the horizon).
This was going to be a tough eclipse even under the best of sky conditions, as for us in Alberta the Moon would be low and setting into the southwest at dawn. The Moon would be darkest and in mid-eclipse just as the sky was also brightening with dawn twilight.
However, a low eclipse offers the opportunity of a view of the reddened Moon over a scenic landscape, in this case of the eclipsed Moon setting over the Rockies. That was the plan.
Unfortunately, Rocky Mountain House wasn’t the ideal destination as it lies far from the mountains. I was hoping for a site closer to the Rockies in southern Alberta. But a site with clear skies is always the first priority.
The task is then finding a spot to set up with a clear view to the southwest horizon, which from the area around Rocky is tough — it’s all trees!
This is where planning apps are wonderful.
The Photographer’s Ephemeris app showed possible side road sites and the position of the eclipsed Moon relative to the site terrain. The arc of spheres is the Milky Way.
I used The Photographer’s Ephemeris (TPE) to search for a side road or spot to pull off where I could safely set up and be away from trees to get a good sightline to the horizon and possibly distant mountains.
A site not far from town was ideal, to avoid long pre- and post-eclipse drives in the wee hours of the morning. The timing of this eclipse was part of the challenge — in having to be on site at 4 a.m.
TPE showed several possible locations and a Google street view (not shown here) seemed to confirm that the horizon in that area off Highway 11 would be unobstructed over cultivated fields.
But you don’t know for sure until you get there.
The PhotoPills AR mode overlays a graphic of the night sky on top of a live view from the phone’s camera, useful when on site to check the shooting geometry for that night. The Moon was in the right place!
So as soon as I arrived, I went to one site I had found remotely, only to discover power lines in the way. Not ideal.
I found another nearby side road with a clean view. From there I used the PhotoPills app (above) and its augmented reality “AR” mode to confirm, that yes, the Moon would be in the right place over a clear horizon at eclipse time the next morning.
The Theodolite app records viewing directions onto site images, useful for documenting sites for later use at night.
Another app I like for site scouting, Theodolite, also confirmed that the view toward the eclipsed Moon’s direction (with an azimuth of about 220°) would be fine from that site.
As a Plan B — it’s always good to have a Plan B! — I also drove west along Highway 11, the David Thompson Highway, toward the mountains, in search of a rare site away from trees, just in case the only clear skies lay to the west. I found one, some 50 km west of Rocky, but thankfully it was not needed. The Plan A site worked fine, and was just 5 minutes south of town, and bed!
My eclipse gear at work with the eclipse in progress in the morning twilight at 4:30 a.m.
I set up two tripods. One was for the Canon R6 with an 85mm lens for a “time-lapse” sequence of the Moon moving across the frame as it entered the Earth’s umbral shadow.
The other tripod I used for closeups of just the Moon using the Canon 60Da and 200mm lens, then switched to the Canon Ra and a 135mm lens, then the longer 200mm lens once the Moon got low enough to also be in frame with the horizon. Those were for the prime shot of the eclipse over the distant mountains and skyline.
A composite “time-lapse” blend of the setting Full Moon entering the Earth’s umbral shadow on the morning of May 26, 2021. This shows the Moon moving into Earth’s shadow and gradually disappearing in the bright pre-dawn sky. I shot images with the 85mm lens at 1-minute intervals but choose only every 5th image for this blend, so the Moons are spaced at 5-minute intervals.
It all worked! The sky turned out to be clearer than predicted, a pleasant surprise, with only some light cloud obscuring the Moon halfway through the partial phases (the first image at top).
The other surprise was how dark the shadowed portion of the Moon was. This was a very short total eclipse, with totality only 14 minutes long. With the Moon passing through the outer, lighter part of the umbral shadow, I would have expected a brighter eclipse, making the reddened Moon stand out better in the blue twilight.
As it was, in the minutes before the official start of totality at 5:11 a.m. MDT, the Moon effectively disappeared from view, both to the eye and camera.
The total lunar eclipse of May 26, 2021, here in the late partial phase about 15 minutes before totality began, with a thin arc of the Full Moon at the top of the disk still in sunlight. The rest is in the red umbral shadow of the Earth. The same pinkish-red light is beginning to light the distant Rocky Mountains in the dawn twilight. This is a single 1.3-second exposure with the 200mm lens and Canon Ra, untracked on a tripod. I did blend in a short 1/6-second exposure for just the bright part of the Moon to tone down its brightness.
My best shots were of the Moon still in partial eclipse but with the umbral shaded portion bright enough to show up red in the images. The distant Rockies were also beginning to light up pink in the first light of dawn.
The total lunar eclipse of May 26, 2021, taken at 5:01 a.m. MDT, about 10 minutes before the start of totality, with a thin arc of the Full Moon at the top of the disk still in sunlight. The rest is in the red umbral shadow of the Earth but the eclipsed portion of the Moon was so dim it was disappearing into the brightening twilight. This is a single 0.8-second exposure with the 200mm lens and Canon Ra.
My last view was of a sliver-thin Moon disappearing into Earth’s shadow just prior to the onset of totality. I packed up and headed back to bed with technically the Moon still up and in total eclipse, but impossible to see. Still I was a happy eclipse chaser!
It was another successful eclipse trip, thwarted not so much by clouds, but by the darkness of our planet’s shadow, which might have been due to widespread cloud or volcanic ash in the atmosphere of Earth.
The other factor at play was that this was a “supermoon,” with the larger Moon near perigee entering more deeply into the umbra than a normal-sized Moon.
A preview using Starry Night of the November 18/19, 2021 near-total lunar eclipse from the longitude and latitude of Alberta, with the Moon hight in the south west of the Milky Way.
The next lunar eclipse is six months later, on the night of November 18/19, 2021 when the Moon will not quite fully enter Earth’s umbral shadow, for a 97% partial eclipse. But enough of the Moon will be in the dark umbra for most of the Moon to appear red, with a white crescent “smile” at the bottom.
As shown above, from my location in Alberta the Moon will appear high in the south, in Taurus just west of the Milky Way. The winter stars and Milky Way will “turn on” and fade into view as the eclipse progresses.
We shall see if that will be a rare “home” eclipse, or if it will demand another chase to a clear hole in the clouds on a chilly November night.
Two major eclipses of the Moon and a partial eclipse of the Sun over eastern North America highlight the astronomical year of 2021.
I provide my selection of three dozen of the best sky sights for 2021. I focus on events you can actually see, and from North America. I also emphasize events with the potential for good “photo ops.”
What I Don’t Include
Thus, I’m excluding minor meteor showers and ones that peak at Full Moon, and events that happen with the objects too close to the Sun.
I also don’t include events seen only from the eastern hemisphere, such as the April 17 occultation of Mars by the Moon — it isn’t even a close conjunction for us in North America. The August 15 rare triple transit of three Galilean moons at once on the disk of Jupiter occurs during daylight hours for western North America, rendering it very challenging to see. An outburst on August 31 of the normally quiet Aurigid meteor shower is predicted to happen over Asia, not North America.
I also don’t list the growing profusion of special or “supermoons” that get click-bait PR every year, choosing instead to limit my list to just the Harvest Moon of September as a notably photogenic Moon.
Good Year for Lunar Eclipses
But two Full Moons — in May and in November — do undergo eclipses that will be wonderful sights for the eye and camera. As a bonus, the Full Moon of May is the closest Full Moon of 2021, making it, yes, a “supermoon.”
The New Moon eclipses the Sun on June 10, bringing an annular eclipse to remote regions of northern Canada and the Arctic (including the North Pole!). Eastern North America and all of Europe can witness a partial solar eclipse this day.
Recommended Guides
For an authoritative annual guide to the sky and detailed reference work, see the Observer’s Handbook published each year in Canadian and U.S. editions by The Royal Astronomical Society of Canada. I used it to compile this list.
The RASC has also partnered with Firefly Books to publish a more popular-level guide to the coming year’s sky for North America, in the 2021 Night Sky Almanac, authored by Canadian science writer Nicole Mortillaro. It provides excellent monthly star charts.
However, feel free to print out my blog or save it as a PDF for your personal reference. To share my listing with others, please send them the link to this blog page. Thanks!
January
The year begins with a chance to see three planets together at dusk.
January 10 — Mercury, Jupiter and Saturn within 2 degrees (°)
Even three weeks after their much publicized Great Conjunction, Jupiter and Saturn are still close and visible low in the evening twilight. On January 10 Mercury joins them to form a neat triangle of worlds, but very low in the southwest. Clear skies and binoculars are a must!
NOTE: The red circle on this and most charts represents the 6.5° field of view of a typical 10×50 binocular. So you can see here how binoculars will frame the trio perfectly. All charts are courtesy the desktop app Starry Night™ bySimulation Curriculum.
January 14 — Thin waxing crescent Moon above line of Mercury, Jupiter and Saturn
Saturn disappears behind the Sun on January 23, followed by Jupiter on January 28, so early January is our last chance to see the evening trio of planets, tonight with the crescent Moon.
January 20 — Mars and Uranus 1.6° apart
Uranus will be easy to spot in binoculars as a magnitude 5.8 green star below red Mars, so this is your chance to find the seventh planet. The quarter Moon shines below the planet pair.
January 23 — Mercury at a favourable evening elongation
This and its appearance in May are the best opportunities for northern hemisphere observers to catch the innermost planet in the evening sky in 2021. Look for a bright magnitude -0.8 “star” in the dusk twilight.
February
This is a quiet month with Mars the main evening planet, but now quite small in the telescope.
February 18 — Waxing Moon 4° below Mars
The pairing appears near the Pleiades and Hyades star clusters high in the evening sky.
March
Mars shines high in evening sky in Taurus, while the three planets that were in the evening sky in January begin to emerge into the dawn sky.
A 200+ degree panorama of the arch of the winter Milky Way, from south (left) to northwest (ar right) with the Zodiacal Light to the west at centre. This was from Dinosaur Provincial Park in southern Alberta on February 28, 2017.
March 1 — Zodiacal light “season” begins in the evening
From sites away from light pollution look for a faint glow of light rising out of the southwest sky on any clear evening for the next two weeks with no Moon.
March 3 — Mars 2.5° below the Pleiades
This will be a nice sight in binoculars tonight and tomorrow high in the evening sky, and a good target for tracked telephoto lens shots.
March 4 — Mercury and Jupiter just 1/2° apart
Close to be sure! But this pairing will be so low in the dawn sky it will be difficult to spot. They will appear equally close on March 5 should clouds intervene on March 4.
March 9 — Line of Mercury, Jupiter, Saturn and waning crescent Moon
Three planets and the waxing crescent Moon form a line across the dawn sky but again, very low in the southeast. The even thinner Moon will be below Jupiter on March 10. Observers at low latitudes (south of 35° N) will have the best view on these mornings.
March 20 — Equinox at 5:37 a.m. EDT
Spring officially begins for the northern hemisphere, autumn for the southern, as the Sun crosses the celestial equator heading north. Today, the Sun rises due east and sets due west for photo ops.
March 30 — Zodiacal light season again!
With the Moon out of the way, the faint zodiacal light can again be seen and photographed in the west over the next two weeks, but only from a site without significant light pollution on the western horizon.
April
The inner planets appear in the evening sky, while Mars meets M35.
The arch of the Milky Way over the Red Deer River valley and badlands at Dry Island Buffalo Jump Provincial Park, Alberta, on May 19/20, 2018 just after moonset of the waxing crescent Moon.
April 6 — Milky Way arch season begins
With the waning Moon just getting out of view, this morning and for the next two weeks are good nights to shoot panoramas of the bright summer Milky Way as an arch across the sky, with the galactic core in view to the south. The moonless first two weeks of May, June and July will also work this year, but by August the Milky Way is reaching high overhead and so is difficult to capture in a horizontal landscape panorama.
April 24 — Mercury and Venus 1° apart
The two inner planets will be very low in the western evening sky tonight and tomorrow, but with clear skies this is a chance to catch both at once. Use a telephoto lens for the best image.
April 26 — Mars passes 1/2° north of M35 star cluster
This will be a fine scene for binoculars or a photo op for a tracked telephoto lens or telescope in a long enough exposure to reveal the rich star cluster Messier 35 in Gemini.
May
On May 26 a totally eclipsed Moon shines red in the west before sunrise for western North America.
May 12 — Venus and Moon 1.5° apart
Look low in the western evening sky this night for the pairing of the thin crescent Moon and Venus, and the next night, May 13, for the crescent Moon higher and 4° away from Mercury. These are good nights to capture both inner planets using a short telephoto lens.
May 16 — Mercury at a favourable evening elongation
With Mercury angled up high in the northwest this is the best week of the year to catch it in the evening sky from northern latitudes.
The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in western Monument Valley, Utah. This is a single 5-second exposure at f/2.8 and ISO 400 with the Canon 24mm lens and Canon 6D, untracked. The sky is brightening with blue from dawn twilight.
May 26 — Total Eclipse of the Moon
The first total lunar eclipse since January 20, 2019, this “TLE” can be seen as a total eclipse only from western North America, Hawaii, and from Australia and New Zealand. Totality lasts a brief 15 minutes, with the Moon in Scorpius not far from red Antares. The red Moon in a twilight sky will be beautiful, as it was for the April 4, 2015 eclipse at dawn over Monument Valley, Utah shown above.
Those in western North America will see the totally eclipsed Moon setting into the southwest in the dawn hour before sunrise, as depicted here. Over a suitable landscape this will be a photogenic scene, as even at mid-eclipse the Moon will be bright red because it passes so far from the centre of Earth’s umbral shadow.
Unfortunately, those in eastern North America will have to be content with a view of a partially eclipsed Moon setting in the morning twilight.
A bonus is that this is also the closest and largest Full Moon of 2021, with a close perigee of 357,311 kilometres occurring just 9 hours earlier. So the Full Moon that rises on the evening of May 25 will be the year’s “supermoon.”
See Fred Espenak’s EclipseWise.com page for details on timing and viewing regions. The dark region on this map does not see any of this eclipse.
May 26 — Comet 7/P Pons-Winnecke at perihelion
The brightest comet predicted to be visible in 2021 (as of this writing) is the short-period Comet Pons-Winnecke (aka Comet 7/P). It reaches its closest point to the Sun — perihelion — the night of the lunar eclipse and is well placed in Aquarius high in the southeastern dawn sky above Jupiter and Saturn.
But … it is expected to be only 8th magnitude, making it a binocular object at best, looking like a fuzzball, not the spectacular object depicted here in this exaggerated view of its brightness and tail length.
May 28 — Mercury and Venus less than 1/2° apart
Look low in the northwest evening sky for a very close conjunction of the two inner worlds. A telescope will frame them well, with Mercury a tiny crescent and Venus an almost fully illuminated disk.
June
While eastern North America misses the total lunar eclipse, two weeks later observers in the east do get to see a partial solar eclipse.
May 10, 1994 Annular Eclipse taken from a site east of Douglas Arizona Showing “reverse” Bailey’s Beads — lunar mountains just touching Sun’s limb 4-inch f/6 apo refractor at f/15 with Barlow lens, and with Ektachrome 100 slide film !
June 10 — Annular eclipse of the Sun
Should you manage to get yourself to the path of the Moon’s anti-umbral shadow you will see the dark disk of the Moon contained within the bright disk of the Sun but not large enough to cover the Sun completely. You see a ring of light, as above from a 1994 annular eclipse.
The Moon is near apogee, so its disk is about as small as it gets, in contrast to the perigee Moon two weeks earlier. During the maximum of 3 minutes 51 seconds of annularity the sky will get unusually dark, but none of the dramatic effects of a total eclipse will appear. The annulus of sunlight that remains is still so bright special solar filters must be used at all times, covering the eyes and lenses.
The region with the best accessibility to the path is northwestern Ontario north and east of Thunder Bay. However, the annular phase of the eclipse there occurs at or just after sunrise, so clouds are likely to obscure the view, as are trees!
The eastern seaboard of the U.S. and much of eastern Canada can see a partial eclipse of the Sun, as can most of Europe. For details of times and amount of eclipse see Fred Espenak’s EclipseWise website.
Summer officially begins for the northern hemisphere, winter for the southern, as the Sun reaches its most northerly position above the celestial equator. The Sun rises farthest to the northeast and sets farthest to the northwest, and the length of daylight is at its maximum.
June 22 — Mars passes through the Beehive star cluster
Mars, now at a modest magnitude +1.8, appears amid the Beehive star cluster, aka M44, tonight and tomorrow evening, but low in the northwest in the twilight sky. Use binoculars or a telescope for the best view.
July
Venus and Mars put on a show low in the western twilight.
July 2 — Venus passes through the Beehive star cluster
Venus (at a brilliant magnitude -3.9) follows Mars through the Beehive cluster this evening, but with the pairing even lower in the sky, making it tough to pick out the star cluster.
July 4 — Mercury at a good morning elongation
Though not at its best for a morning appearance from northern latitudes, Mercury should still be easy to spot and photograph in the pre-dawn sky in Taurus, outshining bright Aldebaran.
July 11 — Grouping of Venus, Mars and waxing crescent Moon
Look low in the evening sky for the line of the thin crescent Moon, bright Venus and dim Mars all in the same binocular field. Venus passes 1/2° above Mars on the next two nights, July 12 and 13.
July 21 — Grouping of Venus, Mars and Regulus
The two planets appear with bright Regulus in Leo, all within a binocular field, but again, low in the northwest twilight. The colour contrast of red Mars with white Venus and blue-white Regulus should be apparent in binoculars.
August
The popular Perseid meteors peak, and we can see (maybe!) the extremely close conjunction of Mercury and Mars.
The core of the Milky Way in Sagittarius low in the south over the Frenchman River valley at Grasslands National Park, Saskatchewan.
August 1 — Milky Way core season opens
For southerly latitudes, the first two weeks of May and June are also good, but from the northern U.S. and much of Canada, the nights don’t get dark enough to see and shoot the bright galactic centre until August. The rich star clouds of Sagittarius now shine due south as it gets dark each night over the next two weeks.
August 2 — Saturn at opposition
Saturn is at its closest and brightest for 2021 tonight, rising at sunset and shining due south in Capricornus in the middle of the night.
A composite of the Perseid meteors over Dinosaur Provincial Park on the night of August 12/13, 2017.
August 12 — Perseid meteor shower peaks
The annual Perseid meteor shower peaks tonight with a waxing crescent Moon that sets early, to leave most of the night dark and ideal for watching meteors. Look for the crescent Moon 5° above Venus on August 10.
August 18 — Mars and Mercury only 0.06° apart!
Now this is a very close conjunction, with Mercury passing only 4 arc minutes from Mars (compared to the 6 arc minute separation of the Great Conjunction of Jupiter and Saturn on December 21, 2020). But the planets will be very low in the west at dusk and tough to sight. This will be a conjunction for skilled observers blessed with clear skies and a low horizon.
August 20 — Jupiter at opposition
Jupiter, now in Aquarius, reaches its closest and brightest for 2021 tonight, also rising at sunset and shining due south in the middle of the night. On the night of August 21/22, the Full Moon, also at opposition — as all Full Moons are — appears 4° below Jupiter, as shown above.
September
It’s Harvest Moon time, with this annual special Full Moon occurring close to the equinox this year for an ideal geometry, making the Moon rise due east.
Zodiacal Light at dawn on September 24, 2009. Taken from home in Alberta, with a Canon 5D MkII and 15mm lens at f/4 and ISO 800 for 6 minutes, tracking the sky so the ground is blurred.
September 5 — Zodiacal light “season” begins in the morning
With no Moon for the next two weeks, from sites away from light pollution look to the pre-dawn sky for a faint glow of light rising out of the east before twilight brightens the morning sky.
September 20 — Full “Harvest” Moon
Occurring two days before the equinox, this Full Moon will rise nearly due east (a little to the south of east) at sunset and set nearly due west at sunrise at dawn on September 21, for some fine photo ops.
September 22 — Equinox at 3:21 p.m. EDT
Autumn officially begins for the northern hemisphere, spring for the southern, as the Sun crosses the celestial equator heading south. Today, the Sun rises due east and sets due west for photo ops.
October
Mercury adorns the dawn while Venus shines bright but low at dusk.
October 4 — Zodiacal light “season” begins in the morning
With the Moon out of the way for the next two weeks, the zodiacal light will again be visible in the east in the pre-dawn hours.
October 9 — The Moon 2.5° from Venus
The crescent Moon passes close to Venus this evening, with the pair not far from the star Antares. The low altitude of the worlds lends itself to some fine photo ops. Look for a similar close conjunction on the evening of November 7.
October 25 — Mercury at its most favourable morning elongation
The high angle of the ecliptic — the path of the planets — on autumn dawns swings Mercury up as high as it can get in the morning sky, making this week the best for sighting Mercury as a “morning star” in 2021 from northern latitudes.
October 29 — Venus at its greatest angle away from the Sun
While now farthest from the Sun in our sky, its low altitude at this time of year makes this an unfavourable evening appearance of Venus.
November
The second lunar eclipse brings a mostly red Moon to the skies over North America.
November 3 — Moon and Mercury 2° apart, then a daylight occultation
Before dawn, with Mercury still well-placed in the morning sky, the waning crescent Moon shines 2° above the planet, with Mars below and the star Spica nearby. Later in the day, about noon to early afternoon (the time varies with your location), the Moon will occult (pass in front of) Mercury. This will be a challenging observation even with a telescope, with the pale and thin Moon only 14° east of the Sun. A very clear sky will be essential!
Total lunar eclipse November 8, 2003. Taken through Astro-Physics 5″ Apo refractor at f/6 with MaxView 40mm eyepiece projection into a Sony DSC-V1 5 megapixel digital camera, mounted afocally.
November 19 — 97% Partial Eclipse of the Moon
Though not a total eclipse, this is the next best thing: a 97% partial! And unlike the May 26 eclipse, all of North America gets to see this one.
Mid-eclipse, when the Moon is most deeply embedded in Earth’s umbral shadow, occurs at 4:04 a.m. EST (1:04 a.m. PST) on November 19. While not convenient timing, it ensures that all of the continent can see the entire 3.5-hour long eclipse. The partial umbral phase begins at 3:18 a.m EST (12:18 a.m. PST).
At mid-eclipse, the Moon will resemble Mars — a red world with a bright south “polar cap” caused by the small 3% of the southern edge of the Moon outside the umbra. Its position near the Pleiades and Hyades clusters will make for a great wide-field image.
Remember — this occurs on the night of November 18/19! So don’t miss it thinking the eclipse starts on the evening of November 19. You’ll be a day late!
The year ends with a chance to see four planets together at dusk.
Nov. 23, 2003 total solar eclipse over Antarctica on Qantas/Croydon Travel charter flight out of Melbourne, Australia. Sony DSC-V1 camera. 1/3 sec, f/2.8, 7mm lens, max wide-angle.
December 4 — Total Eclipse of the Sun
I include this for completeness, but this total solar eclipse (TSE) could not be more remote, as the path of totality lies over Antarctica. Only the most intrepid will be there, in expedition ships and in aircraft. (I took this image over Antarctica at the November 23, 2003 total eclipse one 18-year Saros cycle before this year’s TSE.) Even the partial phases are visible only from southernmost Australia and Africa.
December 6 — Moon 2.5° below Venus
With Venus just past its official December 3 date of “greatest brilliancy” (at magnitude -4.7), the waxing crescent Moon appears close below it, with Saturn and Jupiter further along the line of the ecliptic in the southwest. The Moon appears below Saturn on December 7 and below Jupiter on December 8.
A single bright meteor from the Geminid meteor shower of December 2017, dropping toward the horizon in Ursa Major.
December 13 — Geminid meteor shower peaks
The most prolific meteor shower of the year peaks with a waxing 10-day-old gibbous Moon lighting the sky, so not great conditions. But with luck it will still be possible to see and capture bright fireballs.
December 21 — Solstice at 10:59 a.m. EST
Winter officially begins for the northern hemisphere, summer for the southern, as the Sun reaches its most southerly position below the celestial equator. The Sun rises farthest to the southeast and sets farthest to the southwest, and the length of daylight is at its minimum.
December 31 — Four planets in view
As the year ends the same three planets that adorned the evening sky in early January are back, with the addition of Venus. So on New Year’s Eve we can see four of the naked eye planets (only Mars is missing) at once in the evening sky.
For two magical nights I was able to capture the Rockies by moonlight, with the brilliant stars of winter setting behind the mountains.
I’ve been waiting for nights like these for many years! I consider this my “25-Year Challenge!”
Back during my early years of shooting nightscapes I was able to capture the scene of Orion setting over Lake Louise and the peaks of the Continental Divide, with the landscape lit by the Moon.
Such a scene is possible only in late winter, before Orion sets out of sight and, in March, with a waxing gibbous Moon to the east to light the scene but not appear in the scene. There are only a few nights each year the photograph is possible. Most are clouded out!
Orion over Lake Louise, Banff National Park, Alberta March 1995 at Full Moon 28mm lens at f/2.8 Ektachrome 400 slide film
Above is the scene in March 1995, in one of my favourite captures on film. What a night that was!
But it has taken 24 years for my schedule, the weather, and the Moon phase to all align to allow me to repeat the shoot in the digital age. Thus the Challenge.
Here’s the result.
Orion setting over the iconic Victoria Glacier at Lake Louise, with the scene lit by the light of the waxing Moon, on March 19, 2019. This is a panorama of 3 segments stitched with Adobe Camera Raw, each segment 8 seconds at f/3.5 with the Sigma 24mm Art lens and Nikon D750 at ISO 800.
Unlike with film, digital images make it so much easier to stitch multiple photos into a panorama.
In the film days I often shot long single exposures to produce star trails, though the correct exposure was an educated guess factoring in variables like film reciprocity failure and strength of the moonlight.
Below is an example from that same shoot in March 1995. Again, one of my favourite film images.
Orion setting over Mount Temple, near Lake Louise, Banff National park, Alberta. March 1995. On Ektachrome 100 slide film, with a 28mm lens at f/8 for a roughly 20 minute exposure. Full moonlight provides the illumination
This year, time didn’t allow me to shoot enough images for a star trail. In the digital age, we generally shoot lots of short exposures to stack them for a trail.
Instead, I shot this single image of Orion setting over Mt. Temple.
The winter stars of Orion (centre), Canis Major (left) and Taurus (upper right) over Mt. Temple in Banff National Park. This is from the Morant’s Curve viewpoint on the Bow Valley Parkway, on March 19, 2019. Illumination is from moonlight from the waxing gibbous Moon off frame to the left. This is a single 8-second exposure at f/3.2 with the 24mm Sigma Art lens and Nikon D750 at ISO 800.
Plus I shot the panorama below, both taken at Morant’s Curve, a viewpoint named for the famed CPR photographer Nicholas Morant who often shot from here with large format film cameras. Kevin Keefe of Trains magazine wrote a nice blog about Morant.
A panorama of Morant’s Curve, on the Bow River in Banff National Park, with an eastbound train on the CPR tracks under the stars of the winter sky. Illumination is from the 13-day gibbous Moon off frame at left. Each segment is 8 seconds at f/3.2 and ISO 800 with the 24mm Sigma Art lens and Nikon D750 in portrait orientation.
I was shooting multi-segment panoramas when a whistle in the distance to the west alerted me to the oncoming train. I started the panorama segment shooting at the left, and just by good luck the train was in front of me at centre when I hit the central segment. I continued to the right to catch the blurred rest of the train snaking around Morant’s Curve. I was very pleased with the result.
The night before I was at another favourite spot, Two Jack Lake near Banff, to again shoot panoramas of the moonlit scene below the bright stars of the winter sky.
These are the iconic red chairs of Parks Canada, here at frozen Two Jack Lake, Banff National Park, and under the moonlit winter sky. This was March 18, 2019, with the scene illuminated by the gibbous Moon just at the frame edge here. This is a panorama of 11-segments, each 10 seconds at f/4 with the Sigma 24mm Art lens and Nikon D750 at ISO 800.
A run up to the end of the Vermilion Lakes road at the end of that night allowed me to capture Orion and Siris reflected in the open water of the upper lake.
The winter stars setting at Vermilion Lakes in Banff National Park, on March 18, 2019. This is a panorama cropped from a set of 11 images, all with the 24mm Sigma Art lens at f/3.2 for 10 seconds each and the Nikon D750 at ISO 800, in portrait orientation.
Unlike in the film days, today we also have some wonderful digital planning tools to help us pick the right sites and times to capture the scene as we envision it.
This is a screen shot of the PhotoPills app in its “augmented reality” mode, taken by day during a scouting session at Two Jack, but showing where the Milky Way will be later that night in relation to the real “live” scene shot with the phone’s camera.
PhotoPills
The app I like for planning before the trip is The Photographer’s Ephemeris. This is a shot of the plan for the Lake Louise shoot. The yellow lines are the sunrise and sunset points. The thin blue line at lower right is the angle toward the gibbous Moon at about 10 p.m. on March 19.
The Photographer’s Ephemeris
Even better than TPE is its companion program TPE 3D, which allows you to preview the scene with the mountain peaks, sky, and illumination all accurately simulated for your chosen location. I am impressed!
TPE 3D
Compare the simulation above to the real thing below, in a wide 180° panorama.
A panorama of Lake Louise in winter, in Banff National Park, Alberta, taken under the light of the waxing gibbous Moon, off frame here to the left. This was March 19, 2019. This is a crop from the original 16-segment panorama, each segment with the 24mm Sigma Art lens and Nikon D750, oriented “portrait.” Each segment was 8 seconds at f/3.2 and ISO 800.
These sort of moonlit nightscapes are what I started with 25 years ago, as they were what film could do well.
These days, everyone chases after dark sky scenes with the Milky Way, and they do look wonderful, beyond anything film could do. I shoot many myself. And I include an entire chapter in my ebook above about shooting the Milky Way.
But … there’s still a beauty in a contrasty moonlit scene with a deep blue sky from moonlight, especially with the winter sky and its population of bright stars and constellations.
These are the iconic red chairs of Parks Canada, here on the Tunnel Mountain Drive viewpoint overlooking the Bow River and Mount Rundle, in Banff National Park, and under the moonlit winter sky. This is a panorama cropped from the original 12-segments, each 15 seconds at f/4 with the Sigma 24mm Art lens and Nikon D750 at ISO 800.
I’m glad the weather and Moon finally cooperated at the right time to allow me to capture these magical moonlit panoramas.
Prospects looked bleak for seeing the January 31 total eclipse of the Moon. A little planning, a chase, and a lot of luck made it possible.
A mid-winter eclipse doesn’t bode well. Especially one in the cold dawn hours. Skies could be cloudy. Or, if they are clear, temperatures could be -25° C.
I managed to pull this one off, not just seeing the eclipse of the Moon, but getting a few photos.
The secret was in planning, using some helpful apps …
Starry Night™ / Simulation Curriculum
Because this eclipse was occurring before dawn for western North America the eclipsed Moon was going to be in the west, setting.
To plan any shoot the first app I turn to is the desktop planetarium program Starry Night™.
Shown above, the program simulates the eclipse with the correct timing, accurate appearance, and location in the sky at your site. You can set up indicators for the fields of various lenses, to help you pick a lens. The yellow box shows the field of view of a 50mm lens on my full-frame camera, essential information for framing the scene.
With that information in mind, the plan was to shoot the Moon over the Rocky Mountains, which lie along the western border of Alberta.
The original plan was a site in Banff on the Bow Valley Parkway looking west toward the peaks of the Divide.
But then the next critical information was the weather.
For that I turned to the website ClearDarkSky.com. It uses information from Environment Canada’s Astronomy forecasts and weather maps to predict the likelihood of clouds at your site. The day before the eclipse this is what it showed.
ClearSkyChart
Not good! Home on the prairies was not an option. While Banff looked OK, the best prospects were from farther south in the Crowsnest Pass area of Alberta, as marked. So a chase was in order, involving a half-day drive south.
But what actual site was going to be useful? Where could I set up for the shot I wanted?
I needed a spot off a main highway but drivable to, and with no trees in the way. I did not know the area, but Allison Road looked like a possibility.
The TPE app shows the direction to the Sun and Moon to help plan images by day. And in its night mode it can show where the Milky Way is. Here, the thin blue line is showing the direction to the Moon during totality, showing it to the south of Mt. Tecumseh. I wanted the Moon over the mountains, but not behind a mountain!
With a possible site picked out, it was time to take a virtual drive with Google Earth.
Google Earth Street View
The background map TPE uses is from Google Earth. But the actual Google Earth app also offers the option of a Street View for many locations.
Above is its view from along Allison Road, on the nice summer day when the Google camera car made the drive. But at least this confirms there are no obstructions or ugly elements to spoil the scene, or trees to block the view.
But there’s nothing like being there to be sure. It looks a little different in winter!
Theodolite App
After driving down to the Crowsnest Pass the morning before, the first order of the day upon arrival was to go to the site before it got dark, to see if it was usable.
I used the mobile app Theodolite to take images (above) that superimpose the altitude and azimuth (direction) where the camera was aimed. It confirms the direction where the Moon will be is in open sky to the left of Tecumseh peak. And the on-site inspection shows I can park there!
All set?
There is one more new and very powerful app that provides another level of planning. From The Photographer’s Ephemeris, you can hand off your position to a companion mobile app (for iOS only) called TPE 3D …
TPE 3D with 50mm lens field
It provides elevation maps and places you on site, with the actual skyline around you drawn in. And with the Moon and stars in the sky at their correct positions.
While it doesn’t simulate the actual eclipse, it sure shows an accurate sky … and what you’ll frame with your lens with the actual skyline in place.
Compare the simulation, above, to the real thing, below:
This is a blend of a 15-second exposure for the sky and foreground, and a shorter 1-second exposure for the Moon to prevent its disk from being overexposed, despite it being dim and deep red in totality. Both were at f/2.8 with the 50mm Sigma lens on the Canon 6D MkII at ISO 1600.
Pretty amazing!
Zooming out with TPE 3D provides this preview of a panorama I hoped to take.
TPE 3D zoomed out for 11mm lens simulation
It shows Cassiopeia (the W of stars at right) over the iconic Crowsnest Mountain, and the stars of Gemini setting to the right of Tecumseh.
Here’s the real thing, in an even wider 180° view sweeping from south to north. Again, just as predicted!
The panorama is from 8 segments, each with the 35mm lens at f/2.8 for 15 seconds at ISO 1600 with the Canon 6D MkII. Stitching was with Adobe Camera Raw. The Moon itself is blend of 4 exposures: 15 seconds, 4 seconds, 1 second, and 1/4 second to retain the red disk of the eclipsed Moon while bringing out the stars in the twilight sky.
Between the weather predictions – which proved spot on – and the geographical and astronomical planning apps – which were deadly accurate – we now have incredible tools to make it easier to plan the shot.
If only we could control the clouds! As it was, the Moon was in and out of clouds throughout the 70 minutes of totality. But I was happy to just get a look, let alone a photo.
The next total lunar eclipse is in six months, on July 27, 2018, but in an event visible only from the eastern hemisphere.
The next TLE for North America is a more convenient evening event on January 20, 2019. That will be another winter eclipse requiring careful planning!