Touring the Wonders of the Winter Sky


The Wonders of the Winter Sky

I present a tour of the deep-sky wonders of the winter sky.

While some might think the Milky Way is only a summer sight, the winter Milky Way is well worth a look!

In January and February we are looking outward from our location in the Milky Way, toward the Orion Spur, the minor spiral arm we live in. In it, and in the major Perseus Arm that lies beyond, lie hotbeds of star formation.

Artist's impression of the Milky Way (updated - annotated)
Courtesy European Southern Observatory

These star forming areas create a panorama of star clusters and glowing nebulas along the winter Milky Way and surrounding the constellation of Orion. The montage above shows the best of the deep-sky sights at this time or year.

(And yes, for southern hemisphere viewers I know this is your summer sky! But for us northerners, Orion is forever associated with frosty winter nights.)

The closeups below are all with a 200mm telephoto lens providing a field of view similar to that of binoculars. However, most of these nebulas are photographic targets only.


The Belt and Sword of Orion

The Belt and Sword of Orion with Barnard's Loop
This is a stack of 16 x 2- to 3-minute exposures with the filter-modified Canon 5D MkII at ISO 800 to 1250 and 200mm Canon L-Series lens at f/2.8. Taken with the Fornax Lightrack tracker as part of testing. Taken from home on January 8, 2019 during a clear couple of hours between passing haze and cloud.

This is the heart of the star formation activity, in the centre of Orion.

The bright Orion Nebula (or Messier 42 and 43) at bottom in Orion’s Sword is obvious in binoculars and glorious in a small telescope.

The Horsehead Nebula above centre and just below Orion’s Belt is famous but is a tough target to see through even a large telescope.

Barnard’s Loop at left is a wave of nebulosity being blown out of the Orion area by strong stellar winds. Any sighting of this object by eye is considered a feat of observing skill!


The Rosette Nebula and Area

Rosette and Christmas Tree Cluster with 200mm
The area of the Rosette Nebula (bottom) and Christmas Tree Cluster (top) in Monoceros with the Fornax Lightrack tracker and 200mm lens and filter modified Canon 5D MkII. This is a stack of 10 x 3 minute exposures at ISO 800.

The small cluster of hot young stars inside the Rosette Nebula is blowing a hole in the nebula giving it its Rosette name. Above is a loose star cluster called the Christmas Tree, surrounded by more faint nebulosity that includes the tiny Cone Nebula.


Gemini Clusters and Nebulas

The Clusters and Nebulas of Gemini
This is a stack of 10 x 3-minute exposures with the filter-modified Canon 5D MkII at ISO 800 and 200mm Canon L-Series lens at f/2.8. Some light haze passing through in some exposures added the natural star glows. I left those in as part of the stack to add the glows. Taken with the Fornax Lightrack tracker as part of testing. Taken from home on a rare fine and mild winter night, January 4, 2019.

This field of clusters and nebulosity is above Orion in Gemini, with Messier 35 the main open star cluster here at top. Below M35 is the tiny star cluster NGC 2158. The nebulosity at left between Mu and Eta Geminorum is IC 443, a remnant of a supernova explosion, and is aka the Jellyfish Nebula. The nebula at bottom is IC 2174, just over the border in Orion and aka the Monkeyhead Nebula.


Auriga Clusters and Nebulas

The Clusters and Nebulas of Auriga
This is a stack of 5 x 3-minute exposures with the filter-modified Canon 5D MkII at ISO 800 and 200mm Canon L-Series lens at f/2.8. Taken with the Fornax Lightrack tracker as part of testing. Diffraction spikes added with Astronomy Tools actions. Taken from home on January 4, 2019.

Above Gemini and Orion lies Auriga, with its rich field of clusters and nebulosity, with — from left to right — Messier 37, Messier 36, and Messier 38, as the main open star clusters here. Below M38 is NGC 1907. The nebulosity at right is IC 410 and IC 405, the Flaming Star Nebula.

In between them is the colourful asterism known as the Little Fish. Messier 38 is also known as the Starfish Cluster while Messier 36 is called the Pinwheel Cluster. The bright red nebula at top is Sharpless 2-235. The little nebulas at centre are NGC 1931 and IC 417.


The California Nebula

The California Nebula in Perseus
This is a stack of 5 x 3-minute exposures with the filter-modified Canon 5D MkII at ISO 800 and 200mm Canon L-Series lens at f/2.8. An additional exposure taken through the Kenko Softon A filter is layered in to add the star glows to bring out their colours. Taken with the Fornax Lightrack tracker. Taken from home on a rare fine and mild winter night, January 4, 2019.

Now we enter Perseus, more an autumn constellation but well up through most of the winter months. It contains the aptly named California Nebula, NGC 1499, at top left, with the bright star Zeta Persei. at bottom A small region of reflection nebulosity, IC 348, surrounds the star Atik, or Omicron Persei, at bottom right. The star just below NGC 1499 is Menkib, or Xi Persei, and is likely energizing the nebula.


The Pleiades, or Seven Sisters

Pleiades M45 with 200mm Lens
The Pleiades with the Fornax Lightrack tracker and 200mm lens + Canon 5D MkII in a stack of 10 x 3 minute exposures at ISO 800.

Obvious to the eye and central to the sky lore of many cultures is the Pleiades, aka the Seven Sisters, in Taurus the bull. It is also called Messier 45.

This is a newly formed cluster of hundreds of stars, passing through a dusty region of the Milky Way, which adds the fuzzy glows around the stars — an example of a reflection nebula, glowing blue as it reflects the blue light of the young stars.


The Hyades

The Hyades Star Cluster with NGC 1647 in Taurus
This is a stack of 5 x 2-minute exposures with the Canon 5D MkII at ISO 800 and 200mm Canon L-Series lens at f/2.8. An additional exposure taken through the Kenko Softon A filter is layered in to add the star glows to bring out their colours. Taken with the Fornax Lightrack tracker. Diffraction spikes added with Astronomy Tools actions for artistic effect.

Below the Pleiades in Taurus lies the larger Hyades star cluster. The V-shaped cluster stars are all moving together and lie about 150 light years away. Bright yellow Aldebaran, the eye of Taurus, is an intruder and lies at only half that distance, so is not a member of Hyades but is a more nearby star. The smaller, more distant star cluster NGC 1647 appears at left.


Seagull Nebula

Seagull Nebula and Sirius with 200mm
This is a stack of 10 x 3 minute exposures at ISO 800 (with the filter-modified Canon 5D MkII and Canon 200mm lens at f/2.8). The rings of colour around Sirius are an artifact of the sensor filter, I think!

Low in my northern winter sky is the brightest star in the sky of any season, Sirius. Just above and to the east of Sirius lies the Seagull Nebula (at top left), also called IC 2177, on the Canis Major-Monoceros border. Like many of these nebulas. the Seagull is too faint to easily see even with a telescope, but shows up well in photographs.


Lambda Orionis Nebula

Lambda Orionis Nebula with 200mm
With the Fornax Lightrack tracker and 200mm lens and filter-modified Canon 5D MkII. A stack of 10 x 3 minute exposures at ISO 800 with the filter-modified Canon 5D MkII and Canon 200mm lens at f/2.8.

This is the head of Orion, with the red supergiant star Betelgeuse at bottom left and the blue giant star Bellatrix right at bottom right. The brightest star at top is Meissa or Lambda Orionis, and is surrounded by a large and very faint area of hydrogen nebulosity. The open cluster around Meissa is catalogued as Collinder 69.

While the winter Milky Way might not look as bright and spectacular as the summer Milky Way of Sagittarius and Scorpius, it does contains a wealth of wonders that are treats for the eye and telescope … and for the camera.

PS.: The techniques for taking and processing images like these form the content of our new Deep Sky with Your DSLR video course now being promoted on KickStarter until the end of February, and available for purchase once it is published later this spring.

See my previous blog post for details.  Thanks and clear skies!

— Alan, February 17, 2019 / © 2019 Alan Dyer / AmazingSky.com 

 

Chasing Meteors


Geminid Meteor Radiant in Gemini

Meteors were raining down the sky on the peak night of the Geminid meteor shower.

Back in August, when I wrote my column for the November-December issue of our Canadian magazine SkyNews, I noticed how good the circumstances were this year for the annual Geminid meteor shower. Normally one of the best showers of the year, if not the best, the Geminids were really going to perform in 2017.

The Moon was near new so its light would not interfere. For western North America, the peak of the shower was also timed for midnight on the night of December 13/14, just when the radiant of the shower was high in the sky.

Raining Geminid Meteors
The Geminids rain down the sky from the radiant in Gemini high overhead on peak night.

So in August when I saw the favourable combination of circumstances, I decided a meteor chase was in order. While the shower would be visible from home, Geminid peak night in December is often bitterly cold or cloudy at home in Alberta.

So I planned a trek to Arizona, for the shower and the winter sky.

While skies at home proved decent after all, it was still a chase worth making, with the shower visible under the perfectly clear and dry skies of southeast Arizona.

My chosen site was the Quailway Cottage near the Arizona Sky Village, the chosen dark sky site for many amateur astronomers, and at the foot of the Chiricahua Mountains. Skies are dark!

Sky Dust - Interplanetary and Interstellar
The Zodiacal Light (left) and Milky Way over the Chiricahuas.

The Zodiacal Light was brilliant in the southwest sky for several hours after sunset. A tough sighting at this time of year from most sites, this glow was obvious in the Arizona sky. It is sunlight reflecting off cometary dust particles in the inner solar system.

Geminid Meteor Shower in the Winter Milky Way
Geminids streaking from Gemini as the winter sky rises.

On the peak night, the visual impression was of meteors appearing at a rate of at least one a minute, if not more frequently.

Geminid Meteor Radiant in Gemini
A tracked composite looking up toward Orion and Gemini.

The images here are all composites of dozens of exposures taken over 2 to 5 hours, stacking many meteors on one frame. So they do provide an exaggerated record of the shower. Meteors weren’t filling the sky! But you certainly did not have to wait long for one to appear, making this one of the best meteor showers in many years.

Geminid Meteors over the Chiricahuas
Geminids falling over the Chiricahuas as Orion sets at the end of the peak night.

Most of the Geminids were of average brightness. I didn’t see, nor did the camera catch many very bright “bolides,” the really brilliant meteors that light up the ground.

Bright Geminid Meteor Descending
A bright Geminid pierces Ursa Major.

Nevertheless, this was a night to remember, and a fine way to end what has been a superlative year of stargazing, with a total solar eclipse, great auroras, and for me, a wonderful stay under southern skies on an April trip to Australia.

All the best of the season to you and your family and friends. Clear skies!

Here’s to 2018, which begins with a total eclipse of the Moon on January 31.

— Alan, December 23, 2017 / © 2017 Alan Dyer / AmazingSky.com

 

Farewell Winter Sky


Panorama of the Winter Sky in March

As we celebrate the official arrival of spring in the Northern Hemisphere, we bid adieu to the stars of winter.

This was the scene last night from my backyard, of Orion and the surrounding constellations of the winter sky setting into the southwest in the early evening. Each night they will set sooner and sooner, even as the nights continue to grow shorter and the Sun sets later.

By late April Orion will be gone from our Northern Hemisphere sky — he hangs around until well into May for sites south of the equator.

Panorama of the Winter Sky in March (with Labels)
A horizon-to-zenith panorama of the winter consellations on a March evening as they set into the southwest. Taken from home March 19, 2017. This is a panorama of 5 panels, each with the 20mm Sigma Art lens at f/2, and Nikon D750 at ISO 3200, for 25 seconds each. Stitched with Adobe Camera Raw.

In this version I’ve labeled the main characters in this winter hunting scene – including some of the deep-sky “Messier”  objects like M45, the Pleiades; M44, the Beehive star cluster; and M42, the Orion Nebula.

At the same time this year, we also say goodbye to Venus which has shone so brightly these last few months as an evening star. By this weekend, it will be lost from sight as it passes between Earth and the Sun.

Mercury Rising and Venus Descending (with Labels)
Mercury (left) and Venus (right and bright) shinng low in the evening twilight, on March 19, 2017. Mercury was then 2 weeks before greatest elongation while Venus was a week before inferior conjunction. So Mercury was rising into the evening sky while Venus was rapidly descending. This is a 7-image HDR stack of exposures from 2.5 seconds to 1.6-second at ISO 200 with the Canon 6D and with the Sigma 50mm lens at f/4.

Meanwhile, Mercury is rising into view in the evening twilight, in its best evening showing of the year from northern latitudes. The view below is also from March 19, with Mercury to the left of brighter Venus.

Over the next two weeks, look low in the west for a bright star amid the twilight. Mercury appears farthest from the Sun on April 1, the date of its “greatest elongation.”

Having Mercury in our evening sky is a sure sign of spring.

Leo and the Spring Stars Rising
Leo rising in the east along with the northern hemisphere spring stars. Numerous satellite trails are visible. I didn’t clone them out. This is a vertical panorama of 4 frames, with the 20mm Sigma Art lens at f/2 and 25 seconds at ISO 3200 with the Nikon D750. Stitched with PTGui using Transverse Equirectangular projection.

Another sign of spring is Leo the lion.

While Orion sets in the west, the stars of spring are rising in the east. The panorama above depicts the scene in the eastern sky these nights, as Leo rises below the Big Dipper.

The Big Dipper is at upper left, with its handle pointing down to Arcturus at bottom left. The Bowl of the Dipper points down to the right to Regulus and the stars of Leo.

Above Leo is the star cluster M44, the Beehive, in Cancer. Below Leo at centre is the star cluster Mel 111, the Coma Berenices star cluster near the North Galactic Pole.

Happy Equinox! 

— Alan, March 20, 2017 / © 2017 Alan Dyer / amazingsky.com

 

 

A Panorama of the Spring and Winter Sky


Winter and Spring Sky Panorama

I present a sweeping panorama of the winter and spring stars on a February night. 

The lead image is a panorama I shot last Saturday, February 27 that takes in about 200° of sky from northeast to west, and nearly to the zenith. It encompasses most of the northern spring and winter stars and constellations.

I’ve added the labels to help you pick out the celestial highlights. The winter sky, containing Orion as the central constellation, is at right setting into the west. This area of sky contains a rich collection of bright stars and identifiable constellations.

The left side of the sky contains the spring constellations, now coming into view in the east. Note how that area of sky is sparsely populated by bright stars. You can see the Big Dipper, Regulus in Leo, and Arcturus rising at lower left.

The reason for the difference is the Milky Way – you can see it at right arcing up from the southern horizon passing by Orion and through Gemini, Taurus and Auriga. In that direction we are looking into the outlying spirals arms of our galaxy, toward rich areas of star formation.

To the east, at left, we are looking at right angles out of the plane of our spiral galaxy, toward the galactic North Pole, here just left of Leo. In that direction there are very few bright stars between us and the starless depths of intergalactic space. The spring sky is rather blank compared to the rich winter sky.

But you can see Jupiter, the brightest object in view here, and now prominent in the evening sky.

Note one other subtle glow just above Jupiter. That diffuse glow is the Gegenschein, caused by sunlight reflecting off interplanetary dust opposite the Sun in our solar system and in the plane of the ecliptic.

Jupiter is just east (left) of the Gegenschein here, as Jupiter was then just over a week before its date of opposition, March 8. By then the Gegenschein will have moved to superimpose right over Jupiter, as both then lie opposite the Sun.

Winter and Spring Sky Panorama

I shot this scene from home on February 27, 2016, using the new iOptron iPano motorized “gigapan” unit, which I programmed to move and shoot 36 exposures with the Canon 5D MkII and 35mm lens, arranged in 4 rows high with 9 panels wide in each row from east to west. The result is a huge mosaic, 24,000 by 10,000 pixels.

Each exposure was 25 seconds at f/2 and at ISO 3200. The camera was not tracking the sky. I stitched the 36 segments with PTGui using its Spherical Fisheye projection. The image has black margins but I think the circular format is more suggestive of the spherical dome of the sky above and around you. But that’s me, a longtime planetarium show producer.

Next time I will shoot the zenith cap images as well!

— Alan, February 29, 2016 / © 2016 Alan Dyer / www.amazingsky.com

 

The Wonder-Filled Winter Sky


Mosaic of the Wonder-filled Winter Milky Way

The sky of December contains an amazing array of bright stars and deep-sky delights.

At this time of year we peer out toward the edge of our Galaxy, in the direction opposite to what we see in July and August. Even though we are looking away from the centre of our Galaxy, the Milky Way at this time of year contains a stunning collection of sights – for the naked eye, binoculars or a telescope.

I can’t list them all here, but most are in the lead image above! The image is a mosaic of the northern winter Milky Way, including the brilliant stars and constellations in and around Orion the Hunter.

The Milky Way extends from Perseus in the north at top, to Canis Major in the south at bottom. Throughout the scene are dark lanes and dust clouds, such as the Taurus Dark Clouds at upper right.

The Milky Way is dotted with numerous red “hydrogen-alpha” regions of emission nebulosity, such as the bright Rosette Nebula at lower left and the California Nebula at upper right. The curving arc of Barnard’s Loop surrounds the east side of Orion. Orion is below centre, with Sirius, the night sky’s brightest star, at lower left.

The constellation of Taurus is at upper right and Gemini at upper left. Auriga is at top and Perseus at upper right.

There’s an unusually bright area in Taurus just right of centre in the mosaic which I thought might be an image processing artifact. No. It’s the Gegenschein – a glow of sunlight reflected off comet dust directly opposite the Sun.

Two highlights of this sky that are great regions for binoculars are the Hyades cluster in Taurus ….

The Hyades Cluster with Aldebaran
The Hyades open star cluster in Taurus with the bright star Aldebaran, not a part of the cluster iteslf. The smaller and more distant cluster NGC 1647 is at left. This is a telephoto lens image taking in a field similar to binoculars, and is a stack of 5 x 2.5-minute exposures with the 135mm lens at f/2 and Canon 5D MkII camera at ISO 800, plus two other exposures taken through the Kenko Softon filter to add the star glows. Taken from Quailway Cottage on Dec 7, 2015 using the iOptron Sky-Tracker.

…and the Belt and Sword of Orion.

The Hyades – the face of Taurus – is one of the nearest and therefore largest open star clusters.

Orion the Hunter, who battles Taurus in the sky, contains the famous Orion Nebula, here overexposed in order to bring out the much fainter nebulosity in the region.

The magenta and blue arcs in the image below are photographic targets, but the bright Orion Nebula in Orion’s Sword is easy in binoculars, shining below the trio of his Belt Stars.

Orion Belt and Sword Mosaic
A mosaic of the Sword and Belt region of Orion the Hunter, showing the diverse array of colourful nebulas in the area, including: curving Barnard’s Loop, the Horsehead Nebula below the left star of the Belt, Alnitak, and the Orion Nebula itself as the bright region in the Sword. Also in the field are numerous faint blue reflection nebulas. The reflection nebula M78 is at top embedded in a dark nebula, and the pinkish NGC 2024 or Flame Nebula is above Alnitak. The bright orange-red star at far right is W Orionis, a type M4 long-period variable star. This is a 4-panel mosaic with each panel made of 5 x 2.5-minute exposures with the 135mm Canon L-series telephoto wide open at f/2 and the filter-modified Canon 5D MkII at ISO 1250. The night was somewhat hazy which added natural glows on the stars. No filter was employed here. The camera was on the iOptron Sky-Tracker for tracking but no guiding. Shot from outside Quailway Cottage near Portal, Arizona, Dec 7, 2015. All stacking and stitching performed in Photoshop CC 2015. Stacking done with median combine stack mode to eliminate geosat trails through the fields.

For us in the northern hemisphere, Orion and company are winter sights. But for those down under, in the southern hemisphere, this is the summer sky. So pardon the northern chauvinism in the title!

Either way, on a dark, moonless night, get out and explore the sky around Orion.

TECHNICAL:

I shot the segments for the main mosaic at top on a very clear night on December 5, 2015 from the Quailway Cottage at Portal, Arizona. This is a mosaic of 8 segments, in two columns of 4 rows, with generous overlap. Each segment was made of 4 x 2.5-minute exposures stacked with mean combine stack mode to reduce noise, plus 2 x 2.5-minute exposures taken through the Kenko Softon filter layered in with Lighten belnd mode to add the star glows. Each segment was shot at f/2.8 with the original 35mm Canon L-series lens and the filter-modified (by Hutech) Canon 5D MkII at ISO 1600, riding on the iOptron Sky-Tracker. All stacking and stitching in Photoshop CC 2015. The soft diffusion filter helps bring out the star colors in this area of sky rich in brilliant giant stars.

— Alan, December 11, 2015 / © 2015 Alan Dyer / www.amazingsky.com

A Lone Geminid Meteor


Lone Geminid Meteor (Dec 12, 2014)

A lone meteor streaks away from the constellation of Gemini, part of the annual Geminid meteor shower.

Once again, as I did last month for the Leonid shower, I set up two cameras firing away hundreds of frames in hope that some would record a few meteors from the annual Geminid shower now going on.

I took about 700 frames, but only this one picked up a meteor. Clouds did intervene for a while – that’s when the brightest meteors would have appeared I’m sure. I observed from my front patio for a while and saw several Geminids, including two beautifully bright ones. But of course, both were just outside the field of both cameras.

I shot the shower tonight, Friday, the night before the peak on Saturday, as the forecast calls for cloud for the rest of the weekend here in southern New Mexico.

So this may be my best shot of the 2014 Geminid meteors.

– Alan, December 12, 2014 / © 2014 Alan Dyer

 

Supernova Remnant & Star Cluster


Supernova Remnant & Star Cluster in Gemini

A bubble of glowing gas blows away from an ancient dying star, next to a cluster of new stars in Gemini.

This image, from a week ago, captures contrasting stages in the life of a star.

At left is a crescent-shaped bubble of gas called IC 443, or the Jellyfish Nebula, billowing away from the site of an ancient supernova explosion, when a giant star ended its life in a blast thousands of years ago. Estimates put its age as between 3,000 and 30,000 years.

At upper right is the bright open star cluster, Messier 35, a gathering of hundreds of comparatively new stars at the beginning of their lives. M35 lies 2,800 light years away, close enough that its stars are nicely resolved in my photo and in any small telescope. M35 is one of the showpieces of the winter northern sky.

Just below M35 you can see a fuzzy glow. It’s another star cluster, NGC 2158. However, its great distance of 11,000 light years makes it appear as a small, partially-resolved glow, a nice contrast in clusters near and far.

IC 443 Supernova Remnant in Gemini

This image focuses on IC 443, sitting between the stars Eta (right) and Mu Geminorum. The field is filled with other faint nebulosity, all part of the cycle of star birth and death.

– Alan, December 7, 2014 / © 2014 Alan Dyer