How to Shoot and Stitch Nightscape Panoramas


The Milky Way over Writing-on-Stone

Panoramas featuring the arch of the Milky Way have become the icons of dark sky locations. “Panos” can be easy to shoot, but stitching them together can present challenges. Here are my tips and techniques.

My tutorial complements the much more extensive information I provide in my eBook, at right. Here, I’ll step through techniques for simple to more complex panoramas, dealing first with essential shooting methods, then reviewing the workflows I use for processing and stitching panoramas. 

What software works best depends on the number of segments in your panorama, or even on the focal length of the lens you used. 


PART 1 — SHOOTING 

What Equipment Do You Need?

Nightscape panoramas don’t require any more equipment than what you likely already own for shooting the night sky. For Milky Way scenes you need a fast lens and a solid tripod, but any good DSLR or mirrorless camera will suffice. 

1-Camera with Leveling Head and L-Bracket
Pano Gear
A tripod head with a scale marked in degrees is essential. Here it sits on a levelling head with its own bubble level that makes it easy to level the camera. An L-bracket allows the camera to rotate directly above the vertical axis, handy when shooting in portrait mode, as here with a 15mm full-frame fish-eye lens, one option for horizon-to-zenith panoramas. The tripod accessories here are by Acratech. 

The tripod head can be either a ball head or a three-axis head, but it should have a horizontal axis marked with a degree scale. This allows you to move the camera at a correct and consistent angle from segment to segment. I think that’s essential. 

What you don’t need is a special, and often costly, panorama head. These rotate the camera around the so-called “nodal point” inside the lens, avoiding parallax shifts that can make it difficult to align and stitch adjacent frames. Parallax shift is certainly a concern when shooting interiors or any scenes with prominent content close to the camera. However, in most nightscapes our scene content is far enough away that parallax simply isn’t an issue. 

Though not a necessity, I find a levelling base a huge convenience. As I show above, this specialized ball head goes under the usual tripod head and makes it easy to level the main head. It eliminates all the fussing with trial-and-error adjustments of the length of each tripod leg. 

Canon 6D Mk II Level
On the Level
Most cameras now have an electronic level built in that is handy for ensuring the panorama does not end up tilted. This is from a Canon 6D MkII.

Then to level the camera itself, I use the electronic level now in most cameras. Or, if your camera lacks that feature, an accessory bubble level clipped into the camera’s hot shoe will work.

Having the camera level is critical. It can be tipped up, of course, but not tilted left-right. If it isn’t level the whole panorama will be off kilter, requiring excessive straightening and cropping in processing, or the horizon will wave up and down in the final stitch, perhaps causing parts of the scene to go missing.

NOTE: Click or tap on the panorama images to open a high-res version for closer inspection.  

Panorama of the Northern Lights and Winter Stars
Aurora in the Winter Sky
To capture this panorama I used a Sigma 14mm lens on a Nikon D750, mounted in portrait orientation with the gear shown above, to shoot eight segments 45° apart, each 13 seconds at f/2 and ISO 3200. Stitching was with Adobe Camera Raw. The aurora lies to the north at left, while Orion and the winter Milky Way are to the south at right. 

Shooting Horizon Panoramas

While panoramas spanning the entire sky might be what you are after, I suggest starting simpler, with panos that take in just a portion of the 360° horizon and only a part of the 180° of the sky. These “partial panos” are great for auroras (above) or noctilucent clouds, (below), or for capturing just the core of the Milky Way over a landscape. 

The key to all panorama success is overlap. Segments should overlap by 30 to 50 percent, enabling the stitching software to align the segments using the content common to adjacent frames. Contrary to some users, I’ve never found an issue with having too much overlap, where the same content is present on several frames. 

Noctilucent Cloud Panorama over OId Barns on June 19, 2019
Noctilucent Clouds in Summer
NLCs are good panorama subjects. I captured this display on June 19, 2019 using a Sony a7III camera at ISO 400, and a Sigma 50mm lens at f/2 for a set of six segments stitched with Adobe Camera Raw

For a practical example, let’s say you shoot with a 24mm lens on a full-frame camera, or a 16mm lens on a cropped-frame camera. Both combinations yield a field of view across the long dimension of the frame of roughly 80°, and across the short dimension of the frame of about 55°. 

That means if you shoot with the camera in “landscape” orientation, panning the camera by 40° between segments would provide a generous 50 percent overlap. The left half of each segment will contain the same content as the right half of the previous segment, if you take your panos by turning from left to right. 

TIP: My habit is to always shoot from left to right, as that puts the segments in the correct order adjacent to each other when I view them in browser programs such as Lightroom or Adobe Bridge, with images sorted in chronological order (from first to last images in a set) as I typically prefer. But the stitching will work no matter which direction you rotate the camera. 

In the example of a 24mm lens and a camera in landscape orientation you could turn at a 45° or 50° spacing and yield enough overlap. However, turning the camera at multiples of 15° is usually the most convenient, as tripod heads are often graduated with markings at 5° increments, and labeled every 15° or 30°. 

Some will have coarser and perhaps unlabeled markings. If so, determine what each increment represents, then take care to move the camera consistently by the amount that will provide adequate overlap. 

Harvest Moon Rising over the Red Deer River
Moonrise over the Red Deer River
Not all panoramas have to be of the Milky Way. This captures the sweeping arc of Earth’s blue shadow rising in the eastern sky as the Harvest Moon comes up amid the shadow. This is a 7-section single-tier panorama with the 20mm Sigma lens and Nikon D750 at ISO 100. It stitched fine with Adobe Camera Raw.

To maximize the coverage of the sky while still framing a good amount of foreground, a common practice is to shoot panoramas with the camera in portrait orientation. That provides more vertical but less horizontal coverage for each frame. In that case, for adequate overlap with a 24mm lens and full-frame camera shoot at 30° spacings.

TIP: When shooting a partial panorama, for example just to the south for the Milky Way, or to the north for the aurora borealis, my practice is to always shoot a segment farther to the left and another to the right of the main scene. Shoot more than you need. Those end segments can get distorted when stitching, but if they don’t contain essential content, they can be cropped out with no loss, leaving your main scene clean and undistorted.

Shooting with a longer lens, such as a 50mm (or 35mm on a cropped frame camera), will yield higher resolution in the final panorama, but you will have much less sky coverage, unless you shoot multiple tiers, as I describe below. You would also have to shoot more segments, at 15° to 20° spacings, taking longer to complete the shoot.

Night Train in the Moonlight at Morant's Curve
Morant’s Curve in the Moonlight
Not all panoramas have to be shot under dark skies, or encompass 360°. Moonlight illuminates the famous viewpoint called Morant’s Curve in Banff National Park, with Orion setting over the peaks of the Continental Divide, as a train speeds east through the March night. This is a panorama of 12 segments, each with a 24mm Sigma lens and Nikon D750 in portrait orientation, stitched with PTGui. 

As the number of segments goes up shooting fast becomes more important, to minimize how much the sky moves from segment to segment, and during each exposure itself, to aid in stitching. Remember, the sky appears to be turning from east to west, but the ground isn’t. So a prolonged shoot can cause problems later as the stitching software tries to align on either the fixed ground or the moving stars. 

Panoramas on moonlit nights, as I show above, are relatively easy because exposures are short.

Milky Way over Dry Island Buffalo Jump
Milky Way over the Buffalo Jump
A moonless night in early May was perfect for a panorama of the Milky Way arching over the Badlands of Dry Island Buffalo Jump in Alberta. This is a multi-tier panorama of 3 tiers of 7 segments each, with exposures of 30 seconds at f/2 with a 20mm Sigma Art lens and Nikon D750 at ISO 6400.

Milky Way panoramas taken on dark, moonless nights are tougher. They require fast apertures (f/2 to f/2.8) and high ISOs (ISO 3200 to 6400), to keep individual exposures no more than 30 to 40 seconds long.

Histogram Example
Expose to the Right
Minimize noise in the shadows by exposing so the histogram is shifted to the right, and not slammed to the left. Underexposure is the most common cardinal sin of newbie nightscape photographers. 

Noise lives in the dark foregrounds, so I find it best to err on the side of overexposure, to ensure adequate exposure for the ground, even if it means the sky is bright and the stars slightly trailed. It’s the “Expose to the Right” philosophy I espouse at length in my eBook. 

Advanced users can try shooting in two passes: one at a low ISO and with a long exposure for the fixed ground, and another pass at a higher ISO and a shorter exposure for the moving sky. But assembling such a set will take some deft work in Photoshop to align and mask the two stitched panos. None of the examples here are “double exposures.”


Shooting 360° Panoramas

The Milky Way over Maskinonge Lake
Milky Way at Waterton Lakes
While covering 360° in azimuth, this panorama from July 2018 goes only partway up the sky, to capture the Milky Way core to the south and the solstice twilight glow to the north. This is a 10-segment panorama, with each segment 30 seconds at f/2 with a Sigma 24mm Art lens and Nikon D750 at ISO 6400. Adobe Camera Raw stitched this nicely.

More demanding than partial panoramas are full 360° panoramas, as above. Here I find it is best to start the sequence with the camera aimed toward the celestial pole (to the north in the northern hemisphere, or to the south in the southern hemisphere). That places the area of sky that moves the least over time at the two ends of the panorama, again making it easier for software to align segments, with the two ends taken farthest apart in time meeting up in space.

In our 24mm lens example, to cover the entire 360° scene shooting with a 45° spacing would require at least eight images (8 x 45 = 360). I used 10 above. Using that same lens with the camera in portrait orientation will require at least 12 segments to cover the entire 360° landscape. 


Shooting 360° by 180° Panoramas

"Steve," the Strange Auroral Arc
Capturing STEVE This 360° panorama captures the infamous STEVE auroral arc across the south, with a normal auroral display to the north at right. This was from six segments, each 10 seconds at ISO 2500, with a Sigma 14mm lens at f/1.8 and Nikon D750 in portrait orientation.

More demanding still are 360° panoramas that encompass the entire sky, from the ground below the horizon to the zenith overhead. Above is an example.

To do that with a single row of images requires shooting in portrait orientation with a very wide 14mm rectilinear lens on a full-frame camera. That combination has a field of view of about 100° across the long dimension of the sensor. 

That sounds generous, but reaching up to the zenith at an altitude of 90° means only a small portion of the landscape will be included along the bottom of the frame.

To provide an even wider field of view to take in more ground, I use full-frame fish-eye lenses on my full-frame cameras, such as Canon’s old 15mm lens (as shown at top) or Rokinon’s 12mm. Even a circular-format fish-eye will work, such as an 8mm on a full-frame camera or 4.5mm on a cropped-frame camera. 

All such fish-eye lenses produce curved horizons, but they take in a wide swath of sky, making it possible to include lots of foreground while reaching well past the zenith. Conventional panorama assembly programs won’t work with such wide and distorted segments, but the specialized programs described below will. 


Shooting Multi-Tier Panoramas

Bow Lake by Night Panorama
Bow Lake by Night
The summer Milky Way arches over iconic Bow Lake in Banff on a perfect night in July 2018. This is a stitch, using PTGui, of three tiers of 7 segments each, with a 20mm Sigma lens and Nikon D750, with a Genie Mini automating the horizontal panning and shutter release, as shown above. Each frame was 30 seconds at f/2 and ISO 6400. I used this same set to test the programs described below.

The alternative technique for “all-sky” panos is to shoot multiple tiers of images: first, a lower row covering the ground and partway up the sky, followed by an upper row completing the coverage of just the sky at top. 

The trick is to ensure adequate overlap both horizontally and vertically. With the camera in landscape orientation that will require a 20mm lens for full-frame cameras, or a 14mm lens for cropped-frame cameras. Either combination can cover the entire sky plus lots of foreground in two tiers, though I usually shoot three, just to be sure!.

Shooting with longer lenses provides incredible resolution for billboard-sized “gigapan” blow-ups, but will require shooting three, if not more, tiers, each with many segments. That starts to become a chore to do manually. Some motorized assistance really helps when shooting multi-tier panoramas. 


Automating the Pan Shooting

The dedicated pano shooter might want to look at a device such as the GigaPan Epic models or the iOptron iPano, (shown below), all about $800 to $1000. 

5A-iPano Aimed High
iPano Panorama Machine
The iOptron iPano automates all shooting and movement, making even the most complex panoramas easy to shoot. It can also be used for two-axis motion-control time-lapses. 

I’ve tested the latter and it works great. You program in the lens, overlap, and angular sweep desired. The iPano works out how many segments and tiers will be required, and automates the shooting, firing the shutter for the duration you program, then moving to the new position, firing again, and so on. I’ve shot four-tier panos effortlessly and with great success. 

5B-iPano Screen-Shooting Info
iPano Control
The iPano’s on-board screen provides all the menus and options for setting up a shoot. This screen shows that this multi-tier pano will take 6m37s to complete. 

However, these devices are generally bigger and heavier than I care to heft around in the field.

Instead, I use the original Genie Mini from SYRP, (below), a $250 device primarily for shooting motion control time-lapses. But the wireless app that programs the Genie also has a panorama function that automatically slews the camera horizontally between exposures, again based on the lens, overlap, and angular sweep you enter. The just-introduced Genie Mini II is similar, but with even more capabilities for camera control. 

6A--SYRP Genie Mini
The SYRP Genie Mini
A lower-cost option for automated shooting, the Genie Mini also provides time-lapse motion control. Here, I show it with a conventional 3-axis head on top, for shifting the camera up in altitude manually for multi-tier panos, while the Mini handles the horizontal motion and exposures. 

While combining two Genie Minis allows programming in a vertical motion as well, I’ve been using just a regular tripod head atop the Mini to manually move the camera vertically between each of the horizontal tiers. I don’t feel the one or two moves needed to go from tier to tier too arduous to do manually, and I like to keep my field gear compact and easy to use.

6B-Genie App
Wireless Control
The original Genie App (Apple iOS or Android) connects to the Genie via Bluetooth. This screen shows a 360° panorama programmed for a 20mm lens with 37% percent overlap, requiring eight segments. The shutter will fire after each move for 40 seconds.

The Genie Mini (now replaced by the Mini II) works great and I highly recommend it, even if panoramas are your only interest. But it is also one of the best, yet most affordable, single-axis motion control devices on the market for time-lapse work. 


When to Shoot the Milky Way

While the right gear and techniques are important, go out on the wrong night and you won’t be able to capture the Milky Way as the great sweeping arch you might have hoped for.

In the northern hemisphere the Milky Way arches directly overhead from late July to October for most of the night. That’s fine for spherical fish-eye panoramas, but in rectangular images when the Milky Way is overhead it gets stretched and distorted across the top of the final panorama. For example, in the Bow Lake by Night panorama above, I cropped out most of this distorted content.

The Milky Way over Writing-on-Stone
Capturing the Arch
I captured this 360° pano of the summer Milky Way arching over the sandstone formations of Writing-on-Stone Provincial Park in southern Alberta in early June 2018. At that time of year the Milky Way is still confined to the eastern sky. This is a 21-panel panorama, shot in three tiers of seven panels each, with the Nikon D750 and Sigma 20mm Art lens on the Genie Mini, with each segment 30 seconds at f/2 and ISO 6400.

The prime season for Milky Way arches is therefore before the Milky Way climbs overhead, while it is still across the eastern sky, as above. That’s on moonless nights from March to early July, with May and June best for catching it in the evening, and not having to wait up until dawn, as is the case in early spring. 

8B-Starry Night Simulation
Simulating the Scene
I often use Starry Night™ (shown here) to simulate the sky for the place and date I want, to preview where and when the Milky Way will appear and how it will move. The red box shows the field of view of a rectilinear 14mm lens in portrait orientation, showing it covering from the zenith (at top) to just below the horizon.

TIP: The best way to figure out when and where the Milky Way will appear is to use a desktop planetarium program such as Starry Night or Sky Safari  or the free Stellarium. All can realistically depict the Milky Way for your location and date. You can then step through time to see how the Milky Way will move through the night, and how it will frame with your camera and lens combination using the “field of view” indicators the programs provide. 

Southern Sky Panorama at OzSky Star Party
The Great Southern Sky
A 360° panorama from April 2017 captures the arc of the southern Milky Way over the OzSky star party near Coonabarabran, NSW, Australia. This is 8 segments, each 30 seconds at ISO 6400 and f/2.5 with a Rokinon 14mm lens on a Canon 6D in portrait orientation, and stitched with PTGui.

When shooting in the southern hemisphere I like the April to June period for catching the sweep of the southern Milky Way and the galactic core rising in late evening. By contrast, during mid austral winter in July and August the galactic centre shines directly overhead in the evening, a spectacular sight to be sure, but tough to capture in a panorama except in a spherical or fish-eye scene. 

Spring Sky Panorama at Dinosaur Park
The Other Milky Way
This 360° panorama, shot in a single tier with a 14mm Sigma lens and Nikon D750 in portrait orientation, captures the winter Milky Way arching across the western sky on an early spring night at Dinosaur Provincial Park in Alberta. Also in the pano is the sweep of the faint Zodiacal Light. This is a stitch, using PTGui, of 12 segments, each 30 seconds at f/2.8 and ISO 4000.

That said, I always like to put in a good word for the often sadly neglected winter Milky Way (the summer Milky Way for those “down under”). While lacking the spectacle of the galactic core in Sagittarius, the “other” Milky Way has its attractions such as Orion and Taurus. The best months for a panorama with that Milky Way in an arch across a rectangular frame are January to March. The Zodiacal Light can be a bonus at that season, as it was above.

TIP: Always shoot raw files for the widest dynamic range and flexibility in recovering details in the highlights and shadows. Even so, each segment has to be well exposed and focused out in the field.

And unless you are doing a “two-pass” double exposure, always shoot each segment with identical exposure settings. This is especially critical for bright sky scenes such twilights or moonlit scenes. Vary the exposure and you might get unsightly banding at the seams.

There’s nothing worse than getting home only to find one or more segments was missed, or was out of focus or badly exposed, spoiling the set.


PART 2 — STITCHING

Developing Panorama Segments

Once you have your panorama segments, the next step is to develop and assemble them. For my workflow, the process of assembling a panorama from its constituent segments begins with developing each of those segments identically.

NOTE: Click or tap on the software screen shots to open a high-res version for closer inspection. 

11A-Adobe Camera Raw Before-After
Developing with Adobe Camera Raw
This shows one segment of the multi-tier example before (on the left) and after applying development settings in the Basic panel of Adobe Camera Raw. By selecting all the images, the Sync Settings command (at top left) will apply the settings of one image to the rest of the set.

I like to develop each segment’s raw file as fully as possible at this first stage in the workflow, applying noise reduction, colour correction, contrast adjustments, shadow and highlight recovery, and any special settings such as dehaze and clarity that can make the Milky Way pop. 

I also apply lens corrections to each raw image. While some feel doing so produces problems with stitching later on, I’ve never found that. I prefer to have each frame with minimal vignetting and distortion when going into stitching. I use Adobe Camera Raw out of Adobe Bridge, but Lightroom Classic has identical functions. 

There are several other raw developers that can work well at this stage. In other tests I’ve conducted, Capture One and DxO PhotoLab stand out as producing good results on nightscapes. See my blog from 2017 for more on software choices.

DxO Photo Lab Example
Developing with DxO
Among a host of programs competing with Adobe, DxO PhotoLab does a good job developing raw files, with the ability to copy and paste settings from one image to many. It has excellent noise reduction and shadow detail recovery. However, it cannot layer images.

The key is developing each raw file identically, usually by working on one segment, then copying and pasting its settings to all the others in a set. Not all raw developers have this “Copy Settings” function. For example, Affinity Photo does not. It works very well as a layer-based editor to replace Photoshop, but is crude in its raw developing “Persona” functions. 

While panorama stitching software will apply corrections to smooth out image-to-image variations, I find it is best to ensure all the segments look as similar as possible at the raw stage for brightness, contrast, and colour correction. 

Do be aware that among social media groups and chat rooms devoted to nightscape imaging a lot of myth and misinformation abounds about how to process and stitch panoramas, and why some don’t work. Someone having a problem with a particular pano will ask why, and get ten different answers from well-meaning helpers, most of them wrong!


Stitching Simple Panoramas

For example, if your segments don’t join well it likely isn’t because you needed to use a panorama head (one oft-heard bit of advice). I never do. The issue is usually a lack of sufficient overlap. Or perhaps the image content moved too much from frame to frame as the photographer took too long to shoot the set. 

Or, even when quickly-shot segments do have lots of overlap, stitching software can still get confused if adjoining segments contain featureless content or content that changes, such as segments over rippling water with no identifiable “landmarks” for the software to latch onto. 

The primary problems, however, arise from using software that just isn’t up to the task. Programs that work great on simple panoramas (as the next three examples show) will fail when trying to stitch a more demanding set of segments.

11B-Adobe Camera Raw Panorama
Stitching with Adobe Camera Raw
The panorama function in all recent versions of Adobe Camera Raw (Lightroom Classic has the same feature) can do a superb job on simple panoramas, such as the moonlit Morant’s Curve pano, with the magical Boundary Warp option allowing you to fill the frame without cropping and losing content.

For example, for partial horizon panos shot with 20mm to 50mm lenses, I’ll use the panorama function now built into Adobe Camera Raw (ACR) and Adobe Lightroom Classic, and also in the mobile-friendly Lightroom app. As I show above, ACR can do a wonderful job, yielding a raw DNG file that can continue to be edited non-destructively. It’s by far the easiest and fastest option, and is my first choice.

Another choice, not shown here, is the Photomerge function from within Photoshop, which yields a layered and masked master file, and provides the option for “content-aware” filling of missing areas. It can sometimes work on panos that ACR balks at. 

12-ON1 PhotoRAW
Stitching with ON1 PhotoRAW
The Adobe competitor ON1 PhotoRAW also provides a good panorama stitching feature that can work with both simple and many multi-tier panos. It provides a flattened result, even when exporting as a .PSD Photoshop file.

Two programs popular as Adobe alternatives, ON1 PhotoRAW (above) and the aforementioned Affinity Photo (below), also have very capable panorama stitching functions.

However, in testing both programs with the demanding Bow Lake multi-tier panorama I used below with other programs, ON1 2019.5 did an acceptable job, while Affinity 1.7 failed. It works best on simpler panoramas, like this partial scene with a 24mm lens.

13-Affinity Photo
Stitching with Affinity Photo
Another program vying to unseat Adobe products is Affinity Photo. It, too, does a fine job on simple panos, but tends to fail on multi-tier panoramas. There is no choice of panorama projections or option to export a layered master.

Even if they succeed when stitching 360° panoramas, such general-purpose editing programs, Adobe’s included, provide no option for choosing how the final scene gets framed. You have no control over where the program puts the ends of the scene.

Or the program just fails, producing a result like this.

14A-Camera Raw Multi-Tier Fail
When Stitching Goes Awry
Throw a multi-tier pano at Adobe Camera Raw and you might end up with this type of unsalvageable result. Here’s where you have to turn to specialized panorama software
14B-Adobe Camera Raw 14mm Fail
Warp Factor
Even single-tier panos but shot with 14mm rectilinear (in this case) or fish-eye lenses will create warped results with ACR, only partly correctable with Boundary Warp.

Far worse is that multi-tier panoramas or, as I show above, even single-tier panos shot with very wide lenses, will often completely befuddle your favourite editing software, with it either refusing to perform the stitch or producing bizarre results.

Some photographers attempt to correct such wild distortions with lots of ad hoc adjustments with image-warping filters. But that’s completely unnecessary if you use the right software to begin with. 


Stitching Complex Panoramas

When conventional software fails, I turn to the dedicated stitching program PTGui, $150 for MacOS or Windows. The name comes from “Panorama Tools – Graphical User Interface.” 

15-PTGui-Rectangular
Stitching with PTGui
PTGui handles whatever complexity of panorama you can throw at it, either single or multi-tier (in this example), offering an accurate preview, a choice of projection modes (this is “equirectangular”), and the ability to quickly move the pano around to frame it as you like before exporting either a flattened or a layered master.

While PTGui can read raw files from most cameras, it will not read any of the development adjustments you made to those files using Lightroom, Camera Raw, or any other raw developers. 

So, my workflow is to develop all the raw segments, export them out as 16-bit TIFFs, then import those into PTGui. It can detect what lens was used to take the images, information PTGui needs to stitch accurately. If you used a manual lens you can enter the lens focal length and type (rectilinear or fish-eye) yourself. 

18A-PTGui-Spherical
Spherical Scene with PTGui
PTGui makes it easy to re-project the same set of images into other map projections, in this case as a circular fish-eye scene which can be rotated as desired.

I include a full tutorial on using PTGui in my eBook linked to above, but suffice to say that the program usually does a superb job first time and very quickly. You can drag the panorama around to frame the scene as you like, and change the projection at will to create rectangular or spherical format images, as above, and even so-called “little planet” projections that appear as if you were looking down at the scene from space. 

Occasionally PTGui complains about some frames, requiring you to manually intervene to pick the same stars or horizon features in adjacent frames to provide enough matching alignment points until it is happy. Its interface also leaves something to be desired, with essential floating windows disappearing behind other mostly blank panels. 

15B-Layered Photoshop
Adjusting Layers
The layered output from PTGui produces a massive image but one that allows fine adjustments to the masks (by using a white paint brush) to correct mismatches like we see see here along the mountain peak.

When exporting the finished panorama I usually choose to export it as a layered 16-bit Photoshop .PSD or, with big panos, as a Photoshop .PSB “big” document. 

The reason is that in aligning the moving stars PTGui (indeed, all programs) can produce a few “fault lines” along the horizon, requiring a manual touch up to the masks to clean up mismatched horizon content, as I show above. Having a layered and masked master makes this easy to do non-destructively, though that’s best done in Photoshop. 

Affinity Photo Layers
Opening with Affinity
Affinity Photo is one of the few non-Adobe programs that can open large Photoshop .PSB files, and honour the layers, keeping them and the masks that PTGui exports intact.

However, Affinity Photo (above) can also read layered .PSD and .PSB Photoshop files, preserving the layers. By comparison, ON1 PhotoRAW flattens layered Photoshop files when it imports them, one deficiency that prevents this program from being a true Photoshop alternative. 

The Milky Way over Writing-on-Stone
Compressing the Milky Way
A common final step is to compress the long dimension of the image to change its aspect ratio to one better suited to publication. But doing so highly distorts the grand sweep of the Milky Way.

Once a 360° panorama is in a program like Photoshop, some photographers like to “squish” the panorama horizontally to make it more square, for ease of printing and publication. I prefer not to do that, as it makes the Milky Way look overly tall, distorted, and in my opinion, ugly. But each to their own style.

You can test out a limited trial version of PTGui for free, but I think it is worth the cost as an essential tool for panorama devotees. 


Other Stitching Options

16-Microsoft ICE
Stitching with Microsoft ICE
Image Composite Editor, for Windows only but free from Microsoft Research, also does a superb job on all panoramas (as it did with this test case), with accurate stitching and preview, a choice of projections, cropping, and the option for a layered output.

However, Windows users can also try Image Composite Editor (ICE), free from Microsoft Research. As shown above in my test 3-tier pano, ICE works very well on complex panoramas, has a clean, user-friendly interface, offers a choice of geometric projections, and can export a master file with each segment on its own layer, if desired, for later editing. 

17A-HugIn Software
Stitching with HugIn
The open-source program HugIn is free, but suffers from an inaccurate preview, complex interface and workflow, and technical displays and functions only a programmer will love.

The free, open source program HugIn is based on the same Panorama Tools root software that PTGui uses. However, I find HugIn’s operation clunky and overly technical. Its export process is arcane yet renders out only a flattened image.

17B-Bow Lake from Hugin
HugIn Fail
The export of the same multi-tier pano that worked fine with PTGui and ICE failed with HugIn, with missing content and numerous mis-aligned areas of the landscape, tough to fix in the flattened output. 

In testing it with the same three-tier 21-segment pano that PTGui and ICE handled perfectly, HugIn failed to properly include one segment. However, it is free for MacOS and Windows, and so the price is right and is well worth a try. 

Bow Lake by Night Panorama (Spherical)
Fish-Eye Milky Way
In summer with the Milky Way overhead, a spherical projection is often best for presenting the Milky Way as your eye saw it, as a majestic band of light from horizon to horizon across the sky passing through the zenith.

With the superb tools now at our disposal, it is possible to create detailed panoramas of the night sky that convey the majesty of the Milky Way – and the night sky – as no single image can. Have fun!

— Alan, June 25, 2019 / © 2019 Alan Dyer / AmazingSky.com  

Dinosaur Park in the Dark


Winter Sky Setting in Twilight at Dinosaur Park

There’s a slogan used in the U.S. National Parks that “half the Park is after dark.” It is certainly true at Dinosaur Provincial Park in Alberta. 

Last Friday night, March 29, I spent the evening at one of my favourite nightscape sites, Dinosaur Provincial Park, about an hour’s drive east of my home. It was one of those magical nights – clear, mild, dry, and no mosquitoes! Yet!

I wanted to shoot Orion and the photogenic winter sky setting into the evening twilight over the Badlands landscape. This was the last moonless weekend to do so.

I shot some individual images (such as above) and also multi-panel panoramas, created by shooting a series of overlapping images at equal spacings, then stitching them later at the computer.

Winter Sky Setting at Dinosaur Park Panorama
This is a 240° panorama stitched from 17 segments, all with the 24mm Sigma Art lens and Nikon D750 in portrait orientation, each segment 20 seconds at f/1.4 and ISO 3200. Stitched with Adobe Camera Raw.

There’s a narrow window of time between twilight and full darkness when the Milky Way shows up well but the western sky still has a lingering blue glow. This window occurs after the normal “blue hour” favoured by photographers.

The panorama above shows the arch of the winter Milky Way but also the towering band of the Zodiacal Light rising out of the twilight and distant yellow glow of Calgary. Zodiacal Light is sunlight scattering off meteoric and cometary dust orbiting in the inner solar system, so this is a phenomenon in space not in our atmosphere. However, the narrow streak is an aircraft contrail.

Spring Sky Panorama at Dinosaur Park
A 360° panorama of the spring sky over the Badlands of Dinosaur Provincial Park, Alberta. This is a panorama of 12 segments taken with the 14mm Sigma Art lens and Nikon D750 in portrait orientation, all for 30 seconds at f/2.8 and ISO 4000. Taken at 30° spacings. Stitched with PTGui.

Later that night, when the sky was fully dark I shot this complete panorama showing not only the Milky Way and Zodiacal Light to the west, but also the faint arc of the Zodiacal Band continuing on from the pyramid-shaped Zodiacal Light over into the east, where it brightens into the subtle glow of Gegenschein. This is caused by sunlight reflecting off interplanetary dust particles in the direction opposite the Sun.

Both the Band and Gegenschein were visible to the naked eye, but only if you knew what to look for, and have a very dark sky.

The Winter Stars and Zodiacal Light at Dinosaur Park
This is a panorama stitched from 3 segments, all with the 24mm Sigma Art lens and Nikon D750, for 20 seconds at f/2.2 and ISO 4000. Stitched with Adobe Camera Raw.

A closeup shows the Zodiacal Light in the west as the subtle blue glow tapering toward the top as it meets the Milky Way.

It takes a dark site to see these subtle glows. Dinosaur Park is not an official Dark Sky Preserve but certainly deserves to be. Now if we could only get Calgary, Brooks and Bassano to turn down and shield their lights!

Spring Sky RIsing at Dinosaur Park Panorama
A 180° panorama of the spring sky and constellations rising in the east over the Badlands of Dinosaur Provincial Park, Alberta on March 29, 2019. This is a stitch of 6 segments, each with the 14mm Sigma Art lens and Nikon D750 in portrait mode, each 30 seconds at f/2.8 and ISO 4000. Stitched with PTGui.

A closeup facing the other way, to the east, shows the area of sky opposite the Milky Way, in the spring sky. The familiar Big Dipper, now high our spring sky, is at top with its handle pointing down to Arcturus and Spica (just rising above the horizon) – remember to “arc to Arcturus, and speed on to Spica.”

Leo is at right of centre, flanked by the Beehive and Coma Berenices star clusters.

Polaris is at left — however, the distortion introduced by the panorama stitching at high altitudes stretches out the sky at the top of the frame, so the Dipper’s Pointer stars do not point in a straight line to Polaris.

The faint Zodiacal Band is visible at right, brightening toward the horizon in the Gegenschein.

I shoot images like these for use as illustrations in future eBook projects about stargazing and the wonders of the night sky. Several are in the works!

Clear skies!

— Alan, April 1, 2019 / © 2019 Alan Dyer / AmazingSky.com

 

A Panorama of the Spring and Winter Sky


Winter and Spring Sky Panorama

I present a sweeping panorama of the winter and spring stars on a February night. 

The lead image is a panorama I shot last Saturday, February 27 that takes in about 200° of sky from northeast to west, and nearly to the zenith. It encompasses most of the northern spring and winter stars and constellations.

I’ve added the labels to help you pick out the celestial highlights. The winter sky, containing Orion as the central constellation, is at right setting into the west. This area of sky contains a rich collection of bright stars and identifiable constellations.

The left side of the sky contains the spring constellations, now coming into view in the east. Note how that area of sky is sparsely populated by bright stars. You can see the Big Dipper, Regulus in Leo, and Arcturus rising at lower left.

The reason for the difference is the Milky Way – you can see it at right arcing up from the southern horizon passing by Orion and through Gemini, Taurus and Auriga. In that direction we are looking into the outlying spirals arms of our galaxy, toward rich areas of star formation.

To the east, at left, we are looking at right angles out of the plane of our spiral galaxy, toward the galactic North Pole, here just left of Leo. In that direction there are very few bright stars between us and the starless depths of intergalactic space. The spring sky is rather blank compared to the rich winter sky.

But you can see Jupiter, the brightest object in view here, and now prominent in the evening sky.

Note one other subtle glow just above Jupiter. That diffuse glow is the Gegenschein, caused by sunlight reflecting off interplanetary dust opposite the Sun in our solar system and in the plane of the ecliptic.

Jupiter is just east (left) of the Gegenschein here, as Jupiter was then just over a week before its date of opposition, March 8. By then the Gegenschein will have moved to superimpose right over Jupiter, as both then lie opposite the Sun.

Winter and Spring Sky Panorama

I shot this scene from home on February 27, 2016, using the new iOptron iPano motorized “gigapan” unit, which I programmed to move and shoot 36 exposures with the Canon 5D MkII and 35mm lens, arranged in 4 rows high with 9 panels wide in each row from east to west. The result is a huge mosaic, 24,000 by 10,000 pixels.

Each exposure was 25 seconds at f/2 and at ISO 3200. The camera was not tracking the sky. I stitched the 36 segments with PTGui using its Spherical Fisheye projection. The image has black margins but I think the circular format is more suggestive of the spherical dome of the sky above and around you. But that’s me, a longtime planetarium show producer.

Next time I will shoot the zenith cap images as well!

— Alan, February 29, 2016 / © 2016 Alan Dyer / www.amazingsky.com

 

The Ghostly Glows of a Truly Dark Sky


Ghostly Glows of a Truly Dark Sky

A truly dark sky isn’t dark. It is filled with glows both subtle and spectacular.

Last night, March 10, I drove up into the heart of the Gila Wilderness in southern New Mexico, to a viewpoint at 7,900 feet in altitude. I was in search of the darkest skies in the area. I found them! There was not a light in sight.

The featured image is a 180° panorama showing:

– the Zodiacal Light (at right in the west)
– the Milky Way (up from the centre, in the south, to the upper right)
– the Zodiacal Band (faintly visible running from right to left across the frame at top)
– the Gegenschein (a brightening of the Zodiacal Band at left of frame, in the east in Leo)

The Zodiacal Light, Zodiacal Band, and the Gegenschein are all part of the same phenomenon, glows along the ecliptic path – the plane of the solar system – caused by sunlight reflecting off cometary and meteoric dust in the inner solar system.

The Gegenschein, or “counterglow,” can be seen with the naked eye as a large and diffuse brightening of the sky at the spot exactly opposite the Sun. It is caused by sunlight reflecting directly back from comet dust, the scattering effect greatest at the point opposite the Sun.

The Zodiacal Light requires reasonably dark skies to see, but the fainter Zodiacal Band and Gegenschein require very dark skies.

Now is prime season for all of them, with the Moon out of the way, and the Zodiacal Light angled up high in the western as twilight ends. In March, the Gegenschein is now located in a relatively blank area of sky in southern Leo.

The Milky Way is much more obvious. Along the northern winter Milky Way here you can see dark lanes of interstellar dust, particularly in Taurus above and to the right of Orion. Red nebulas of glowing gas also lie along the Milky Way, such as Barnard’s Loop around Orion.

– Orion is at centre, in the south, with Canis Major and the bright star Sirius below and to the left of Orion. Canopus is just setting on the southern horizon at centre. It barely clears the horizon from 32° North latitude.

– To the right of Orion is Taurus and the Pleiades star cluster at the top of the Zodiacal Light pyramid.

– Venus is the bright object in the Zodiacal Light at right, in the west, while fainter Mars is below Venus.

– At far right, in the northwest, is the Andromeda Galaxy, M31.

– Jupiter is the bright object at upper left, in the east, in the Zodiacal Band, and near the Beehive star cluster.

– The Zodiacal Light, Band and Gegenschein all lie along the ecliptic, as do Mars, Venus and Jupiter.

Glows on the horizon are from distant SIlver City, Las Cruces and El Paso. The brighter sky at right is from the last vestiges of evening twilight. Some green and red airglow bands also permeate the sky.

Standing Under the Milky Way
I shot this March 10, 2015 from the summit of Highway 15, The Trail of the Mountain Spirits, that twists and winds through the Gila Wilderness.

It was a stunning night, clear, calm, and silent. Just me under the ghostly glows of a truly dark sky.

NOTE: I first published this March 11 but had to republish this blog March 15 after WordPress deleted the original post in a software bug. Thanks WordPress! 

– Alan, March 11, 2015 / © 2015 Alan Dyer / http://www.amazingsky.newt

 

A Stunning Sky of Subtle Glows


Zodiacal Light Panorama (Circular)

What a fabulous night! The desert sky was full of subtle glows and myriad stars.

Friday, January 16 was a stunning evening for stargazing. I took the opportunity to shoot a 360° panorama of the evening sky, recording a host of subtle glows.

The Zodiacal Light reaches up from the western horizon and the last vestiges of evening twilight. This is the glow of sunlight reflecting off cometary dust particles in the inner solar system. From the clear desert skies it is brilliant.

The dark of the Moon periods in January, February and March are the best times of the year to see the evening Zodiacal Light from the northern hemisphere.

The Milky Way arches across the eastern sky from Cygnus to Canis Major. That’s light from billions of stars in our Galaxy.

At centre, in the circular fish-eye image above, is the small wisp of green Comet Lovejoy, near the zenith overhead and appearing at the apex of the Zodiacal Light’s tapering pyramid of light.

Zodiacal Light Panorama (Rectilinear)

This view is from the same images used to create the circular all-sky scene at top, but projected in a rectangular 360° format.

Technical notes:

I shot 8 segments for the panorama, each a 1-minute exposure at f/2.8 with a 15mm lens oriented in portrait mode, and using a Canon 6D at ISO 3200. There was no tracking – the camera was just on a tripod. Each segment is 45° apart.

I used PTGui software to stitch the segments into one seamless scene.

— Alan, January 16, 2015 / © 2015 Alan Dyer / www.amazingsky.com

Cameron Lake Lit by Starlight


Milky Way Panorama at Cameron Lake (Equirectangular)

The Milky Way spans the sky and reflects in the calm waters of Cameron Lake, in Waterton Lakes National Park.

This week I’m spending a few nights, at dark-of-the-Moon, back at Waterton Lakes, at a stunning time of year. The aspens are golden, the sky is blue, and the nights are even warm.

Though it is officially autumn, the weather is better now than we had it some weeks in summer. Plus, the Park is now quiet as businesses wind down, preparing to close up for the winter.

I’m shooting night sky panoramas in Waterton, with Cameron Lake one of the wonderful sites I visited last night in a whirlwind tour around the Park to take advantage of a stunningly clear night.

In summer, Cameron Lake is home to docks for canoes and paddle boats. But all are gone now. By winter this lake is home to huge snowfalls, as its location in extreme southwestern Alberta catches the full onslaught of moist Pacific air.

But now, with the early onset of darkness and fine weather, the lake and the Park are superb places for nightscape photography.

I shot this Sunday night, September 21. This is a stitch of 8 segments, each shot with a 15mm lens at f/2.8 for 1 minute at ISO 4000 with the Canon 6D. I used PTGui to stitch the panorama.

– Alan, September 22, 2014 / © 2014 Alan Dyer

 

Pyramid Island Sky Panorama


Panorama from Pyramid Island Boardwalk, Jasper Park

The sky presents a panoramic show from Pyramid Island in Jasper National Park.

What a wonderful place to watch the stars. Last night I walked out to Pyramid Island in Jasper, via the historic boardwalk built in the 1930s. The site provides a panorama view around the lake and sky.

To the left is the “mainland.” Just left of centre the waxing gibbous Moon is setting over Pyramid Lake.

To the right of centre, the boardwalk leads out the small island, with Pyramid Mountain behind it.

To the right of the frame, a faint aurora glows to the northeast over the still waters of the lake.

This is a 360° panorama shot with the 15mm full-frame fish-eye lens in portrait orientation, with the segments stitched with PTGui software.

Big Dipper over Pyramid Mountain from Pyramid Island

After shooting some panoramas I walked to the end of the island and shot this view looking north and northwest to Pyramid Mountain. The Big Dipper is to the right of the peak, and the aurora lights up the northern horizon at right.

As I shot these images, the night was absolutely quiet. Until the wolves began to howl at the north end of the lake, in mournful howls that echoed across the waters.

It was one of the most spine-chilling moments I’ve experienced in many years of shooting landscapes at night.

– Alan, September 5, 2014 / © 2014 Alan Dyer

 

 

The Northern Lights at the Old Larson Ranch


Aurora at Larson Ranch Panorama

The northern lights dance, and light the pioneer homes at the old Larson Ranch in Grasslands National Park.

What a night this was! I arrived at the Larson Ranch site in the Frenchman River valley to shoot some Milky Way panoramas, when, right on cue, the aurora broke loose.

Some aurora had been there since nightfall as a diffuse arc, but about 11 p.m. local time (Central Standard Time in Saskatchewan) the curtains began to dance and pulse with activity as a sub-storm hit, raining solar particles onto our atmosphere from down the magnetic tail of the Earth.

The aurora glow lit the old pioneer buildings of the Larson Ranch, one of the stops on the scenic backroad drive through the Park.

The Larsons ran their ranch by the Frenchman, or Whitemud River, from the 1920s until 1985 when they sold their ranch to the National Park system, forming the first land for the new Grasslands National Park.

The house at left is the original home of cowboy author Will James, who lived here for a time working on ranches in the valley before moving to the United States. He was from Quebec, where he was Ernest Dufault.

I shot this 360° panorama using a 15mm lens, shooting 8 segments at 45° spacings, each a 1-minute exposure at ISO 2500 and f/3.2 with the Canon 6D. I used PTGui software to stitch the segments into a equi-rectangular projection pan.

– Alan, August 28, 2014 / © 2014 Alan Dyer

 

 

Prairie Sunset Panorama


Prairie Sunset Panorama

What a spectacular sunset tonight. The Sun is just going down in a blaze of red, while the waxing Moon shines in the deep blue twilight.

I grabbed the camera fast when I saw this happening out my front window, and raced out to the ripening wheat field across the road.

The top image is a 360° panorama of the sky, with the Sun at right and the Moon left of centre. The zenith is along the top of the image.

I used a 14mm lens in portrait mode to cover the scene from below the horizon to the zenith, taking 7 segments to sweep around the scene.

You can see the darkening of the sky at centre, 90° away from the Sun, due to natural polarization of the skylight.

Red Sun in a Prairie Sunset

I shot this sunset image a little earlier, when the Sun was higher but still deep red in the smoky haze that has marked the sky of late. It certainly gives the scene a divine appearance!

This is a 5-exposure high-dynamic-range composite to capture the tonal range from bright sky to darker ground, the wheat field. I increased the contrast to bring out the cloud shadows – crepuscular rays.

I boosted colour vibrancy but didn’t alter the actual colours – it was a superb sky.

I used PTGui v10 to stitch the panorama at top and Photomatix Pro to stack and tone the HDR set. While Photoshop is wonderful it did not work for assembling either of these images.

– Alan, August 6, 2014 / © 2014 Alan Dyer

 

The Galactic Archway of the Southern Sky


Two Styx Night Sky Panorama (Rectilinear)

The southern Milky Way arches across the sky, with the centre of the Galaxy overhead at dawn.

This was the sky at 4:30 this morning, as Venus rose in the east (to the right) amid the zodiacal light, and with the Milky Way soaring overhead. This image is a 360° panorama of the scene, with the zenith, the overhead point, at the top centre of the frame.

The location is the Two Styx Cabins, on the border of New England National Park in New South Wales, Australia. The cabin with the light on (I left it on on purpose for the photo) is where I stayed for two nights in splendid isolation.

The panorama is a stitch of 6 frames shot with an 8mm fish-eye lens, each 1-minute exposures on an untracked tripod. I used the PTGui software program to assemble the pan.

Below is an alternative rendering, in spherical format, to create the more classic “fish-eye” view, but one extending well below the horizon. So this is not one image but a stitch of six.

Two Styx Night Sky Panorama (Fish-Eye)

In this version you can more readily see the spectacle of the Milky Way at dawn in the southern hemisphere autumn months, with the bulge of the galactic core directly overhead as seen from this latitude of 30° south. It is a wonderful sight.

This is my last view of it for this trip. Till next year!

— Alan, April 11, 2014 / © 2014 Alan Dyer

 

The Great Arc of the Milky Way


Milky Way Panorama (Sept 4, 2013)

The Milky Way sweeps in a great arch of light across the sky.

It’s been a wonderful week for shooting the Milky Way. I had a very clear night on Tuesday but ventured no further than a few hundred feet from home to the harvested canola field next door.

The Milky Way was beautifully placed, as it always is at this time of year, right across the sky from northeast to southwest, with the starclouds of Cygnus passing directly overhead.

The top photo is a panorama of 8 shots, with a camera on a tripod, and each exposure being just 60 seconds with a 14mm lens in portrait orientation. I stitched the segments with PTGui software, rendering the scene with its spherical projection mode which wraps the dome of the sky onto a flat surface in a way that retains the zenith detail as your eye saw it, but greatly distorts the extremities of the scene at either end.

My house is at lower right.

Milky Way over Harvest Field (Sept 4, 2013)

For this image, I used the same lens to take a single view from horizon to well past the zenith. Here the camera was tracking the stars for a set of stacked 5-minute exposures to grab even more detail in the Milky Way.

What stands out as much as the Milky Way are the green fingers of airglow stretching across the sky. These were invisible to the eye but the camera sure picks them up.

Airglow is caused by oxygen atoms, in this case, fluorescing at night as they release some of the energy they absorbed by day. It’s not aurora and generally covers more of the sky, sometimes with a diffuse glow or, as here, with more structured bands that slowly shift over minutes. It varies from night to night and can occur at any latitudes. But usually only cameras pick it up. To the eye, airglow just makes the sky look inexplicably a little less dark than you think it should be on such a clear night.

– Alan, September 7, 2013 / © 2013 Alan Dyer

 

The Colour of Dark


Colors of the Dark Sky Panorama

What colour is the dark night sky? Depending on conditions, it can be any colour you want.

I shot this 360° panorama last night from my backyard under what looked like a clear and fairly dark, moonless sky. Looks can certainly be deceiving. The camera picked up all kinds of colours the eye couldn’t see.

Let’s review what’s causing the colours:

• To the north just left of  centre the horizon is rimmed with a bright yellow glow from all-night perpetual twilight present around summer solstice at my mid-northern latitude.

• Above that shines a green and magenta band from a low-level aurora just visible to the naked eye.

• Much of the sky is tinted with bands of green from ever-present airglow, caused by oxygen atoms at the top of the atmosphere giving off at night some of the energy they absorbed by day. I had thought the sky would look blue from the perpetual twilight but the airglow seems to overwhelm that.

• Yellow glows around the horizon at left (west) and right (southeast) are from urban light pollution from towns 50 km away.

• Some strands of remaining cloud from a departing thunderstorm add streams of brown as they reflect lights from below.

• Finally, the Milky Way shows up in shades of yellow and pale blue, punctuated here and there by red patches of glowing hydrogen hundreds of light years away.

The only thing missing this night was a display of electric blue noctilucent clouds.

The sources of most of these colours are an anathema to observers of faint deep-sky objects. Aurora, airglow and certainly light pollution just get in the way and hide the light from the distant deep sky.

A word on technique:
I shot this panorama using an 8mm fish-lens to shoot 8 segments at 45° spacings. I used the excellent software PTGui to stitch the segments together, which it did seamlessly and flawlessly. Each segment was an untracked 1 minute exposure at ISO 3200 and f/3.5. The panorama covers 360° horizontally and nearly 180° vertically, from the ground below to the zenith above. It takes in everything except the tripod and me!

– Alan, June 8, 2013 / © Alan Dyer

%d bloggers like this: