Shooting Moonstrikes at Dinosaur Park


Moonlight at Dino Park Title

It was a magical night as the rising Moon lit the Badlands with a golden glow.

When doing nightscape photography it’s often best not to fight the Moon, but to embrace it and use it as your light source.

I did this on a fine night, Easter Sunday, at one of my favourite nightscape spots, Dinosaur Provincial Park.

I set up two cameras to frame different views of the hoodoos as they lit up with the light of the rising waning Moon.

The night started out as a dark moonless evening as twilight ended. Then about 90 minutes after the arrival of darkness, the sky began to brighten again as the Moon rose to illuminate the eroded formations of the Park.

Moonrise Light at Dinosaur Park - West
The formations of Dinosaur Provincial Park, Alberta, lit by the rising gibbous Moon, off camera at left, on April 21/22, 2019. This is looking west, with the stars of the winter sky setting. Procyon is at right. Aphard in Hydra is above the hill. This is a stack of 8 exposures, mean combined to smooth noise, for the ground, and a single exposure for the sky, all with the 24mm Sigma Art lens at f/5.6 and Nikon D750 at ISO 6400, each for 25 seconds. The images were from the end of a sequence shot for a time-lapse using the TimeLapse+ View intervaolometer. 

This was a fine example of “bronze hour” illumination, as some have aptly called it.

Photographers know about the “golden hour,” the time just before sunset or just after sunrise when the low Sun lights the landscape with a golden glow.

The Moon does the same thing, with a similar tone, though greatly reduced in intensity.

The low Moon, especially just after Full, casts a yellow or golden tint over the scene. This is caused by our atmosphere absorbing the “cold” blue wavelengths of moonlight, and letting through the “warm” red and yellow tones.

Making use of the rising (or setting) Moon to light a scene is one way to capture a nightscape lit naturally, and not with artificial lights, which are increasingly being frowned upon, if not banned at popular nightscape destinations.

StarryNightImage
A screen shot from the desktop app Starry Night (by Simulation Curriculum) showing the waning gibbous Moon rising in the SE on April 21. Such “planetarium” apps are useful for simulating the sky of a planned shoot.

“Bronze hour” lighting is great in still-image nightscapes. But in time-lapses the effect is more striking — indeed, in time-lapse lingo it is called a “moonstrike” scene.

The dark landscape suddenly lights up as if it were dawn, yet stars remain in the sky.

IMG_4579
A screen shot of a planning app that is a favourite of mine, The Photographer’s Ephemeris, set up to show the scene for moonrise on April 21 from the Park.

The best nights for such a moonstrike are ones with a waning gibbous or last quarter Moon. At these phases the Moon rises after sunset, to re-light a scene after evening twilight has faded.

On April 21 I made use of such a circumstance to shoot moonstrike stills and movies, not only for their own sake, but for use as illustrations in the next edition of my Nightscapes and Time-lapse eBook (at top here).

TimeLapse+View-Day Interval

One camera, the Nikon D750, I coupled with a device called a bramping intervalometer, in this case the TimeLapse+ View, shown above. It works great to automatically shift the shutter and ISO speeds as the sky darkens then brightens again.

Yes, in bright situations the camera’s own Auto Exposure and Auto ISO modes might accomplish this.

But … once the sky gets dark the Auto circuits fail and you’re left with hugely underexposed images.

The TimeLapse+ View, with its more sensitive built-in light meter, can track right through into full darkness, making it possible to shoot so-called “holy grail” time-lapses that go from daylight to darkness, from sunset to the Milky Way, all shot unattended.

Moonrise Light at Dinosaur Park - North
The eroding formations of Dinosaur Provincial Park, Alberta, lit by the rising gibbous Moon, off camera at right, on April 21/22, 2019. This is looking north, with Polaris at upper centre, Capella setting at left, Vega rising at right, and the W of Cassiopeia at lower centre. This is a stack of 8 exposures, mean combined to smooth noise, for the ground, and one exposure from that set for the sky. All with the 15mm Laowa lens at f/2.8 and Sony a7III at ISO 3200, each for 30 seconds.  

For the other camera, the Sony a7III (with the Laowa 15mm lens I just reviewed) I set the camera manually, then shifted the ISO and shutter speed a couple of times to accommodate the darkening, then brightening of the scene.

Processing the resulting RAW files in the highly-recommended program LRTimelapse smoothed out all the jumps in brightness to make a seamless transition.

I also used the new intervalometer function that Sony has just added to the a7III with its latest firmware update. Hurray! I complained about the lack of an intervalometer in my original review of the Sony a7III. But that’s been fixed.

Moonrise Star Trails at Dinosaur Park
This is looking north, with the stars of the northern sky pivoting around Polaris. This is a stack of 8 exposures, mean combined to smooth noise, for the ground, and 250 exposures for the sky, blended with Lighten mode to create the stails. However, I used the Advanced Stacker Plus actions in Photoshop to do the stacking, creating the tapering effect in the process. All exposures with the 15mm Laowa lens at f/2.8 and Sony a7III at ISO 3200, each for 30 seconds. 

I shot 425 frames with the Sony, which I not only turned into a movie but, as one can with time-lapse frames, I also stacked into a star trail still image, in this case looking north to the circumpolar stars.

To do the stacking I used the Advanced Stacker Plus actions for Photoshop, developed and sold by StarCircleAcademy.

I prefer this action set over dedicated programs such as StarStaX, because it works directly with the developed Raw files. There’s no need to create a set of JPGs to stack, compromising image quality, and departing from the non-destructive workflow I prefer to maintain.

While the still images are very nice, the intended final result was this movie above, a short time-lapse vignette using clips from both cameras. Do watch in HD.

I rendered out the frames from the Sony both as a “normal” time-lapse, and as one with accumulating star trails, again using the Advanced Stacker Plus actions to create the intermediate frames for assembling into the movie.

All these techniques, gear, and apps are explained in tutorials in my eBook, above. However, it’s always great to get a night perfect for putting the methods to work on a real scene.

— Alan, April 27, 2019 / © 2019 Alan Dyer / AmazingSky.com

 

Winter Stars over the Badlands


Orion Rising Star Trails at Dinosaur Park

The clouds cleared to present a magical night under the Moon in the Badlands of southern Alberta.

At last, a break in the incessant clouds of November, to provide me with a fine night of photography at one of my favourite places, Dinosaur Provincial Park, declared a U.N. World Heritage Site for its deposits of late Cretaceous fossils.

I go there to shoot the night sky over the iconic hoodoos and bentonite clay hills.

November is a great time to capture the equally iconic constellation of Orion rising in the east in the early evening. The scene is even better if there’s a Moon to light the landscape.

November 27 presented the ideal combination of circumstances: clear skies (at least later at night), and a first quarter Moon to provide enough light without washing out the sky too much and positioned to the south and west away from the target of interest – Orion and the winter sky rising in the east.

Below is a slide show of some of the still images I shot, all with the Canon 6D MkII camera and fine Rokinon 14mm f/2.5 lens, used wide open. Most are 15-second exposures, untracked.

This slideshow requires JavaScript.

I kept another camera, the Nikon D750 and Sigma 24mm Art lens, busy all night shooting 1200 frames for a time-lapse of Orion rising, with clouds drifting through, then clearing.

Below is the resulting video, presented in two versions: first with the original but processed frames assembled into a movie, followed by a version where the movie frames show accumulating star trails to provide a better sense of sky motion.

To create the frames for this version I used the Photoshop actions Advanced Stacker Plus, from StarCircleAcademy. They can stack images then export a new set of frames each with the tapering trails, which you then assemble into a movie. I also used it to produce the lead image at top.

The techniques and steps are all outlined in my eBook, highlighted at top right.

The HD movie is just embedded here, and is not published on Vimeo or YouTube. Expand to fill your screen.

To help plan the shoot I used the astronomy software Starry Night, and the photo planning software The Photographer’s Ephemeris, or TPE. With it, you can place yourself at the exact spot to see how the Sun, Moon and stars will appear in sightlines to the horizon.

Here’s the example screen shot. The spheres across the sky represent the Milky Way.

IMG_3517

Look east to see Orion now in the evening sky. Later this winter, Orion will be due south at nightfall.

Clear skies!

— Alan, November 29, 2017 / © 2017 AmazingSky.com

 

The Moving Stars of the Southern Hemisphere


Southern Sky Star Trails - OzSky Looking South

Nothing amazes even the most inveterate skywatcher more than traveling to another hemisphere and seeing sky move. It moves the wrong way!

Whether you are from the southern hemisphere traveling north, or as I do, travel south from the Northern Hemisphere, watching how the sky moves can be disorienting.

Here I present a video montage of time-lapses shot last April in Australia, at the annual OzSky Star Party near Coonabarabran in New South Wales.

Select HD and Enlarge button to view at full screen at best quality.

You’ll see the sky set in the west but traveling in arcs from right to left, then in the next clip, rise in the east, again moving from right to left. That’s the wrong angle for us northerners.

Looking north you see the seasonal constellations, the ones that rise and set over a night and that change with the seasons. In this case, the night starts with Orion (upside-down!) to the north but setting over in the west, followed by Leo and bright Jupiter. The sky is moving from east to west, but that’s from right to left here. The austral Sun does the same thing by day.

Looking south, we see the circumpolar constellations, the ones that circle the South Celestial Pole. Only there’s no bright “South Star” to mark the pole.

The sky, including the two Magellanic Clouds (satellite galaxies to the Milky Way) and the spectacular Milky Way itself, turns around the blank pole, moving clockwise – the opposite direction to what we see up north.

I shot the sequences over four nights in early April, as several dozen stargazers from around the world revelled under the southern stars, using an array of impressive telescopes supplied by the Three Rivers Foundation, Australia, for us to explore the southern sky.

I’ll be back next year!

– Alan, August 19, 2016 / © 2016 Alan Dyer / www.amazingsky.com

 

10 Steps to Processing Nightscapes & Time-Lapses


Icefields-Demo StillIn a “10 Steps” tutorial I review my tips for going from “raw to rave” in processing a nightscape or time-lapse sequence.

NOTE: Click on any of the screen shots below for a full-res version that will be easier to see.

In my preferred “workflow,” Steps 1 through 6 can be performed in either Photoshop (using its ancillary programs Bridge and Adobe Camera Raw) or in Adobe Lightroom. The Develop module of Lightroom is identical to Adobe Camera Raw (ACR for short).

However, my illustrations show Adobe Bridge, Camera Raw and Photoshop CC 2014. Turn to Photoshop to perform advanced filtering, masking and stacking (Steps 7 to 10).

To use Lightroom to assemble a time-lapse movie from processed Raw frames you need the third-party program LRTimelapse, described below. Otherwise, you need to export frames from Lightroom – or from Photoshop – as “intermediate” JPGs (see Step 6), then use other third party programs to assemble them into movies (Step 10B).


Demo-Timelapse1Step 1 – Bridge or Lightroom – Import & Select

Use Adobe Bridge (shown above) or Lightroom to import the images from your camera’s card.

As you do so you can add “metadata” to each image – your personal information, copyright, keywords, etc. As you import, you can also choose to convert and save images into the open and more universal Adobe DNG format, rather than keep them in the camera’s proprietary Raw format.

Once imported, you can review images, keeping the best and tossing the rest. Mark images with star ratings or colour labels, and group images together (called “stacking” in Bridge), such as frames for a panorama or “high dynamic range” set.

Always save images to both your working drive and to an external drive (which itself should automatically back up to yet another external drive). Never, ever save images to only one location.


Demo-Timelapse2Step 2 – Adobe Camera Raw or Lightroom – Basics

Open the Raw files you want to process. From Bridge, double click on raw images and they will open in ACR. In Lightroom select the images and switch to its Develop module.

In Adobe Camera Raw be sure to first set the Workflow Preset (the blue link at the bottom of the screen) to 16 bits/channel and ProPhoto RGB colour space, for maximum tonal range. This is a one-time setting. Lightroom defaults to 16-bit and the AdobeRGB colour space.

The Basics panel (the first tab) allows you to fix Exposure and White Balance. For the latter, use the White Balance Tool (the eyedropper, keyboard shortcut I) to click on an area that should be neutral in colour.

You can adjust Contrast, and recover details in the Highlights and Shadows (turn the latter up to show details in starlit landscapes). Clarity and Vibrance improves midrange contrast and colour intensity.

Use Command/Control Z to Undo, or double click on a slider to snap it back to zero. Or under the pull-down menu in the Presets tab go to Camera Raw Defaults to set all back to zero.


Demo-Timelapse4Step 3 – Adobe Camera Raw or Lightroom – Detail

The Detail panel allows you to set the noise reduction and sharpness as you like it, one of the benefits of shooting Raw.

Generally, settings of Sharpness: Amount 25, Radius 1 work well. Turn up Masking while holding the Option/Alt key to see what areas will be sharpened (they appear in white). There’s no need to sharpen blank, noisy sky, just the edge detail.

Setting Noise Reduction: Luminance to 30 to 50 and Color to 25, with others sliders left to their defaults works well for all but the noisiest of images. Luminance affects the overall graininess of the image. Color, also called chrominance, affects the coloured speckling. Turning the latter up too high wipes out star colours.

Turn up Color Smoothness, however, if the image has lots of large scale colour blotchiness.

Zoom in to at least 100% to see the effect of all noise reduction settings. Adobe Camera Raw and Lightroom have the best noise reduction in the business. Without it your images will be far noisier than they need to be.


Demo-Timelapse4Step 4 – Adobe Camera Raw or Lightroom – Lens Correction

Wide angle lenses, especially when used at fast apertures, suffer a lot from light falloff at the corners (called vignetting). There’s no need to have photos looking as if they were taken through a dark tunnel.

ACR or Lightroom can automatically detect what lens you used and apply a lens correction to brighten the corners, plus correct for other flaws such as chromatic aberration and lens distortion.

Use the Color tab to “Remove Chromatic Aberration” and dial up the Defringe sliders.

For lenses not in the database (manual lenses like the Rokinons and Samyangs will not be included, nor will any telescopes) use the Manual tab to dial in your own vignetting correction. This can take some trial-and-error to get right, but once you have it, save it as a Preset to apply in future to all photos from that lens or telescope.

I usually apply Lens Corrections as a first step, but sometimes find I have to back it off it as I boost the contrast under Basics.


Demo-Timelapse5Step 5 – Bridge or Lightroom – Copy & Paste

For a small number of images you could open them all, then Select All in ACR to apply the same settings to all images at the same time.

Or you can adjust one, then Select All and hit Synchronize.

Another method useful for processing dozens or hundreds of frames from a star trail or time-lapse set is to choose one representative image and process it. Then in Bridge choose Edit>Develop Settings>Copy Camera Raw Settings. If you are in Lightroom’s Library module, choose Photo>Develop Settings>Copy Settings.

With either program you can also right-click on an image to get to the same choices. Then select all the other images in the set (Command/Control A) and use the same menus to Paste Settings.

A dialog box comes up for choosing what settings you wish to transfer.

If you cropped the image (a good idea for images destined for an HD movie with a 16:9 aspect ratio), pick that option as well. In moments all your images get processed with identical settings. Nice!


Demo-Timelapse6Step 6 – Lightroom or Photoshop – Export

You now have a set of developed Raw images. However, the actual Raw files are never altered. They remain raw!

Instead, with Adobe Camera Raw the information on how you processed the images is stored in the “sidecar” XMP text files that live in the same folder as the Raw files.

In Lightroom’s case your settings are stored in its own database, unless you choose Metadata>Save Metadata to File (Command/Control S). In that case, Lightroom also writes the changes to the same XMP sidecar files.

To convert the images into final Photoshop PSDs, TIFFs or JPGs you have a couple of choices. In Lightroom go to the Library module and choose Export. It’s an easy way to export and convert hundreds of images, perhaps into a folder of smaller JPGs needed for assembling a time-lapse movie.

To do that from within Adobe Bridge, select the images, then go to Tools>Photoshop>Image Processor. The dialogue box allows you to choose how and where to export the images. Photoshop then opens, processes, and exports each image.


Demo-Timelapse7Step 7 – Photoshop – Smart Filters

For a folder of images intended to be stacked into star trails (Step 10A) or time-lapse movies (Step 10B), you’re done processing.

But individual nightscape images can often benefit from more advanced work in Photoshop. The next steps make use of a non-destructive workflow, allowing you to alter settings at any time after the fact. At no time do we actually change pixels.

One secret to doing that is to open an image in Photoshop and then select Layer>Smart Objects>Convert to Smart Object. Or go to Filter>Convert for Smart Filters.

OR … better yet, back in Adobe Camera Raw hold down the Shift key while clicking the Open Image button, so it becomes Open Object. That image will then open in Photoshop already as a Smart Object, which you can re-open and re-edit in ACR at any time later should you wish.

Either way, with the image as a Smart Object, you can now apply useful filters such as Reduce Noise, Smart Sharpen, and Dust & Scratches, plus third-party filters such as Nik Software’s Dfine 2 Noise Reduction, all non-destructively as “smart filters.” They can be re-adjusted or turned off at any time.


Demo-Timelapse8Step 8 – Photoshop – Adjustment Layers

The other secret to non-destructive processing is to apply adjustment layers.

Go to Layer>New Adjustment Layer, or click on any of the icons in the Adjustments panel. If that panel is not visible at right, then under the Window menu check “Adjustments.”

This panel is where you can alter the colour balance, the brightness and contrast, the vibrancy, and many other choices. I find Selective Color most useful for tweaking colour.

Curves allows you to bring up detail in dark areas. Levels allows setting the black and white points, and overall contrast.

The beauty of adjustment layers is that you can click on the layer’s little icon and bring up the dialog box for changing the setting at any time. You never permanently alter pixels.

The image adjustment “Shadows & Highlights” is also immensely useful, but appears as a smart filter, not as an adjustment layer. It’s one of the prime tools for creating images with great detail in scenes lit only by starlight.


Demo-Timelapse9Step 9 – Photoshop – Masks

The power of adjustment layers is that you can apply them to just portions of an image. This is useful in nightscapes where the sky and ground often need different processing.

To create a mask first select the region you want to work on. Try the Quick Selection Tool (found near the top of the Tool palette at left). Use it to brush across the sky, or the ground, so that the entire area is outlined by “marching ants.”

Use the Refine Edge option to tweak the selection by brushing across intricate areas such as tree branches.

Once you have an area selected, hit one of the Adjustments to add an adjustment layer with the mask automatically applied. Double click on the mask to tweak it: hit Mask Edge to clean up the edge, or turn up the Feather to blur the edge.

To apply the same mask to another adjustment layer, drag the mask from one layer to another while holding down the Option/Alt key.

Invert the mask (or select it and hit Command/Control I) to apply it to the other half of the image. Paint the mask with black or white brushes if you need manually alter it. Remember – black “conceals,” while white “reveals.”

When done, be sure to always save the image as a layered “master” .PSD file.

Never, ever flatten and save – that will wipe out all your non-destructive filters and adjustment layers.

If you need to save the image as a JPG for social mediia or emailing, then Flatten and Save As …  Or use Photoshop’s File>Export>Export As .. function.


Stars setting in trails over the Athabasca Glacier and Columbia Icefields, Sept 14, 2014. The Milky Way is trailed at right. This is a stack of 100 exposures, composited with Advanced Stacker Plus actions in Photoshop, with the ground coming from a subset stack of 8 images to reduce noise. Each exposure, taken as part of a time-lapse sequence, was 45 seconds at f/2.8 with the 16-35mm lens at 23mm and Canon 6D at ISO 4000.
Stars setting in trails over the Athabasca Glacier and Columbia Icefields, Sept 14, 2014. The Milky Way is trailed at right. This is a stack of 100 exposures, composited with Advanced Stacker Plus actions in Photoshop, with the ground coming from a subset stack of 8 images to reduce noise. Each exposure, taken as part of a time-lapse sequence, was 45 seconds at f/2.8 with the 16-35mm lens at 23mm and Canon 6D at ISO 4000.

Step 10A – Photoshop or 3rd Party Programs – Stack for Star Trails 

One popular way to shoot images of stars trailing in arcs across the sky is to shoot dozens or hundreds of well-exposed frames at a fairly high ISO and wide aperture, and at a shutter speed no longer than 30 to 60 seconds. You then “stack” the images to create the equivalent of one frame shot for many minutes, if not an hour or more. The image above is an example.

There are several ways to stack.

From within Photoshop CC (or using an Extended version of the older CS5 or CS6) one method is to go to File>Scripts>Statistics. In the dialog box, drill down to the images you wish to stack (put them all in one folder) and choose Stack Mode: Maximum, and uncheck “Attempt to Automatically Align.” The result is a huge (!) smart object. This method works best on just a few dozen images. In this case, you’ll need to use Layers>Flatten to reduce its size.

Other options for stacking hundreds of images include the free program StarStax (Windows and Mac), which requires a folder of “intermediate” TIFFs or JPGs. See Step 6 above.

The Advanced Stacker Actions from Star Circle Academy are actions you install in Photoshop that work directly from Raw files to create some impressive effects. I use them and recommend them.


Demo-Timelapse10Step 10B – Photoshop or 3rd Party Programs – Assemble for Movies

The same folder of images taken for star trail stacking can also be turned into a time-lapse movie. Instead of stacking the images on top of one another in space, you string them together one after the other in time.

There are many methods for assembling movies. Free or low cost programs such as Quicktime 7 Pro, Time-Lapse Assembler, Sequence (a Mac program shown above), VirtualDub, or Time-Lapse Tool can do the job, all offering options for the final movie’s format.

Generally, an HD video of 1920×1080 pixels in the H264 format, or “codec,” is best, rendered at 15 to 30 frames per second.

Most movie assembly programs will need to work from a folder of JPGs of the right size, produced using one of the choices listed under Step 6: Export.

But … you can also use Photoshop to assemble a movie.

Choose the Window>Workspace>Motion to bring up a video timeline. Then File>Open to drill to your folder of processed and down-sized JPG files. Select one image, then check “Image Sequence.” Choose the frame rate (15 to 30 fps is best). Then go to File>Export>Render Video to turn the resulting file into a final H264 or Quicktime movie suitable for use in other movie editing programs.


Demo-Timelapse11

Advanced Techniques: Using LRTimelapse

The workflow I’ve outlined works great when you can apply the same development settings to all the images in a folder. For star trail and time-lapse sequences shot once it gets dark and under similar lighting conditions that will be the case.

But if the Moon rises or sets during the shoot, or if you are taking a much more demanding sequence that runs from sunset to night, the same settings won’t work for all frames.

The answer is to turn to the program LRTimelapse (100 Euros for the standard version, and available in a free but limited trial copy). LRTimelapse works with either Lightroom or Bridge/Adobe Camera Raw.

To use it you process just a few selected “keyframes” – at least two, at the start and end of the sequence, and perhaps other frames throughout the sequence, processing them so each frame looks great. You read that processing data into LRTimelapse and, like magic, it interpolates your settings, creating a folder of images with every setting changing incrementally from frame to frame, something you could never do by hand.

It can then work with Lightroom to export the frames out to a video in formats from HD up to 4K in size. For serious time-lapse work, LRTimelapse is an essential tool.


Much, much more information and tutorials are included in my multimedia Apple eBook, linked to below.

But I hope this quick tutorial helps in providing you with tips to make your images and movies even better! If you found it useful, please feel free to share a link to this blog page through your social media channels. Thanks!

And for tips on shooting in the field, please see my earlier blog on Ten Tips for Terrific Time-Lapses.

– Alan, November 10, 2015 / © 2015 Alan Dyer / www.amazingsky.com

Moonlight on the Prairie


The rising almost-Full Moon, a “Blue Moon” of July 30, 2015, rising behind a rustic old farmhouse near Bow Island, Alberta. The Moon sits in the pibk Belt of Venus with the blue shadow of the Earth below. This is a single frame from a 600-frame time-lapse sequence, taken with the Canon 6D and 16-35mm lens.

I present a short time-lapse vignette of scenes shot under moonlight on the Alberta prairie.

The movie linked below features sequences shot July 29 and 30, 2015 on beautifully clear moonlit nights at locations south of Bow Island, Alberta, on the wide open prairie. The three-minute video features two photogenic pioneer sites.

Circumpolar star trails over the historic but sadly neglected St. Anthony’s Church between Bow Island and Etzikom, Alberta. The Big Dipper is at left, Polaris at top. The Roman Catholic church was built in 1911 by English, Russian German immigrants. It served a dwindling congregation until 1991 when it closed. At that time workers found a time capsule from 1915 with names of the priest and parisioners of the day. In summer of 2014 the Church suffered its latest indignity when the iron cross on its steeple tower was stolen. It was there when I stopped at this Church on a site scouting trip in May 2014. I planned to return on a moonlit night and did on July 29, 2015. A nearby house had been torn down and the cross was now gone.  This is a stack of 300 6-second exposures with the Canon 6D at ISO 1600 and 16-35mm lens at f/2.8. Bright light from a 13-day Moon lights the scene, making for very short exposures. The ground comes from one exposure to keep shadows sharp. The final stars also come from another single exppsure taken two minutes after the last trail image. I used the Advanced Stacker Actions to stack the trails.

The church is the now derelict St. Anthony’s Church, a former Roman Catholic church built in 1911 by English and Russian-German immigrants. It served a dwindling congregation until as late as 1991 when it closed. At that time workers found a time capsule from 1915 with names of the priest and parisioners of the day.

The wood church seems to have been largely neglected since.

In the summer of 2014 the Church suffered its latest indignity when the iron cross on its steeple tower was stolen. I also shot in the pioneer cemetery of the Church.

Circumpolar star trails circling above an old rustic and abandoned house near Bow Island, Alberta, with illumination from the nearly Full Moon. Cassiopeia is near centre. Polaris is at top left.  This is a stack of 140 frames from a time-lapse sequence with additional frames added for the first and last stars, and the ground coming from a mean combine stack of 8 frames to reduce noise. Each frame is 10 seconds at f/4 with the 16-35mm lens and ISO 1600 with the Canon 6D. Stacked with Advanced Stacker Actions, using the Ultrastreaks effect, from within Photoshop.

The other site is a nearby farmhouse with photogenic textures and accompanied by rustic out buildings that are barely managing to stand.

Illumination was from a waxing gibbous Moon, just 1 to 2 days before the infamous “Blue Moon” of July 31. Its bright light turned the sky blue, and lit the landscape with the same quality as sunlight, because it is sunlight!


Enlarge the video to full screen for the full HD version.

For the technically inclined:

I shot the scenes with three cameras – a Canon 60Da, Canon 6D, and Nikon D750.

The Nikon, with a 24mm lens, was on the Dynamic Perception Stage Zero Dolly and Stage R panning unit, while the 60Da, with a 14mm lens, was on the compact Radian panning unit. The third camera, the 6D, with a 16-35mm lens, was on a fixed tripod for the star trail sequences and stills.

The music is by Adi Goldstein (AGSoundtrax.com), whose music I often use in my sequences. It just seems to work so well, and is wonderfully melodic and powerful. Thank you, Adi!

To process the several thousand frames that went into the final movie, I used Adobe Bridge and Adobe Camera Raw, supplemented by the latest Version 4.2 of LRTimelapse (lrtimelapse.com). Its new “Visual Deflicker” workflow does a beautiful job smoothing out frame-to-frame flickering in sequences shot in twilight under darkening lighting conditions. Thank you Gunther!

For the star trail sequences and the still images above I used the Advanced Stacker Actions from StarCircleAcademy.com. Unlike most other stacking programs, the Stacker Actions work from within Adobe Bridge and Photoshop directly, using the processed Raw images, with no need to create intermediate sets of JPGs. Thank you Steven!

— Alan, August 3, 2015 / © 2015 Alan Dyer / www.amazingsky.com 

The Red Aurora of May 10


A strange red/magenta auroral arc overhead across the sky, with a more normal green diffuse glow to the north, as seen on May 10, 2015, in a stack of 80 frames taken over 45 minutes. The Big Dipper is overhead in the centre of the frame, Jupiter is at left in the west and Arcturus is at top to the south. I shot this from home, using an 8mm fish-eye lens to take in most of the sky, with the camera looking north. The 80 exposures were stacked and blended with Advanced Stacker Actions from StarCircleAcademy.com using the Long Trails effect. Each exposure was 32 seconds at f/3.6 and ISO 3200 with the Canon 6D. An individual exposure adds the more point-like stars at the start of the tapered star trails, and add the blue from the last twilight glow still illuminating the sky at the start of the sequence.

A strange red arc of aurora moved slowly across the sky on May 10.

All indicators looked favourable early in the evening on May 10 for a good auroral display later that night, and sure enough we got one. But it was an unusual display.

From my site in southern Alberta, the northern sky did have a diffuse glow of “normal” green aurora that never did take much form or structure.

But overhead the aurora took the form of an arc across the sky, starting as an isolated ray in the southeast initially, then reaching up to arch across the sky with what looked to the eye like a colourless band.

But the camera showed it as a red arc, with just a fringe of green curtains appearing for a few minutes.

Be sure to click HD and enlarge the video to fill your screen.

The time-lapse movie shows the sequence, over about 90 minutes, with 170 frames playing back at 12 frames per second. You can see the red arc develop, then become more narrow, then exhibit a few green curtains. Then it fades away.

Large-scale pulses also brighten the whole sky momentarily.

A strange red/magenta auroral arc overhead across the sky, with a more normal green diffuse glow to the north, as seen on May 10, 2015. The Big Dipper is overhead in the centre of the frame, Jupiter is at left in the west and Arcturus is at top to the south. I shot this from home, using an 8mm fish-eye lens to take in most of the sky, with the camera looking north. It is part of a 170-frame time-lapse sequence. Exposure was 32 seconds at f/3.6 and ISO 3200 with the Canon 6D.

The other images are individual frames taken during the evening, showing snapshots of the red arc development, as it became more narrow in structure and gained green curtain-like fringes.

Presumably the red structure was very high in the atmosphere while the green curtains attached to it that did appear hung down from the high-altitude red arc.

A strange red/magenta auroral arc overhead across the sky, with a more normal green diffuse glow to the north, as seen on May 10, 2015. The Big Dipper is overhead in the centre of the frame, Jupiter is at left in the west and Arcturus is at top to the south. I shot this from home, using an 8mm fish-eye lens to take in most of the sky, with the camera looking north. It is part of a 170-frame time-lapse sequence. Exposure was 32 seconds at f/3.6 and ISO 3200 with the Canon 6D.

I shot all images with an 8mm fish-eye lens to capture most of the sky. The camera is looking north toward Polaris, with the Big Dipper almost directly overhead near the centre of the frames.

The main image at top is a star-trail stack of 80 frames showing the sky’s circumpolar motion around Polaris and the aurora blurred and blended over 45 minutes of motion. I stacked the frames with the Advanced Stacker Actions from StarCircleAcademy.com

– Alan, May 11, 2015 / © 2015 Alan Dyer / www.amazingsky.com

Nightscapes at Double Arch


Star Trails Behind Double Arch

The iconic Double Arch looks great under dark skies, moonlight, or painted with artificial light.

Last night, I returned to the Double Arch at Arches National Park, to capture a star trail series, starting from the onset of darkness at 9:30 p.m., and continuing for 2.5 hours until midnight, an hour after moonrise at 11:00 p.m. The lead image is the result.

I think it turned out rather well.

The Big Dipper is just streaking into frame at top right, as I knew it would from shooting here the night before. The bright streak at upper left is Jupiter turning into frame at the end of the sequence. Note how the shadow of the moonlit foreground arch matches the shape of the background arch.

On the technical end, the star trail composite is a stack of 160 frames, each 45 seconds at f/2.8 and ISO 3200, with the Canon 6D and 14mm lens. The foreground, however, comes from a stack of 8 frames taken toward the end of the shoot, as the moonlight was beginning to light the arches. An additional 45-second exposure taken a couple of minutes after the last star trail frame adds the star-like points at the “head” of the star trail streaks.

I used the excellent Advanced Stacker Actions from StarCircleAcademy to do the stacking in Photoshop.

Dark Sky Behind Double Arch

Before starting the star trail set, I took some initial short-exposure nightscapes while the sky was still dark. The result is the above image, of Double Arch in a dark sky. Passing car headlights provided some rather nice accent illumination.

On such a fine night I thought others might be there as well. Arches is a very popular place for nightscape imaging.

Sure enough, 6 others came and went through the early evening before moonrise. We had a nice time chatting about gear and techniques.

As expected, a few photographers came armed with bright lights for artificially lighting the arches. I kept my camera running, knowing any illumination they shone on the foreground wouldn’t affect my star trails, and that I’d mask in the foreground from frames taken after moonrise.

Photographer Lighting Double Arch

Here’s one frame from my star trail sequence where one photographer headed under the arch to light it for his photos. It did make for a nice scene – a human figure adds scale and dimension.

However, I always find the light from the LED lamps too artificial and harsh, and comes from the wrong direction to look natural. I also question the ethics of blasting a dark sky site with artificial light.

On a night like this I’d rather wait until moonrise and let nature provide the more uniform, warmer illumination with natural shadows.

Big Dipper over Double Arch

As an example, I took this image the night before using short exposures in the moonlight to capture the Big Dipper over Double Arch. When I shot this at 11 p.m. I had the site to myself. Getting nature to provide the right light requires the photographer’s rule of “waiting for the light.”

– Alan, April 7, 2015 / © 2015 Alan Dyer / www.amazingsky.com