How many sources of skyglow can you pick out here?
There are at least five:
• the Milky Way (at left),
• green airglow (below the Milky Way),
• all too prevalent light pollution (especially reflected off the clouds coming in from the west at right),
• lingering blue twilight across the north (at left and right), common in May and June from my northern latitude,
• and even a touch of aurora right at the northern horizon at far left.
In this scene from May 28, the Milky Way arches over an abandoned pioneer farmstead from the 1930s and 40s near my home in southern Alberta.
Mars (very bright and in some clouds) and Saturn shine at lower centre, while Jupiter is the bright object in clouds at right just above the old house.
Arcturus is the brightest star here at upper right of centre, made more obvious here by shining through the clouds. The Big Dipper, distorted by the map projection used in the this panorama, is at upper right.
Technical: This is a 360° horizon to zenith panorama taken with the iPano motorized panning unit, using the 24mm lens at f/2.8 and Nikon D750 at ISO 6400, for a stitch of 28 panels, in 4 tiers of 7 segments each. Stitched with PTGui. South is at centre, north to either end. The original is 25,700 x 7,700 pixels.
Just after I shot the panorama I captured the International Space Station passing directly overhead in one of several passes this night.
The second Space Station pass of May 28/29, 2016, at 1:40 a.m., with cloud moving in adding the glows to all the stars. Taken with the 8mm fish-eye lens from home. The Big Dipper is high in the west at right. Mars is bright at bottom, to the south. Several other satellites are in the sky as well. This is a stack of 3 exposures, each 2.5-minutes with the camera on the Star Adventurer tracker.
At this time of year the ISS is lit all night by the Sun that never sets for the astronauts. We see the ISS cross the sky not once but several times in a night at 90-minute intervals.
While the sky near solstice is never dark at my latitude, it does have its compensations and attractions.
Mars is now shining brightly in the evening sky, as close and as bright as it has been since 2005.
Look southeast to south after dark and you’ll see a brilliant reddish “star.” That’s Mars, now at opposition, and retrograding slowly westward each night through Scorpius into Libra.
My image above captures Mars set in the entirety of the northern spring sky, complete with the arch of the Milky Way, twilight glows to the north (at left), some satellite trails …
… and Mars itself as the brightest object just right of centre shining above the landscape of Dinosaur Provincial Park.
Just to the left of Mars is Saturn, while below both is the star Antares in Scorpius, for a neat triangle of objects. Jupiter is the bright object in Leo at far right.
Technical: I shot the lead image on the evening of May 25. It is a 360° and horizon-to-zenith panorama stitched from 44 images, taken in 4 tiers of 11 panels each, shot with a motorized iOptron iPano mount. I used a 35mm Canon lens at f/2.8 for 30-second exposures with the Canon 6D at ISO 6400. I stitched the images with PTGui. The original image is a monster 32,500 pixels wide by 8,300 pixels high.
This is a stitch in Adobe Camera Raw of 9 segments, each with the Canon 35mm lens at f/5.6 and Canon 6D at ISO 800.
I shot the panorama above earlier in the evening, when Mars and Saturn were just rising in the southeast at left, and the sky to the northwest at right was still bright with twilight.
This shows the geometry of Mars at opposition. It lies opposite the Sun and is so rising at sunset and directly opposite the sunset point. The Sun, Earth and Mars are in a straight line across the solar system with Earth in the middle and as close to Mars as we get.
Actual date of opposition was May 22 but Earth is closest to Mars on May 30. That’s when it will look largest in a telescope. But to the unaided eye it appears as a bright red star.
This is a video 37 years in the making, compiling images and videos I’ve shot of total solar eclipses since my first in 1979.
Though I’ve “sat out” on the last couple of total eclipses of the Sun in 2015 and 2016, I’m looking forward to once again standing in the shadow of the Moon in 2017 – on August 21.
If you have not yet seen a total eclipse of the Sun, and you live in North America, next year is your chance to. It is the most spectacular and awe-inspiring event you can witness in nature.
I hope my video montage relays some of the excitement of being there, as the Moon eclipses the Sun.
As always, click HD and enlarge to full screen.
My montage features images and movies shot in:
• Manitoba (1979)
• Chile (1994)
• Curaçao (1998)
• Turkey (1999)
• Zimbabwe (2001)
• Australia (2002)
• Over Antarctica (2003)
• South Pacific near Pitcairn Island (2005)
• Libya (2006)
• Over Arctic Canada (2008)
• South Pacific near the Cook Islands (2009)
• Australia (2012)
• Mid-Atlantic Ocean (2013)
Out of the 15 total solar eclipses I have been to, only the 1991 and 2010 eclipses that I did go to are not represented in the video, due to cloud. Though we did see much of the 1991 eclipse from Baja, clouds intervened part way through, thwarting my photo efforts.
And I only just missed the 2010 eclipse from Hikueru Atoll in the South Pacific as clouds came in moments before totality. Of course, it was clear following totality.
Cameras varied a lot over those years, from Kodachrome film with my old Nikon F, to digital SLRs; from 640×480 video with a Sony point-and-shoot camera, to HD with a DSLR.
I shot images through telescopes to capture the corona and prominences, and with wide-angle lenses to capture the landscape and lunar shadow. I rarely shot two eclipses the same way or with the same gear.
I hope you enjoy the video and will be inspired to see the August 21, 2017 eclipse. For more information about that eclipse, visit:
Mars is approaching! It now shines brightly in the midnight sky as a red star in Scorpius.
You can’t miss Mars now. It is shining brighter than it has since 2005, and is about to come as close to Earth as it has in 11 years as well.
Mars is now approaching opposition, when the Earth comes closest to Mars, and the Sun, Earth and Mars lie along the same line. Opposition date is May 22. That’s when Mars shines at its brightest, at magnitude -2.1, about as bright as Jupiter. Only Venus can be a brighter planet and it’s not in our sky right now.
A week later, on May 30, Mars comes closest to Earth, at a distance of 75 million kilometres. That’s when the disk of Mars looks largest in a telescope. And you will need a telescope at high power (150x to 250x) to make out the dark markings, north polar cap, and bright white clouds on Mars.
Mars above Antares, with Saturn to the left, low in the south on May 13, 2016, in the moonlight of a waxing quarter Moon, from home in Alberta. This was one week before opposition and two weeks before closest approach, so Mars is particularly bright and red. However, from my latitude of 50° N Mars appears low in the south. This is a single 15-second exposure, untracked, at f/2.5 with the 35mm lens and Canon 6D at ISO 2000.
In these views, I show Mars shining as a bright reddish star low in my western Canadian sky. I shot the lead image from Dinosaur Provincial Park on May 16. The image just above was from my backyard the night before.
This week, Mars is passing between Beta and Delta Scorpii, two bright stars in the head of Scorpius, as the red planet retrogrades westward against the background stars.
Saturn shines to the east (left) of Mars now, with both planets shining above the red giant star Antares in Scorpius. In these photos they form a neat triangle.
Even without a telescope to magnify the view, it’ll be rewarding to watch Mars with the unaided eye or binoculars as it treks west out of Scorpius into Libra this spring and summer. It stops retrograding on June 30, then starts looping back into Scorpius, for a rendezvous with Antares and Saturn in late August.
This little compilation of time-lapse movies shows Mars, Saturn, and the rest of the sky, rising into the southeast and across the south on two nights this past week.
Be sure to explore Mars this month and next, whether by eye or by telescope. It’s the best we’ve seen it in a decade.
It’s next close approach in 2018 will be even better, though Mars will appear even lower in our northern sky.
On May 9, a last-minute chase into clear skies netted me a view of the rare transit of Mercury across the Sun.
The forecast called for typical transit weather – clear the day before, and clear the day after. But the day of the transit of Mercury? Hopeless at home in Alberta, unless I chanced the prospects of some clearing forecast for central Alberta.
As the satellite image below, for 8:30 a.m. MDT on May 9, shows, that clearing did materialize. But I headed west, as far west as I needed to go to be assured of clear skies – to central BC. Kamloops in fact.
I stayed at the Alpine Motel, got a great room as the end, and set up in the parking lot away from traffic. Not the most photogenic of observing sites, but I was happy! I had my clear skies!
I set up two telescopes, above: a 130mm refractor to shoot through, and an 80mm refractor to look through. Both with dense solar filters!
Both worked great. However, low cloud prevented me seeing the Sun as soon as it cleared the eastern hills. So this was my first good look, below, at the transit as the Sun rose above the clouds.
The May 9, 2016 transit of Mercury taken about half an hour after sunrise, as the Sun emerged from low horizon cloud. Taken from Kamloops, British Columbia, where the transit was well underway at sunrise. Mercury appears as the circular dot at lower left, with a sunpot group above centre. I shot this with the 130mm Astro-Physics refractor at f/6 prime focus with the Canon 60Da camera at ISO 100. Shot through a Kendrick white light solar filter. The low atltitude added much of the yellow colouration.
There it was – the fabled “little black spot on the Sun today.” Mercury is the dot at lower left, with a sunspot group at upper right. This was the first transit of Mercury since November 8, 2006. We see only about 13 Mercury transits a century, so in a lifetime of stargazing (the Sun is a star!) even the most avid amateur astronomer might see only a handful. This was only my third transit of Mercury.
The May 9, 2016 transit of Mercury taken about 45 minutes after sunrise, as the Sun emerged from low horizon cloud. I shot this with the 130mm Astro-Physics refractor at f/6 prime focus with the Canon 60Da camera at ISO 100. Shot through a Kendrick white light solar filter.
This was the view, above, a little later, as the Sun entered more assuredly clear skies. From about 7 a.m. PDT on, the Sun was in the clear most of the morning, with just occasional puffy clouds intervening now and then.
I shot still images every 30 seconds, to eventually turn into a time-lapse movie (after a ton of work hand registering hundreds of frames!).
But for now, I’ll be content with this composite of 40 frames, below, taken at 7-minute intervals. It shows the progress of Mercury across the Sun over the last 4.5 hours or so of the event, until egress at 11:38 a.m. PDT.
This motion is due to Mercury’s movement around the Sun. A transit is one of the few times you can easily see a planet actually orbiting the Sun.
For all images I used the 130mm f/6 Astro-Physics refractor with a 2X Barlow for an effective focal length of 1560mm and the Canon 60Da camera (at ISO 100) to yield an image size with the Sun just filling the frame. Exposures were 1/250th second through a Kendrick white light Mylar filter. Yellow colouration of the solar disk added in processing.
In this composite, the disks of Mercury are not all perfect dots. The wobbly seeing conditions distorted the images from frame to frame. But I used the actual images taken at that moment, rather than clone some perfect image across the disk to simulate the path.
To wrap up, here’s Mercury Transit: The Movie! I shot several HD and zoomed-in “crop mode” movies at the beginning of the transit and again at the final egress. Commentary is from me talking live into the camera mic as I was shooting the clips. Background noise is courtesy Pacific Drive and the Trans-Canada Highway!
Enjoy, and do enlarge to HD and full-screen for the best look.
The next transit of Mercury is November 11, 2019. If you are hoping for a transit of Venus, good luck. The next is not until December 10, 2117!
The sky and sea present an ever-changing panorama of light and colour from the view point of an Australian lighthouse.
Last week I spent a wonderful four nights at the Smoky Cape Lighthouse, in Hat Head National Park, on the Mid-North Coast of New South Wales. I was after panoramas of seascapes and cloudscapes, and the skies didn’t disappoint.
At sunset, as below, the sky to the east glowed with twilight colours, with the bright clouds providing a beautiful contrast against the darkening sky. The kangaroo at far right was an added bonus as he hopped into frame just at the right time.
A 270° or so panorama of the Smoky Cape Lighthouse near South West Rocks on Trial Bay, NSW, Australia, and in Hat Head National Park. This is a stitch of 12 segments, each a single 1.6-second exposure at f/8 with the 35mm lens in landscape orientation. Stitching with Adobe Camera Raw.
At sunrise, the Sun came up over the ocean to the east, providing a stunning scene to begin the day.
I shot this at dawn on April 28, 2016. This is a 7-section panorama with each section being a 5-exposure HDR stack, all stacked and stitched in Adobe Camera Raw.
The Smoky Cape Lighthouse was lit up for the first time in 1891. It was staffed for decades by three keepers and their families who lived in the cottages visible in the panoramas above. They tended to the kerosene lamps, to cleaning the lenses, and to winding the weight-driven clockwork mechanism that needed resetting every two hours to keep the reflector and lens assembly turning. By day, they would draw the curtains across to keep the Sun from heating up the optics.
The huge optical assembly uses a set of nine lenses, each a massive fresnel lens, to shot focused beams out to sea. The optics produce a trio of beams, in three sets.
Each night you could see the nine beams sweeping across the sky and out to sea, producing a series of three quick flashes followed by a pause, then another three flashes, the characteristic pattern of the Smoky Bay Light. Each lighthouse has its own flashing pattern.
Beams from the Smoky Cape Lighthouse in the twilight sky, beaming out beside the stars of the Southern Cross and the Pointers (Alpha and Beta Centauri) below, rising into the southeast sky in the deepening blue twilight. This is a single 0.6-second exposure at f/2.8 with the 35mm lens and Canon 6D at ISO 6400.
The lead photo, repeated above, shows the beams in the twilight, with the stars of the Southern Cross as a backdrop. Three beams are aimed toward the camera while the other two sets of beam trios are shooting away out to sea.
The image below shows the beam trio shining out over the water toward one of the dangerous rocks off shore.
The trio of beams from the Smoky Cape Lighthouse scanning across the sea and sky in an exposure shot as short as possible to freeze the beams. This is a single 1.6-second exposure at f/1.4 and ISO 12800, wide and fasrt to keep the beams from blurring too much.
The Lighthouse was converted to electricity in 1962, when staff was reduced. Then in the 1980s all lighthouses were automated and staff were no longer needed.
While we might romanticize the life of a lighthouse keeper, it was a lonely and hard life. Keepers were usually married, perhaps with children. While that may have lessened the isolation, it was still a difficult life for all.
Today, some of the cottages have been converted into rentable rooms. I stayed in the former house of the main light keeper, filled with memorabilia from the glory days of staffed lighthouses.
The Southern Cross, Crux, and the Pointer Stars, Alpha and Beta Centauri, above in the moonlight of the waning gibbous Moon before dawn, from the Smoky Cape Lighthouse looking southwest, on the coast of New South Wales, Australia. The Cape was named by James Cook in 1770 for the fires he saw on shore here. This is a single 5-second exposure at f/2.8 with the 35mm lens and Canon 6D at ISO 1000.
The image above takes in the Southern Cross over the moonlit beach in the dawn twilight.
The last image below is my final astrophoto taken on my current trip to Australia, a 360° panorama of the Milky Way and Zodiacal Light from the back garden of the Lighthouse overlooking the beach at Hat Head National Park.
A 360° panorama and from horizon to zenith of the southern sky and Milky Way from Smoky Cape and the grounds of the Lighthouse and Cottages. The panorama is a stitch of 9 segments, each shot with the 15mm full-frame fish-eye lens in portrait orientation, and at f/2.8 with the Canon 6D at ISO 3200. All exposures 1 minute, untracked on a tripod. Stitched in PTGui using equirectangular projection.
It’s been a superb trip, with over half a terabyte of images shots and processed! The last few blogs have featured some of the best, but many more are on the drives for future posts.