Testing Noise Reduction Programs for Astrophotography


In a detailed technical blog I compare six AI-based noise reduction programs for the demands of astrophotography. Some can work wonders. Others can ruin your image. 

Over the last two years we have seen a spate of specialized programs introduced for removing digital noise from photos. The new generation of programs use artificial intelligence (AI), aka machine learning, trained on thousands of images to better distinguish unwanted noise from desirable image content.

At least that’s the promise – and for noisy but normal daytime images they do work very well. 

But in astrophotography our main subjects – stars – can look a lot like specks of pixel-level noise. How well can each program reduce noise without eliminating stars or wanted details, or introducing odd artifacts, making images worse. 

To find out, I tested six of the new AI-based programs on real-world – or rather “real-sky” – astrophotos. Does one program stand out from the rest for astrophotography? 

NOTE: All the images are full-resolution JPGs you can tap or click on to download for detailed inspection. But that does make the blog page slow to load initially. Patience! 


TL;DR SUMMARY

The new AI-trained noise reduction programs can indeed eliminate noise better than older non-AI programs, while leaving fine details untouched or even sharpening them. 

  • Of the group tested, the winner for use on just star-filled images is a specialized program for astrophotography, NoiseXTerminator from RC-Astro.
  • For nightscapes and other images, Topaz DeNoise AI performed well, better than it did in earlier versions that left lots of patchy artifacts, something AI programs can be prone to. 
  • While ON1’s new NoNoise AI 2023 performed fine, it proved slightly worse in some cases than its earlier 2022 version. Its new sharpening routine needs work.
  • Other new programs, notably Topaz Photo AI and Luminar’s Noiseless AI, also need improvement before they are ready to be used for the rigours of astrophotography. 
  • For reasons explained below, I would not recommend DxO’s PureRAW2

The three test images in Adobe Camera Raw showing the Basic settings applied.

METHODOLOGY

As described below, while some of the programs can be used as stand-alone applications, I tested them all as plug-ins for Photoshop, applying each as a smart filter applied to a developed raw file brought into Photoshop as a Camera Raw smart object. 

Most of these programs state that better results might be obtainable by using the stand-alone app on original raw files. But for my personal workflow I prefer to develop the raw files with Adobe Camera Raw, then open those into Photoshop for stacking and layering, applying any further noise reduction or sharpening as non-destructive smart filters. 

Many astrophotographers also choose to stack unedited original images with specialized stacking software, then apply further noise reduction and editing later in the workflow. So my workflow and test procedures reflect that. 

However, the exception is DxO’s PureRAW2. It can work only on raw files as a stand-alone app, or as a plug-in from Adobe Lightroom. It does not work as a Photoshop plug-in. I tested PureRAW2 by dropping raw Canon .CR3 files onto the app, then exporting the results as raw DNG files, but with the same settings applied as with the other raw files. For the nightscape and wide-field images taken with lenses in DxO’s extensive database, I used PureRAW’s lens corrections, not Adobe’s.

As shown above, I chose three representative images: 

  • A nightscape with star trails and a detailed foreground, at ISO 1600.
  • A wide-field deep-sky image at ISO 1600 with an 85mm lens, with very tiny stars.
  • A close-up deep-sky image taken with a telescope and at a high ISO of 3200, showing thermal noise hot pixels. 

Each is a single image, not a stack of multiple images. 

Before applying the noise reduction, the raw files received just basic color corrections and a contrast boost to emphasize noise all the more. 


THE CONTENDERS

In the test results for the three images, I show the original raw image, plus a version with noise reduction and sharpening applied using Adobe Camera Raw’s own sliders, with luminance noise at 40, color noise at 25, and sharpening at 25. 

I use this as a base comparison, as it has been the noise reduction I have long applied to images. However, ACR’s routine (also found in Adobe Lightroom) has not changed in years. It is good, but it is not AI. 

The new smart AI programs should improve upon this. But do they?

PLEASE NOTE: 

  • I have refrained from providing prices and explaining buying options, as frankly some can be complex! 
  • For those details and for trial copies, go to the software’s website by clicking on the link in the header product names below. 
  • All programs are available for Windows and MacOS. I tested the latter versions. 
  • I have not provided tutorials on how to use the software; I have just reported on their results. For trouble-shooting their use, please consult the software company in question. 
ON1 NoNoise 2023’s control interface.

ON1 NoNoise AI 2023

ON1’s main product is the Lightroom/Photoshop alternative program called ON1 Photo RAW, which is updated annually to major new versions. It has full cataloging options like Lightroom and image layering like Photoshop. Its Edit module contains the NoNoise AI routine. But NoNoise AI can be purchased as a stand-alone app that also installs as a plug-in for Lightroom and Photoshop. It’s what I tested here. The latest 2023 version of NoNoise AI added ON1’s new Tack Sharp AI sharpening routine.

Version tested: 17.0.1

Topaz DeNoise AI’s four-pane view to select the best AI model.

Topaz DeNoise AI 

This program has proven very popular and has been adopted by many photographers – and astrophotographers – as an essential part of an editing workflow. It performs noise reduction only, offering a choice of five AI models. Auto modes can choose the models and settings for you based on the image content, but you can override those by adjusting the strength, sharpness, and recovery of original detail as desired.

A separate program, Topaz Sharpen AI, is specifically for image sharpening, but I did not test it here. Topaz Gigapixel AI is for image resizing.

Version tested: 3.7.0

Topaz Photo AI’s control interface for its three main functions: noise, sharpening and upscaling.

Topaz Photo AI

In 2022 Topaz introduced this new program which incorporates the trio of noise reduction, sharpening and image resizing in one package. Like DeNoise, Sharpen and Gigapixel, Photo AI works as a stand-alone app or as a plug-in for Lightroom and Photoshop. Photo AI’s Autopilot automatically detects and applies what it thinks the image needs. While it is possible to adjust settings, Photo AI offers much less control than DeNoise AI and Topaz’s other single-purpose programs. 

As of this writing in November 2022 Photo AI is enjoying almost weekly updates, and seems to be where Topaz is focusing its development and marketing effort. 

Version tested: 1.0.9

Luminar Neo’s Edit interface with choices of many filters and effects, including Noiseless AI.

Luminar Neo Noiseless AI

Unlike the other noise reduction programs tested here, Luminar Neo from the software company Skylum is a full-featured image editing program, with an emphasis on one-click AI effects. One of those is the new Noiseless AI, available as an extra-cost extension to the main Neo program, either as a one-time purchase or by annual subscription. Noiseless AI cannot be purchased on its own. However, Neo with most of its extensions does work as a plug-in for Lightroom and Photoshop. 

Being new, Luminar Neo is also updated frequently, with more extensions coming in the next few months. 

Version tested: 1.5.0

DxO PureRAW’s simple interface with few choices for Noise Reduction settings.

DxO PureRAW2

Like ON1, DxO makes a full-featured alternative to Adobe’s Lightroom for cataloging and raw developing called DxO PhotoLab, in version 6 as of late 2022. It contains DxO’s Prime and DeepPrime noise reduction routines. However, as with ON1, DxO has spun off just the noise reduction and lens correction parts of PhotoLab into a separate program, PureRAW2, which runs either as a stand-alone app or as a plug-in for Lightroom – but not Photoshop, as PureRAW works only on original raw files. 

Unlike all the other programs, PureRAW2 offers essentially no options to adjust settings, just the option to apply, or not, lens corrections, and to choose the output format. For this testing I applied DeepPrime and exported out to DNG files. 

Version tested: 2.2

Noise Terminator’s controls allow adjusting strength and detail.

RC-Astro NoiseXTerminator

Unlike the other programs tested, NoiseXTerminator from astrophotographer Russell Croman is designed specifically for deep-sky astrophotography. It installs as a plug-in for Photoshop or Affinity Photo, but not Lightroom. It is also available under the same purchased licence as a “process” for PixInsight, an advanced program popular with astrophotographers, as it is designed just for editing deep-sky images. 

I tested the Photoshop plug-in version of Noise XTerminator. It receives occasional updates to both the actual plug-in and separate updates to the AI module.  

Version tested: 1.1.2, AI model 2 


NIGHTSCAPE TEST

As with the other test images, the panels show a highly magnified section of the image, indicated in the inset. I shot the image of Lake Louise in Banff, Alberta with a Canon RF15-35mm lens on a 45-megapixel Canon R5 camera at ISO 1600. 

The test results on a sample nightscape.
  • Adobe Camera Raw’s basic noise reduction did a good job, but like all general routines it does soften the image as a by-product of smoothing out high-ISO noise.
  • ON1 NoNoise 2023 retained landscape detail better than ACR but softened the star trails, despite me adding sharpening. It also produced a somewhat patchy noise smoothing in the sky. This was with Luminosity backed off to 75 from the auto setting (which always cranks up the level to 100 regardless of the image), and with the Tack Sharp routine set to 40 with Micro Contrast at 0. It left a uniform pixel-level mosaic effect in the shadow areas. Despite the new Tack Sharp option, the image was softer than with last year’s NoNoise 2022 version (not shown here as it is no longer available) which produced better shadow results.
  • Topaz DeNoise AI did a better job than NoNoise retaining the sharp ground detail while smoothing noise, always more obvious in the sky in such images. Even so, it also produced some patchiness, with some areas showing more noise than others. This was with the Standard model set to 40 for Noise and Sharpness, and Recover Details at 75. I show the other model variations below. 
  • Topaz Photo AI did a poor job, producing lots of noisy artifacts in the sky and an over-sharpened foreground riddled with colorful speckling. It added noise. This was with the Normal setting and the default Autopilot settings.
  • Noiseless AI in Luminar Neo did a decent job smoothing noise while retaining, indeed sharpening ground detail without introducing ringing or colorful edge artifacts. The sky was left with some patchiness and uneven noise smoothing. This was with the suggested Middle setting (vs Low and High) and default levels for Noise, Detail and Sharpness. However, I do like Neo (and Skylum’s earlier Luminar AI) for adding other finishing effects to images such as Orton glows.
  • DxO PureRAW2 did smooth noise very well while enhancing sharpness quite a lot, almost too much, though it did not introduce obvious edge artifacts. Keep in mind it offers no chance to adjust settings, other than the mode – I used DeepPrime vs the normal Prime. Its main drawback is that in making the conversion back to a raw DNG image it altered the appearance of the image, in this case darkening the image slightly. It also made some faint star trails look wiggly!  
  • Noise XTerminator really smoothed out the sky, and did so very uniformly without doing much harm to the star trails. However, it smoothed out ground detail unacceptably, not surprising given its specialized training on stars, not terrestrial content. 

Conclusion: For this image, I’d say Topaz DeNoise AI did the best, though not perfect, job. 

This was surprising, as tests I did with earlier versions of DeNoise AI showed it leaving many patchy artifacts and colored edges in places. Frankly, I was put off using it. However, Topaz has improved DeNoise AI a lot. 

Why it works so well, when Topaz’s newer program Photo AI works so poorly is hard to understand. Surely they use the same AI code? Apparently not. Photo AI’s noise reduction is not the same as DeNoise AI. 

Similarly, ON1’s NoNoise 2023 did a worse job than their older 2022 version. One can assume its performance will improve with updates. The issue seems to be with the new Tack Sharp addition.

NoiseXTerminator might be a good choice for reducing noise in just the sky of nightscape images. It is not suitable for foregrounds. 


WIDE-FIELD IMAGE TEST

I shot this image of Andromeda and Triangulum with an 85mm Rokinon RF lens on the 45-megapixel Canon R5 on a star tracker. Stars are now points, with small ones easily mistaken for noise. Let’s see how the programs handle such an image, zooming into a tiny section showing the galaxy Messier 33. 

The test results on a sample wide-field deep-sky image.
  • Adobe Camera Raw’s noise and sharpening routines do take care of the worst of the luminance and chrominance noise, but inevitably leave some graininess to the image. This is traditionally dealt with by stacking multiple sub-exposures. 
  • ON1 NoNoise 2023 did a better job than ACR, smoothing the worst of the noise and uniformly, without leaving uneven patchiness. However, it did soften star images, almost like it was applying a 1- or 2-pixel gaussian blur, adding a slight hazy look to the image. And yet the faintest stars that appeared as just perceptible blurs in the original image were sharpened to one- or two-pixel points. This was with only NoNoise AI applied, and no Tack Sharp AI. And, as I show below, NoNoise’s default “High Detail” option introduced with the 2022 version and included in the 2023 edition absolutely destroys star fields. Avoid it.
ON1 NoNoise “High Detail” option ruins star fields, as shown at right. Use “Original” instead.
  • Topaz DeNoise AI did a better job than Camera Raw, though it wasn’t miles ahead. This was with the Standard setting. Its Low Light and Severe models were not as good, surprising as you might think one of those choices would be the best for such an image. It pays to inspect Topaz’s various models’ results. Standard didn’t erase stars; it actually sharpened the fainter ones, almost a little too much, making them look like specks of noise. Playing with Enhance Sharpness and Recover Detail didn’t make much difference to this behavior. 
  • Topaz Photo AI again performed poorly. Its Normal mode left lots of noise and grainy artifacts. While its Strong mode shown here did smooth background noise better, it softened stars, wiping out the faint ones and leaving colored edges on the brighter ones. 
  • Noiseless AI in Luminar Neo did smooth fine noise somewhat, better than Camera Raw, but still left a grainy background, though with the stars mostly untouched in size and color. 
  • DxO PureRAW2 did eliminate noise quite well, while leaving even the faintest stars intact, unlike with the deep-sky image below, which is odd. However, it added some dark halos to bright stars from over-sharpening. And, as with the nightscape example, PureRAW’s output DNG was darker than the raw that went in. I don’t want noise reduction programs altering the basic appearance of an image, even if that can be corrected later in the workflow. 
  • Noise XTerminator performed superbly, as expected – after all, this is the subject matter it is trained to work on. It smoothed out random noise better than any of the other programs, while leaving even the faintest stars untouched, in fact sharpening them slightly. Details in the little galaxy were also unharmed. 

Conclusion: The clear winner was NoiseXTerminator. 

Topaz DeNoise was a respectable second place, performing better than it had done on such images in earlier versions. Even so, it did alter the appearance of faint stars which might not be desirable. 

ON1 NoNoise 2023 also performed quite well, with its softening of brighter stars yet sharpening of fainter ones perhaps acceptable, even desirable for an effect. 


TELESCOPIC DEEP-SKY TEST

I shot this image of the NGC 7822 complex of nebulosity with a SharpStar 61mm refractor, using the red-sensitive 30-megapixel Canon Ra and with a narrowband filter to isolate the red and green light of the nebulas. 

Again, the test image is a single raw image developed only to re-balance the color and boost the contrast. No dark frames were applied, so the 8-minute exposure at ISO 3200 taken on a warm night shows thermal noise as single “hot pixel” white specks. 

The test results on a sample deep-sky close-up.
  • Adobe Camera Raw did a good job smoothing the worst of the noise, suppressing the hot pixels but only by virtue of it softening all of the image slightly at the pixel level. However, it leaves most stars intact. 
  • ON1 NoNoise 2023 also did a good job smoothing noise while also seeming to boost contrast and structure slightly. But as in the wide-field image, it did smooth out star images a little, though somewhat photogenically, while still emphasizing the faintest stars. This was with no sharpening applied and Luminosity at 60, down from the default 100 NoNoise applies without fail. One wonders if it really is analyzing images to produce optimum settings. With no Tack Sharp sharpening applied, the results on this image with NoNoise 2023 looked identical to NoNoise 2022. 
  • Topaz DeNoise AI did another good job smoothing noise, while leaving most stars unaffected. However, the faintest stars and hot pixels were sharpened to be more visible tiny specks, perhaps too much, even with Sharpening at its lowest level of 1 in Standard mode. Low Light and Severe modes produced worse results, with lots of mottling and unevenness in the background. Unlike NoNoise, at least its Auto settings do vary from image to image, giving you some assurance it really is responding to the image content. 
  • Topaz Photo AI again produced unusable results. Its Normal modes produced lots of mottled texture and haloed stars. Its Strong mode shown here did smooth noise better, but still left lots of uneven artifacts, like DeNoise AI did in its early days. It certainly seems like Photo AI is using old hand-me-down code from DeNoise AI.
  • Noiseless AI in Luminar Neo did smooth noise but unevenly, leaving lots of textured patches. Stars had grainy halos and the program increased contrast and saturation, adjustments usually best left for specific adjustment layers dedicated to the task. 
  • DxO PureRAW2 did smooth noise very well, including wiping out the faintest specks from hot pixels, but it also wiped out the faintest stars, I think unacceptably and more than other programs like DeNoise AI. For this image it did leave basic brightness alone, likely because it could not apply lens corrections to an image taken with unknown optics. However, it added an odd pixel-level mosaic-like effect on the sky background, again unacceptable.
  • Noise XTerminator did a great job smoothing random noise without affecting any stars or the nebulosity. The Detail level of 20 I used actually emphasized the faintest stars, but also the hot pixel specks. NoiseXTerminator can’t be counted on to eliminate thermal noise; that demands the application of dark frames and/or using dithering routines to shift each sub-frame image by a few pixels when autoguiding the telescope mount. Even so, Noise XTerminator is so good users might not need to take and stack as many images. 

Conclusion: Again, the winner was NoiseXTerminator. 

Deep-sky photographers have praised “NoiseX” for its effectiveness, either when applied early on in a PixInsight workflow or, as I do in Photoshop, as a smart filter to the base stacked image underlying other adjustment layers.

Topaz DeNoise is also a good choice as it can work well on many other types of images. But again, play with its various models and settings. Pixel peep!

ON1 NoNoise 2023 did put in a respectable performance here, and it will no doubt improve – it had been out less than a month when I ran these tests. 

Based on its odd behavior and results in all three test images I would not recommend DxO’s PureRAW2. Yes, it reduces noise quite well, but it can alter tone and color in the process, and add strange pixel-level mosaic artifacts.  


COMPARING DxO and TOPAZ OPTIONS 

DxO and Topaz DeNoise AI offer the most choices of AI models and strength of noise reduction. Here I compare:

  • Topaz DeNoise AI on the nightscape image using three of its models: Standard (which I used in the comparisons above), plus Low Light and Severe. These show how the other models didn’t do as good a job.
  • The set below also compares DeNoise AI to Topaz’s other program, Photo AI, to show how poor a job it is doing in its early form. Its Strong mode does smooth noise but over-sharpens and leaves edge artifacts. Yes, Photo AI is one-click easy to use, but produces bad results – at least on astrophotos. 
Comparing DeNoise’s and Photo AI’s different model settings.

As of this writing DxO’s PureRAW2 offers the Prime and newer DeepPrime AI models – I used DeepPrime for my tests. 

However, DxO’s more expensive and complete image processing program, PhotoLab 6, also offers the even newer DeepPrimeXD model, which promises to preserve or recover even more “Xtra Detail” over the DeepPrime model. As of this writing, the XD mode is not offered in PureRAW2. Perhaps that will wait for PureRAW3, no doubt a paid upgrade. 

Comparing DxO’s various Prime model settings. DeepPrimeXD is only in PhotoLab 6.
  • The set above compares the three noise reduction models of DxO’s PhotoLab 6. DeepPrime does do a better job than Prime. DeepPrimeXD does indeed sharpen detail more, but in this example it is too sharp, showing artifacts, especially in the sky where it is adding structures and textures that are not real. 
  • However, when used from within PhotoLab 6, the DeepPrime noise reduction becomes more usable. PhotoLab is then being used to perform all the raw image processing, so PureRAW’s alteration of color and tone is not a concern. Conversely, it can also output raw DNGs with only noise reduction and lens corrections applied, essentially performing the same tasks as PureRAW. If you have PhotoLab, you don’t need PureRAW.

COMPARING AI TO OLDER NON-AI PROGRAMS

The new generation of AI-based programs have garnered all the attention, leaving older stalwart noise reduction programs looking a little forlorn and forgotten. 

Here I compare Camera Raw and two of the best of the AI programs, Topaz DeNoise AI and NoiseXTerminator, with two of the most respected of the “old-school” non-AI programs: 

Nik Dfine2’s control interface.
  • Dfine2, included with the Nik Collection of plug-ins sold by DxO (shown above), and
  • Reduce Noise v9 sold by Neat Image (shown below). 
Neat Image’s Reduce Noise control interface – the simple panel.

I tested both by using them in their automatic modes, where they analyze a section or sections of the image and adjust the noise reduction accordingly, but then apply that setting uniformly across the entire image. However, both allow manual adjustments, with Neat Image’s Reduce Noise offering a bewildering array of technical adjustments. 

How do these older programs stack up to the new AI generation? Here are comparisons using the same three test images. 

Comparing results with Neat Image and Nik Dfine2 on the nightscape test image.

In the nightscape image, Nik Dfine2 and Neat Image’s Reduce Noise did well, producing uniform noise reduction with no patchiness. But the results weren’t significantly better than with Adobe Camera Raw’s built-in routine. Like ACR, both non-AI programs did smooth detail in the ground, compared to DeNoise AI which sharpened the mountain details. 

Comparing results with Neat Image and Nik Dfine2 on the wide-field test image.

In the tracked wide-field image, the differences were harder to distinguish. None performed up to the standard of Noise XTerminator, with both Nik Dfine2 and Neat Image softening stars a little compared to DeNoise AI. 

Comparing results with Neat Image and Nik Dfine2 on the deep-sky test image.

In the telescopic deep-sky image, all programs did well, though none matched NoiseXTerminator. None eliminated the hot pixels. But Nik Dfine2 and Neat Image did leave wanted details alone, and did not alter or eliminate desired content. However, they also did not eliminate noise as well as did Topaz DeNoise AI or NoiseXTerminator. 

The AI technology does work! 


YOUR RESULTS MAY VARY

I should add that the nature of AI means that the results will certainly vary from image to image. 

In addition, with many of these programs offering multiple models and settings for strength and sharpening, results even from the same program can be quite different. In this testing I used either the program’s auto defaults or backed off those defaults where I thought the effect was too strong and detrimental to the image.

Software is also a constantly moving target. Updates will alter how these programs perform, we hope for the better. For example, two days after I published this test, ON1 updated NoNoise AI to v17.0.2 with minor fixes and improvements.

And do remember I’m testing on astrophotos, and pixel peeping to the extreme. Rave reviews claiming how well even the poor performers here work on “normal” images might well be valid. 

This is all by way of saying, your mileage may vary!

So don’t take my word for it. Most programs (Luminar Neo is an exception) are available as free trial copies to test out on your astro-images and in your preferred workflow. Test for yourself. But do pixel peep. That’s where you’ll see the flaws. 


WHAT ABOUT ADOBE?

In the race for AI supremacy, one wonders where Adobe is in the field. 

In the last couple of years Adobe has introduced several amazing and powerful “Neural Filters” into Photoshop, which work wonders with one click. And Lightroom and Camera Raw have received powerful AI-based selection and masking tools far ahead of most of the competition, with only Luminar Neo and ON1 Photo RAW coming close with similar auto-select capabilities. 

Neural network Noise Reduction is coming to Photoshop. One day!

But AI Noise Reduction? You think it would be a high priority.

A neural filter for Noise Reduction is on Adobe’s Wait List for development, so perhaps we will see something in the next few months from Adobe to compete with the AI offerings of Topaz, ON1 and Luminar/Skylum.  

Until then we have lots of choices for third party programs that all improve with every update. I hope this review has helped you make a choice. 

— Alan, November 15, 2022 / AmazingSky.com  

Testing ON1 Photo RAW for Astrophotography


ON1 Testing Title

Can the new version of ON1 Photo RAW match Photoshop for astrophotography? 

The short TL;DR answer: No.

But … as always, it depends. So do read on.


Released in mid-November 2018, the latest version of ON1 Photo RAW greatly improves a non-destructive workflow. Combining Browsing, Cataloging, Raw Developing, with newly improved Layers capabilities, ON1 is out to compete with Adobe’s Creative Cloud photo suite – Lightroom, Camera Raw, Bridge, and Photoshop – for those looking for a non-subscription alternative.

Many reviewers love the new ON1 – for “normal” photography.

But can it replace Adobe for night sky photos? I put ON1 Photo RAW 2019 through its paces for the demanding tasks of processing nightscapes, time-lapses, and deep-sky astrophotos.


The Conclusions

In my eBook “How to Photograph and Process Nightscapes and Time-Lapses” (linked to at right) I present dozens of processing tutorials, including several on how to use ON1 Photo RAW, but the 2018 edition. I was critical of many aspects of the old version, primarily of its destructive workflow when going from its Develop and Effects modules to the limited Layers module of the 2018 edition.

I’m glad to see many of the shortfalls have been addressed, with the 2019 edition offering a much better workflow allowing layering of raw images while maintaining access to all the original raw settings and adjustments. You no longer have to flatten and commit to image settings to layer them for composites. When working with Layers you are no longer locked out of key functions such as cropping.

I won’t detail all the changes to ON1 2019 but they are significant and welcome.

The question I had was: Are they enough for high-quality astrophotos in a non-destructive workflow, Adobe Photoshop’s forté.

While ON1 Photo RAW 2019 is much better, I concluded it still isn’t a full replacement of Adobe’s Creative Cloud suite, as least not for astrophotography.

NOTE: All images can be downloaded as high-res versions for closer inspection. 


ON1 2019 is Better, But for Astrophotography …

  1. Functions in Layers are still limited. For example, there is no stacking and averaging for noise smoothing. Affinity Photo has those.
  2. Filters, though abundant for artistic special effect “looks,” are limited in basic but essential functions. There is no Median filter, for one.
  3. Despite a proliferation of contrast controls, for deep-sky images (nebulas and galaxies) I was still not able to achieve the quality of images I’ve been used to with Photoshop.
  4. The lack of support for third-party plug-ins means ON1 cannot work with essential time-lapse programs such as Timelapse Workflow or LRTimelapse.

ON1 Final Composite
A finished nightscape composite, with stacked exposures for the ground and stacked and tracked exposures for the sky, layered and blended in ON1.


Recommendations

Nightscapes: ON1 Photo RAW 2019 works acceptably well for nightscape still images:

  1. Its improved layering and excellent masking functions are great for blending separate ground and sky images, or for applying masked adjustments to selected areas.

Time-Lapses: ON1 works is just adequate for basic time-lapse processing:

  1. Yes, you can develop one image and apply its settings to hundreds of images in a set, then export them for assembly into a movie. But there is no way to vary those settings over time, as you can by mating Lightroom to LRTimelapse.
  2. As with the 2018 edition, you still cannot copy and paste masked local adjustments from image to image, limiting their use.
  3. Exporting those images is slow.

Deep-Sky: ON1 is not a program I can recommend for deep-sky image processing:

  1. Stars inevitably end up with unsightly sharpening haloes.
  2. De-Bayering artifacts add blocky textures to the sky background.
  3. And all the contrast controls still don’t provide the “snap” and quality I’m used to with Photoshop when working with low-contrast subjects.

Library / Browse Functions

ON1 Browse Module
ON1 cannot catalog or display movie files or Photoshop’s PSB files (but then again with PSBs neither can Lightroom!).

ON1 is sold first and foremost as a replacement for Adobe Lightroom, and to that extent it can work well. Unlike Lightroom, ON1 allows browsing and working on images without having to import them formally into a catalog.

However, you can create a catalog if you wish, one that can be viewed even if the original images are not “on-line.” The mystery seems to be where ON1 puts its catalog file on your hard drive. I was not able to find it, to manually back it up. Other programs, such as Lightroom and Capture One, locate their catalogs out in the open in the Pictures folder.

For those really wanting a divorce from Adobe, ON1 now offers an intelligent AI-based function for importing Lightroom catalogs and transferring all your Lightroom settings you’ve applied to raw files to ON1’s equivalent controls.

However, while ON1 can read Photoshop PSD files, it will flatten them, so you would lose access to all the original image layers.

ON1’s Browse module is good, with many of the same functions as Lightroom, such as “smart collections.” Affinity Photo – perhaps ON1’s closest competitor as a Photoshop replacement – still lacks anything like it.

But I found ON1’s Browse module buggy, often taking a long while to allow access into a folder, presumably while it is rendering image previews.

There are no plug-ins or extensions for exporting directly to or synching to social media and photo sharing sites.


Nightscape Processing – Developing Raw Images

ON1 Before and After Processing
On the left, a raw image as it came out of the camera. On the right, after developing (with Develop and Effects module settings applied) in ON1.

For this test I used the same nightscape image I threw at Adobe competitors a year ago, in a test of a dozen or more raw developers. It is a 2-minute tracked exposure with a Sigma 20mm Art lens at f/2 and Nikon D750 at ISO 1600.

ON1 did a fairly good job. Some of its special effect filters, such a Dynamic Contrast, Glow, and Sunshine, can help bring out the Milky Way, though do add an artistic “look” to an image which you might or might not like.

Below, I compare Adobe Camera Raw (ACR) to ON1. It was tough to get ON1’s image looking the same as ACR’s result, but then again, perhaps that’s not the point. Does it just look good? Yes, it does.

ON1 & ACR Raw Image Comparison
On the left, a single raw image developed with Adobe Camera Raw. On the right, the same image with ON1 and its basic Develop and more advanced Effects settings.

Compared to Adobe Camera Raw, which has a good array of basic settings, ON1 has most of those and more, in the form of many special Effects, with many combined as one-click Presets, as shown below.

ON1 Presets
ON1 offers a huge array of Presets that apply combinations of its filters with one click from the Browse module.

A few presets and individual filters – the aforementioned Dynamic Contrast and Glow – are valuable. However, most of ON1’s filters and presets will not be useful for astrophotography, unless you are after highly artistic and unnatural effects.

Noise Reduction and Lens Correction

ON1 Noise Reduction
On the left, an image in ON1 without any Noise Reduction. On the right, with noise reduction and sharpening (under Details) applied with the settings shown.

Critical to all astrophotography is excellent noise reduction. ON1 does a fine job here, with good smoothing of noise without harming details.

Lens Correction works OK. It detected the 20mm Sigma art lens and automatically applied distortion correction, but not any vignetting (light “fall-off”) correction, perhaps the most important correction in nightscape work. You have to dial this in manually by eye, a major deficiency.

By comparison, ACR applies both distortion and vignetting correction automatically. It also includes settings for many manual lenses that you can select and apply in a click. For example, ACR (and Lightroom) includes settings for popular Rokinon and Venus Optics manual lenses; ON1 does not.

Hot Pixel Removal

Hot Pixel Removal Comparison
On the left, ACR with noise reduction applied (it offers no user-selectable Hot Pixel Removal tool). In the middle, ON1 with Remove Hot Pixels turned on; on the right, with it turned off – showing more hot pixels than ACR does.

I shot the example image on a warm summer night and without using in-camera Long Exposure Noise Reduction (to keep the gap between exposures short when shooting sets of tracked and untracked exposures for later compositing).

However, the penalty for not using LENR to expedite the image taking is a ground filled with hot pixels. While Adobe Camera Raw does have some level of hot pixel removal working “under the hood,” many specks remained.

ON1 showed more hot pixels, until you clicked Remove Hot Pixels, found under Details. As shown at centre above, it did a decent job getting rid of the worst offenders.

But as I’ll show later, the penalty is that stars now look distorted and sometimes double, or you get the outright removal of stars. ON1 doesn’t do a good job distinguishing between true sharp-edged hot pixels and the softer images of stars. Indeed, it tends to over sharpen stars.

A competitor, Capture One 11, does a better job, with an adjustable Single Pixel removal slider, so you can at least select the level of star loss you are willing to tolerate to get rid of hot pixels.

Star Image Quality

ON1 & ACR Star Image Comparison
On the left, a 700% blow-up of the stars in Adobe Camera Raw. On the right, the same image processed in ON1 and exported out as a PSD.

Yes, we are pixel peeping here, but that’s what we do in astrophotography. A lot!

Stars in ON1 don’t look as good as in Camera Raw. Inevitably, as you add contrast enhancements, stars in ON1 start to exhibit dark and unsightly “sharpening haloes” not present in ACR, despite me applying similar levels of sharpening and contrast boosts to each version of the image.

Camera Raw has been accused of producing images that are not as sharp as with other programs such as Capture One and ON1.

There’s a reason. Other programs over-sharpen, and it shows here.

We can get away with it here in wide-field images, but not later with deep-sky close-ups. I don’t like it. And it is unavoidable. The haloes are there, albeit at a low level, even with no sharpening or contrast enhancements applied, and no matter what image profile is selected (I used ON1 Standard throughout).

De-Bayering Artifacts

ON1-Debayer
ON1, with contrast boosts applied but with no sharpening or noise reduction, shows star haloes, while the sky shows a blocky pattern at the pixel level in high ISO shots.

ACR-Debayer
Adobe Camera Raw, with similar settings but also no sharpening or noise reduction, shows a smooth and uniform sky background.

You might have to download and closely inspect these images to see the effect, but ON1’s de-Bayering routine exhibits a cross-hatched blocky pattern at the pixel-peeping level. ACR does not.

I see this same effect with some other raw developers. For example, the free Raw Therapee shows it with many of its choices for de-Bayering algorithms, but not all. Of the more than a dozen raw developers I tested a year ago, ACR and DxO PhotoLab had (and still have) the most artifact-free de-Bayering and smoothest noise reduction

Again, we can get away with some pixel-level artifacts here, but not later, in deep-sky processing.


Nightscape Processing — Layering and Compositing

ON1 Perfect Brush
ON1’s adjustable “Perfect Brush” option for precise masking around edges and objects isn’t quite as effective as Photoshop’s Quick Selection Tool.

Compositing

The 2018 version of ON1 forced you to destructively flatten images when bringing them into the Layers module.

The 2019 version of ON1 improves that. It is now possible to composite several raw files into one image and still retain all the original Develop and Effects settings for non-destructive work.

You can then use a range of masking tools to mask in or out the sky.

For the example above, I have stacked tracked and untracked exposures, and am starting to mask out the trailed stars from the untracked exposure layer.

To do this with Adobe, you would have to open the developed raw files in Photoshop (ideally using “smart objects” to retain the link back to the raw files). But with ON1 we stay within the same program, to retain access to non-destructive settings. Very nice!

To add masks, ON1 2019 does not have the equivalent of Photoshop’s excellent Quick Selection Tool for selecting the sky or ground. It does have a “Perfect Brush” option which uses the tonal value of the pixels below it, rather than detecting edges, to avoid “painting over the lines.”

While the Perfect Brush does a decent job, it still requires a lot of hand painting to create an accurate mask without holes and defects. There is no non-destructive “Select and Mask” refinement option as in Photoshop.

Yes, ON1’s Refine Brush and Chisel Mask tools can help clean up a mask edge but are destructive to the mask. That’s not acceptable to my non-destructive mindset!

Local Adjustments 

ON1 Masking Adjustments
Local Adjustments can be painted in or out with classic and easy-to-adjust and view masks and layers, rather than adjustment pins used by many raw developers such as ACR.

The masking tools are also applicable to adding “Local Adjustments” to any image layer, to brighten or darken regions of an image for example.

These work well and I find them more intuitive than the “pins” ACR uses on raw files, or DxO PhotoLab’s quirky “U-Point” interface.

ON1’s Local Adjustments work more like Photoshop’s Adjustment Layers and are similarly non-destructive. Excellent.

Luminosity Masks

ON1 Luminosity Masking
ON1 has one-click Luminosity masking, an excellent feature.

A very powerful feature of ON1 is its built-in Luminosity masking.

Yes, Camera Raw now has Range Masks, and Photoshop can be used to create luminosity masks, but making Photoshop’s luminosity masks easily adjustable requires purchasing third-party extension panels.

ON1 can create an adjustable and non-destructive luminosity mask on any image or adjustment layer with a click.

While such masks, based on the brightness of areas, aren’t so useful for low-contrast images like the Milky Way scene above, they can be very powerful for merging high-contrast images (though ON1 also has an HDR function not tested here).

Glow Effect
ON1’s handy Orton-style Glow effect, here with a Luminosity mask applied. The mask can be adjusted with the Levels and Window sliders, and applied to a range of colors as well.

ON1 has the advantage here. Its Luminosity masks are a great feature for compositing exposures or for working on regions of bright and dark in an image.

Final Composite

ON1 Final Composite
A finished nightscape composite, with stacked exposures for the ground and stacked and tracked exposures for the sky, layered and blended in ON1.

Here again is the final result, above.

It is not just one image each for the sky and ground, but is instead a stack of four images for each half of the composite, to smooth noise. This form of stacking is somewhat unique to astrophotography, and is commonly used to reduce noise in nightscapes and in deep-sky images, as shown later.

Stacking

ON1-Layer Opacities
This shows an intermediate step in creating the final composite shown above: Four sky layers are stacked, with opacities as shown, which has the effect of smoothing noise. But to continue working on the image requires making a single “New Stamped Layer” out of the group of four – in this case, the sky layers. The same can be done for the four ground layers.

Here I show how you have to stack images in ON1.

Unlike Photoshop and Affinity Photo, ON1 does not have the ability to merge images automatically into a stack and apply a mathematical averaging to the stack, usually a Mean or Median stack mode. The averaging of the image content is what reduces the random noise.

Instead, with ON1 you have perform an “old school” method of average stacking – by changing the opacity of the layers, so that Layer 2 = 50%, Layer 3 = 33%, Layer 4 = 25%, and so on. The result is identical to performing a Mean stack mode in Photoshop or Affinity.

Fine, except there is no way to perform a Median stack, which can be helpful for eliminating odd elements present in only one frame, perhaps an aircraft trail.

Copy and Paste Settings

ON1 Pasting Settings
ON1 allows easy copying and pasting of settings from one raw image to others, with the annoying exception of Local Adjustments and their masks.

Before we even get to the stacking stage, we have to develop and process all the images in a set. Unlike Lightroom or Camera Raw, ON1 can’t develop and synchronize settings to a set of images at once. You can work on only one image at a time.

So, you work on one image (one of the sky images here), then Copy and Paste its settings to the other images in the set. I show the Paste dialog box here.

This works OK, though I did find some bugs – the masks for some global Effects layers did not copy properly; they copied inverted, as black instead of white masks.

However, Luminosity masks did copy from image to image, which is surprising considering the next point.

The greater limitation is that no Local Adjustments (ones with masks to paint in a correction to a selected area) copy from one image to another … except ones with gradient masks. Why the restriction?

So as wonderful as ON1’s masking tools might be, they aren’t of any use if you want to copy their masked adjustments across several images, or, as shown next, to a large time-lapse set.

While Camera Raw’s and Lightroom’s Local Adjustment pins are more awkward to work with, they do copy across as many images as you like.


Time-Lapse Processing

ON1 Copy & Paste
ON1 does allow developing one image in a set, then copying and pasting its settings to perhaps hundreds of other images in a time-lapse set.

A few Adobe competitors, such as Affinity Photo (as of this writing) simply can’t do this.

By comparison, with the exception of Local Adjustments, ON1 does have good functions for Copying and Pasting Settings. These are essential for processing a set of hundreds of time-lapse frames.

ON1 Export
This is ON1’s Export dialog box, set up here to export the developed raw files into another “intermediate” set of 4K-sized JPGs for movie assembly.

Once all the images are processed – whether it be with ON1 or any other program – the frames have to exported out to an intermediate set of JPGs for assembly into a movie by third-party software. ON1 itself can’t assemble movies, but then again neither can Lightroom (as least not very well), though Photoshop can, through its video editing functions.

For my test set of 220 frames, each with several masked Effects layers, ON1 took 2 hours and 40 minutes to perform the export to 4K JPGs. Photoshop, through its Image Processor utility, took 1 hour and 30 minutes to export the same set, developed similarly and with several local adjustment pins.

ON1 did the job but was slow.

A greater limitation is that, unlike Lightroom, ON1 does not accept any third party plug-ins (it serves as a plug-in for other programs). That means ON1 is not compatible with what I feel are essential programs for advanced time-lapse processing: either Timelapse Workflow (from https://www.timelapseworkflow.com) or the industry-standard LRTimelapse (from https://lrtimelapse.com).

Both programs work with Lightroom to perform incremental adjustments to settings over a set of images, based on the settings of several keyframes.

Lacking the ability to work with these programs means ON1 is not a program for serious and professional time-lapse processing.


Deep-Sky Processing

ON1-Tracked Milky Way
A tracked 2-minute exposure of the Cygnus Milky Way, with a Sony a7III camera at ISO 800 and Venus Optics Laowa 15mm lens at f/2, developed in ON1.

ACR-Tracked Milky Way
The same Milky Way image developed in Adobe Camera Raw. It looks better!

Wide-Angle Milky Way

Now we come to the most demanding task: processing long exposures of the deep-sky, such as wide-angle Milky Way shots and close-ups of nebulas and galaxies taken through telescopes. All require applying generous levels of contrast enhancement.

As the above example shows, try as I might, I could not get my test image of the Milky Way to look as good with ON1 as it did with Adobe Camera Raw. Despite the many ways to increase contrast in ON1 (Contrast, Midtones, Curves, Structure, Haze, Dynamic Contrast and more!), the result still looked flat and with more prominent sky gradients than with ACR.

And remember, with ACR that’s just the start of a processing workflow. You can then take the developed raw file into Photoshop for even more precise work.

With ON1, its effects and filters all you have to work with. Yes, that simplifies the workflow, but its choices are more limited than with Photoshop, despite ON1’s huge number of Presets.

Deep-Sky Close-Ups

ON1 Processed M31
The Andromeda Galaxy, in a stack of six tracked and auto-guided 8-minute exposures with a stock Canon 6D MkII through an 80mm f/6 refractor.

Photoshop Processed M31
The same set of six exposures, stacked and processed with ACR and Photoshop, with multiple masked adjustment layers as at right. The result looks better.

Similarly, taking a popular deep-sky subject, the Andromeda Galaxy, aka M31, and processing the same original images with ON1 and ACR/Photoshop resulted in what I think is a better-looking result with Photoshop.

Of course, it’s possible to change the look of such highly processed images with the application of various Curves and masked adjustment layers. And I’m more expert with Photoshop than with ON1.

But … as with the Cygnus Milky Way image, I just couldn’t get Andromeda looking as good in ON1. It always looked a little flat.

Dynamic Contrast did help snap up the galaxy’s dark lanes, but at the cost of “crunchy” stars, as I show next. A luminosity “star mask” might help protect the stars, but I think the background sky will inevitably suffer from the de-Bayering artifacts.

Star and Background Sky Image Quality

ON1 Processed M31-Close-Up
A 400% close-up of the final Andromeda Galaxy image. It shows haloed stars and a textured and noisy sky background.

Photoshop Processed M31-Close-Up
The same area blown up 400% of the Photoshop version of the Andromeda Galaxy image. Stars and sky look smoother and more natural.

As I showed with the nightscape image, stars in ON1 end up looking too “crunchy,” with dark halos from over sharpening, and also with the blocky de-Bayering artifacts now showing up in the sky.

I feel it is not possible to avoid dark star haloes, as any application of contrast enhancements, so essential for these types of objects, brings them out, even if you back off sharpening at the raw development stage, or apply star masks.

ON1 Processed M31-With & Without
On the left, the image before any processing applied; on the right, after the level of processing needed for such deep-sky images. What starts out looking OK, turns messy.

ON1 is applying too much sharpening “under the hood.” That might “wow” casual daytime photographers into thinking ON1 is making their photos look better, but it is detrimental to deep-sky images. Star haloes are a sign of poor processing.

Noise and Hot Pixels

ON1 With & Without NR and Hot Pixels
With and without noise reduction and hot pixel removal shows stars becoming lost and misshapen with the Remove Hot Pixel option.

ON1’s noise reduction is quite good, and by itself does little harm to image details.

But turn on the Remove Hot Pixel button and stars start to be eaten. Faint stars fade out and brighter stars get distorted into double shapes or have holes in them.

Hot pixel removal is a nice option to have, but for these types of images it does too much harm to be useful. Use LENR or take dark frames, best practices in any case.

Image Alignment and Registration

ON1 Auto-Alignment
The six Andromeda images stacked then “Auto-Aligned” in ON1, with just the top (first) and bottom (last) images turned on here. with the top image switched to Difference blend mode to show any mis-alignment.

Photoshop Auto-Alignment
The same set stacked and “Auto-Aligned” in Photoshop, with the same first and last images turned on and blended with Difference. PS’s alignment is much better, indicated by the image “blacking out” as the two registered frames cancel out.

Before any processing of deep-sky images is possible, it is first necessary to stack and align them, to make up for slight shifts from image to image, usually due to the mount not being perfectly polar aligned. Such shifts can be both translational (left-right, up-down) and rotational (turning about the guide star).

New to ON1 2019 is an Auto-Align Layers function. It worked OK but not nearly as well as Photoshop’s routine. In my test images of M31, ON1 didn’t perform enough rotation.

Once stacked and aligned, and as I showed above, you then have to manually change the opacities of each layer to blend them for noise smoothing.

By comparison, Photoshop has a wonderful Statistics script (under File>Scripts) that will automatically stack, align, then mean or median average the images, and turn the result into a non-destructive smart object, all in one fell swoop. I use it all the time for deep-sky images. There’s no need for separate programs such as Deep-Sky Stacker.

In ON1, however, all that has to be done manually, step-by-step. ON1 does do the job, just not as well.


Wrap-Up

M31 from ON1
The final M31, Andromeda Galaxy image processed with ON1.

ON1 Photo RAW 2019 is a major improvement, primarily in providing a more seamless and less destructive workflow.

Think of it as Lightroom with Layers! 

But it isn’t Photoshop.

Dynamic Contrast
ON1’s useful Dynamic Contrast filter. A little goes a long way.

True to ON1’s heritage as a special effect plug-in, it has some fine Effect filters, such as Dynamic Contrast above, ones I sometimes use from within Photoshop as plug-in smart filters.

Under Sharpen, ON1 does offer a High Pass option, a popular method for sharpening deep-sky objects.

Missing Filters and Adjustments

But for astrophoto use, ON1 is missing a lot of basic but essential filters for pixel-level touch-ups. Here’s a short list:

• Missing are Median, Dust & Scratches, Radial Blur, Shake Reduction, and Smart Sharpen, just to mention a handful of filters I find useful for astrophotography, among the dozens of others Photoshop has, but ON1 does not. But then again, neither does Lightroom, another example of how ON1 is more light Lightroom with layers and not Photoshop.

ON1 Color Adjustment
ON1’s selective Color Adjustment. OK, but where’s the Black and Neutrals?

• While ON1 has many basic adjustments for color and contrast, its version of Photoshop’s Selective Color lacks Neutral or Black sliders, great for making fine changes to color balance in astrophotos.

• While there is a Curves panel, it has no equivalent to Photoshop’s “Targeted Adjustment Tool” for clicking on a region of an image to automatically add an inflection point at the right spot on the curve. This is immensely useful for deep-sky images.

• Also lacking is a basic Levels adjustment. I can live without it, but most astrophotographers would find this a deal-breaker.

• On the other hand, hard-core deep-sky photographers who do most of their processing in specialized programs such as PixInsight, using Photoshop or Lightroom only to perform final touch-ups, might find ON1 perfectly fine. Try it!

Saving and Exporting

ON1 saves its layered images as proprietary .onphoto files and does so automatically. There is no Save command, only a final Export command. As such it is possible to make changes you then decide you don’t like … but too late! The image has already been saved, writing over your earlier good version. Nor can you Save As … a file name of your choice. Annoying!

Opening a layered .onphoto file (even with ON1 itself already open) can take a minute or more for it to render and become editable.

Once you are happy with an image, you can Export the final .onphoto version as a layered .PSD file but the masks ON1 exports to the Photoshop layers may not match the ones you had back in ON1 for opacity. So the exported .PSD file doesn’t look like what you were working on. That’s a bug.

Only exporting a flattened TIFF file gets you a result that matches your ON1 file, but it is now flattened.

Bugs and Cost

I encountered a number of other bugs, ones bad enough to lock up ON1 now and then. I’ve even seen ON1’s own gurus encounter bugs with masking during their live tutorials. These will no doubt get fixed in 2019.x upgrades over the next few months.

But by late 2019 we will no doubt be offered ON1 Photo RAW 2020 for another $80 upgrade fee, over the original $100 to $120 purchase price. True, there’s no subscription, but ON1 still costs a modest annual fee, presuming you want the latest features.

Now, I have absolutely no problem with that, and ON1 2019 is a significant improvement.

However, I found that for astrophotography it still isn’t there yet as a complete replacement for Adobe.

But don’t take my word for it. Download the trial copy and test it for yourself.

— Alan, November 22, 2018 / © 2018 Alan Dyer/AmazingSky.com 

 

%d bloggers like this: