Testing the Canon 6D Mark II for Deep-Sky

6D MkII on Cygnus

Following up on my earlier tests, I compare the new Canon 6D MkII camera to earlier Canon full-frame models in long, tracked exposures of the Milky Way.

A month ago I published tests of the new Canon 6D MkII camera for nightscape images, ones taken using a fixed tripod in which exposures usually have to be limited to no longer than 30 to 60 seconds, to prevent star trailing.

Despite these short exposures, we still like to extract details from the dark shadows of the scene, making nightscape images a severe test of any camera.

I refer you to my August 9, 2017 blog Testing the Canon 6D MkII for Nightscapes for the results. The 6D MkII did not fare well.

Here I test the 6D MkII for what, in many respects, is a less demanding task: shooting long exposures of deep-sky objects, the Milky Way in Cygnus in this case.

Why is this an easier task? The camera is now on a tracking mount (I used the new Sky-Watcher Star Adventurer Mini) which is polar aligned to follow the rotation of the sky. As such, exposures can now be many minutes long if needed. We can give the camera sensor as much signal as the darkness of the night sky allows. More signal equals less noise in the final images.

In addition, there are no contrasty, dark shadows where noise lurks. Indeed, the subjects of deep-sky images are often so low in contrast, as here, they require aggressive contrast boosting later in processing to make a dramatic image.

While that post-processing can bring out artifacts and camera flaws, as a rule I never see the great increase in noise, banding, and magenta casts I sometimes encounter when processing short-exposure nightscape scenes.

6D MkII at Four ISOs
The Canon 6D MkII at four typical ISO speeds in tracked exposures.

6D at Four ISOs
The original Canon 6D at four typical ISO speeds in tracked exposures.

5D MkII at Four ISOs
A Canon 5D MkII that has been filter-modified at four typical ISO speeds in tracked exposures.
For this test, I shot the same region of sky with the same 35mm lens L-Series lens at f/2.2, using three cameras:

• Canon 6D MkII (2017)

• Canon 6D (2012)

• Canon 5D MkII (2008)

Note that the 5D MkII has been “filter-modified” to make its sensor more sensitive to the deep red wavelengths emitted by hydrogen gas, the main component of the nebulas along the Milky Way. You’ll see how it picks up the red North America Nebula much better than do the two off-the-shelf “stock” cameras. (Canon had their own factory-modified “a” models in years past: the 20Da and 60Da. Canon: How about a 6D MkIIa?)

I shot at four ISO speeds typical of deep-sky images: 800, 1600, 3200, and 6400.

Exposures were 4 minutes, 2 minutes, 1 minute, and 30 seconds, respectively, to produce equally exposed frames with a histogram shifted well to the right, as it should be for a good signal-to-noise ratio.

Noisy deep-sky images with DSLR cameras are usually the result of the photographer underexposing needlessly, often in the mistaken belief that doing so will reduce noise when, in fact, it does just the opposite.

The above set of three images compares each of the three cameras at those four ISO speeds. In all cases I have applied very little processing to the images: only a lens correction, some sharpening, a slight contrast and clarity increase, and a slight color correction to neutralize the background sky.

However, I did not apply any luminance noise reduction. So all the images are noisier than what they would be in a final processed image.

Even so, all look very good. And with similar performance.

All frames were shot with Long Exposure Noise Reduction (LENR) on, for an automatic dark frame subtraction by the camera. I saw no artifacts from applying LENR vs. shots taken without it.

The 6D and 6D MkII perhaps show a little less noise than the old 5D MkII, as they should being newer cameras.

The 6D MkII also shows a little less pixelation on small stars, as it should being a 26 megapixel camera vs. 20 to 21 megapixels for the older cameras. However, you have to examine the images at pixel-peeping levels to see these differences. Nevertheless, having higher resolution without the penalty of higher noise is very welcome.

3 Canons at ISO 1600
The three cameras compared at ISO 1600. Note the histogram and region of the frame we are examining up close.

3 Canons at ISO 3200
The three cameras compared at ISO 3200. Note the histogram and region of the frame we are examining up close.

3 Canons at ISO 6400
The three cameras compared at ISO 6400. Note the histogram and region of the frame we are examining up close.
Above, I show images from the three cameras side by side at ISOs 1600, 3200, and 6400. It is tough to tell the difference in noise levels, the key characteristic for this type of astrophotography.

The new 6D MkII shows very similar levels of noise to the 6D, perhaps improving upon the older cameras a tad.

Because images are well-exposed (note the histogram at right), the 6D MkII is showing none of the flaws of its lower dynamic range reported elsewhere.

That’s the key. The 6D MkII needs a well-exposed image. Given that, it performs very well.

3 Canons Stacked & Processed
The three cameras in stacked and processed final images.
This version shows the same images but now with stacked frames and with a typical level of processing to make a more attractive and richer final image. Again, all look good, but with the modified camera showing richer nebulosity, as they do in deep-sky images.

The lead image at the very top is a final full-frame image with the Canon 6D MkII.

As such, based on my initial testing, I can recommend the Canon 6D MkII (and plan to use it myself) for deep-sky photography.

Indeed, I’ll likely have the camera filter-modified to replace my vintage yet faithful 5D MkII for most of my deep-sky shooting. The 6D MkII’s tilting LCD screen alone (a neck, back, and knee saver when attached to a telescope!) makes it a welcome upgrade from the earlier cameras.

The only drawback to the 6D MkII for deep-sky work is its limited dark frame buffer. As noted in my earlier review, it can shoot only three Raw files in rapid succession with Long Exposure Noise Reduction turned on. The 5D MkII can shoot five; the 6D can shoot four. (A 6D MkIIa should have this buffer increased to at least 4, if not 8 images.)

I make use of this undocumented feature all the time to ensure cleaner images in long deep-sky exposures, as it produces and subtracts dark frames with far greater accuracy than any taken later and applied in post-processing.

I hope you’ve found this report of interest.

With the 6D MkII so new, and between smoky skies and the interference of the Moon, I’ve had only one night under dark skies to perform these tests. But the results are promising.

For more tips on deep-sky imaging and processing see my pages on my website:

Ten Tips for Deep-Sky Images

Ten Steps to Deep-Sky Processing

Thanks and clear skies!

— Alan, September 7, 2017 / © 2017 Alan Dyer / amazingsky.com


A Plethora of Perseids

A composite depicting the Perseid meteor shower on the night of Wednesday, August 12, 2015 as shot from southern Alberta, Canada.  The image takes in a wide swath of the north and eastern sky, including the radiant of the shower in Perseus at left of centre, near the Double Cluster visible as a clump of stars. All the Perseids can be traced back to this point. Also in the image: the summer Milky Way and, at left, a dim aurora in green and magenta that was barely visible to the eye but was picked up by the camera. The Andromeda Galaxy is at centre. The Pleiades is just on the horizon. Apart from some haze from forest fire smoke, it was a near perfect night: warm, dry, just a little wind to keep the bugs at bay, and no Moon. A perfect night for a meteor watch.  This is a layered stack of 35 images recording three dozen meteors (most Perseids but also a couple of sporadics not aimed back to the radiant in Perseus, such as the bright one at far left).  The 35 images were selected from 200 shot from 11 pm to 2:30 am that night, with most frames not picking up any meteors. This composite is from the 35 taken over the 3.5 hours that did record a meteor. Each exposure is 1 minute at f/2.8 with the 15mm full-frame fish-eye, on the Canon 5D MkII at ISO 3200 (a couple of the early shots in the sequence were at ISO 1600 for 2 minutes).  The camera was tracking the sky on the Sky-Watcher Star Adventurer tracker, so all images of the stars are aligned and registered out of the camera, with the meteors in their proper position relative to the stars and radiant. I masked out a couple of satellite and aircraft trails that were distracting, and took away from the point of illustrating the radiant of the meteor shower.  The horizon, however, is from one image, taken early in the sequence. Some of the blue in the sky comes from one of the early shots taken in deep twilight but that contained a nice meteor. And I liked the blue it added.  All stacking and processing with Adobe Ca

It was a good year for Perseid meteors, as they shot across the sky in abundance on dark-of-the-Moon nights.

Last week, August 11 and 12 proved to be superb for weather in southern Alberta, with clear skies and warm temperatures perfect for a night of watching and shooting meteors.

On both nights I had identical camera rigs running, all from my rural backyard. These images are from the peak night, Wednesday, August 12.

The main image at top is with a 15mm ultra wide lens, on a camera that was tracking the sky as it turned. Like many meteor photos these days it is a layered stack of many images, in this case 35, to put as many meteors as possible onto one frame.

While the result does illustrate the effect of meteors streaking away from the radiant point, here in Perseus, it does lend a false impression of what the shower was like. It took me 3.5 hours of shooting to capture all of those meteors.

Note the aurora as well.

The Perseid meteor shower on peak night of Wednesday, August 12, 2015, showing meteors radiating from the “radiant point” in northern Perseus, then rising in the northeast sky. One bright sporadic, non-Perseid meteor is at left, and a small sporadic is near the horizon at right. The meteor at far left, top, may be a satellite streak.  The Andromeda Galaxy is at upper right. A dim aurora is at left in the northeast. The setting is a ripening canola field at home.  This is a stack of 16 images, one for the “base layer” ground and sky, containing a bright meteor, and 15 other images taken as part of the same sequence, each containing a meteor, layered with Photoshop using Lighten blend mode. I rotated each of the additional “meteor layers” around Polaris at upper left, so the sky aligned closely, putting the meteors in close to their correct position relative to the stars, to accurately illustrate the radiant effect. This was necessary as this sequence was shot with a fixed, non-tracking camera (the Canon 6D) using a 14mm Rokinon lens at f/2.8. Each exposure was 1 minute at ISO 3200. The 16 meteor frames came from a set of 212 frames taken over 3.5 hours. I layered in only the frames with meteors.  Frames were taken from 11 pm to 2:30 am MDT.

With this camera I used a wide 14mm lens, but with the camera on a fixed tripod. I again blended frames, 16 of them, to show the meteors radiating from Perseus.

Because the camera was not tracking the sky, later in Photoshop I rotated each frame relative to a lower “base-level” image, rotating them around Polaris at top as the sky does, in order to line up the stars and have the meteors appear in their correct position relative to the background stars and radiant point.

Note the errant bright “sporadic” meteor not part of the shower.

The Perseid meteors shooting through Cygnus and the Summer Triangle area of the summer Milky Way, on the night of Wednesday, August 12, 2015. Deneb is the star at top left, Vega at top right, and Altair at bottom. The Perseids shoot across the frame from top left to bottom right. Other streaks are sporadic meteors or short satellite trails. I masked out other long satellite trails that were distracting to the image’s focus on depicting Perseids. This is a stack of 24 images, each with a meteor or two, taken over a 3.5-hour period that night, with each exposure being 1 minute at f/2, with the 24mm Sigma lens and Nikon D750 at ISO 1600. The 24 image with meteors were selected from a total of 214 shot for this sequence, with most frames not recording any meteor, and perhaps only satellites or aircraft.

Camera number 3 was aimed straight up for 3.5 hours, toward Cygnus and the Summer Triangle, in hopes of nabbing that brilliant fireball streaking down the Milky Way. I got a nice “rain of meteors” effect but the bright bolide meteor eluded me.

This was certainly the best year for the Perseids in some time, with it coinciding with New Moon.

Later this year, the Geminids will also put on a good show at nearly New Moon, on the nights of December 13 and 14. So if you liked, or missed, the Perseids, take note of the dates in December.

However, for many of us, a Geminid watch is a very, cold and snowy affair!

— Alan, August 18, 2015 / © 2015 Alan Dyer / www.amazingsky.com 

Mt Kobau Milky Way

Summer Milky Way from Mt Kobau

The Milky Way towers over the pine trees and sagebrush of Mt. Kobau in the South Okanagan, BC.

It’s been a fine two nights renewing friendships and seeing stars at the summit of Mount Kobau near Osoyoos. I’ve not been here for a dozen years but the timing worked out this year for me to visit the annual Mt. Kobau Star Party, the first star party I attended back in the 1980s.

It’s a rough road to the summit but the reward is a beautiful landscape and skyscape.

The main image above is from Monday night and takes in the Milky Way from horizon to zenith, from Sagittarius to Cygnus. I used a 15mm lens and Canon 5D MkII riding on a new Sky-Watcher Star Adventurer tracking unit, which worked beautifully.

Mt Kobau Milky Way Panorama #1

This image, similar to one I took a few nights ago at the Table Mountain Star Party, is a 360° panorama of the land and sky at the Kobau summit. It is a stitch of 8 segments, each 45-second exposures at ISO 6400 with the Canon 6D and 14mm Rokinon lens.

Unfortunately, it shows the light pollution glows from Osoyoos and Oliver that have grown over the last 3 decades and now impinge upon the Kobau skies.

Cygnus and Lyra (2014)

This image is a tracked closeup of the Cygnus and Lyra area of the Milky Way, taken with a 50mm lens and the 5D Mark II riding on the Star Adventurer for a stack of five 10-minute exposures. It is rich in the red nebulosity of the Cygnus spiral arm and takes in the field that the Kepler satellite stared at for 4 years looking for alien planets.

I’m heading home but the star party continues all week, building to the weekend when most people will be attending, under prospects of clear skies and warm weather.

– Alan, July 30, 2014 / © 2014 Alan Dyer


The Veil Nebula in Cygnus

NGC 6960 & 6992-5 Veil Nebula (92mm 5DII)

This is what’s left of a star that exploded thousands of years ago.

I shoot this object every year or two, so this is my 2013 take on the Veil Nebula. For last year’s see Star Death Site, a post from September 2012.

The Veil Nebula is a supernova remnant. The lacework arcs are what’s left of a massive star that blew itself to bits in historic times. This object, one of the showpieces of the summer sky for telescope users, is now high overhead at nightfall, off the east wing of Cygnus the swan.

I shot this a couple of nights ago using a 92mm-aperture refractor that provides a wide field of view to easily frame the 3-degree-wide extent of the nebula. The image is a stack of five 15-minute exposures with a filter-modified (i.e. red sensitive) Canon 5D MkII camera at ISO 800. Stacking the images helps reduce noise.

The colours in this object make it particularly photogenic, with a contrast of magenta and cyan. At right, a sharp-edged area of obscuring interstellar dust tints the sky brown and dims the stars.

– Alan, October 9, 2013 / © 2013 Alan Dyer

The Cocoon Nebula in Cygnus

Cocoon Nebula IC 5146 (92mm 5DII)

A cocoon of glowing gas sits at the tip of a dark cloud of interstellar dust.

It’s been months since I’ve shot more “traditional” astrophotos, meaning images of deep-sky objects through telescopes. But the last couple of nights have been excellent, and well-timed to the dark of the Moon.

This is the Cocoon Nebula in Cygnus, aka IC 5146. It is a cloud of gas about 4,000 light years away where new stars are forming. They are lighting up the gas to glow with incandescent pink colours.

The Cocoon sits at the end of snake-like dark nebula known as Barnard 168 which, in the eyepiece of a telescope, is usually more obvious than the subtle bright nebula. Photos like mine here, with long exposures and boosted contrast and colours, make nebulas look much brighter and more colourful than they can ever appear to the eye.

For the technically curious, I shot this with a 92mm diameter apochromatic refractor, the TMB 92, and a Borg 0.85x flattener/reducer, a combination that gives a fast f-ratio of f/4.8 with a very flat wide field. I also used my now-vintage filter-modified Canon 5D MkII at ISO 800. This is a stack of five 12-minute exposures, registered and median-combined in Photoshop to smooth out noise. All processing was with Adobe Camera Raw and Photoshop CC. The telescope was on an Astro-Physics Mach 1 mount, flawlessly autoguided with an SBIG SG-4 autoguider.

– Alan, October 6, 2013 / © 2013 Alan Dyer


Star-Making Clouds in Cygnus

Cygnus Nebulosity (135mm 5DII)

The centre of Cygnus is laced with an intricate complex of glowing gas clouds.

This is another shot from earlier this week, under ideal skies, in a view looking straight up into Cygnus the Swan. This is a telephoto lens shot of the amazing array of nebulas in central Cygnus, around the bright star Deneb.

At left is the North America and Pelican Nebulas. At right is the Gamma Cygni complex and the little Crescent Nebula at lower right.

Here we’re looking down our local Cygnus-Orion arm of the Milky Way into a region of star formation rich in glowing hydrogen gas and dark interstellar dust. These clouds lie about 1500 to 3000 light years away. Dotting the field are hot blue stars newly formed from the raw ingredients making stars in Cygnus.

At top, the clouds have a lacework appearance, like sections of bubbles. Perhaps these are being blown across space by the high-velocity winds streaming from the young stars.

– Alan, September 13, 2013 / © 2013 Alan Dyer


The Summer Triangle Stars

Summer Triangle in the Milky Way

The trio of Summer Triangle stars flank the Milky Way in the dying days of summer.

I shot the featured image above two nights ago on a perfect late summer night from home. Skies were dark and transparent, with no aurora and little airglow to taint the sky.

The image takes in the Summer Triangle stars of Vega (top), Deneb (left) and Altair (bottom). Vega and Altair straddle the summer Milky Way, but Deneb lies right in the thick of it, way down the Local Arm that we live in. Vega and Altair are nearby normal stars, only 25 and 16 light years away. But Deneb is a blue supergiant, shining from 1400 light years away, and one of the most luminous stars in the catalog.

The Milky Way through this area of sky is riven by twisting lanes of interstellar dust. A particularly dark patch sits above Deneb at top left. Then below Deneb the Milky Way gets split by the Great Rift that continues down into Aquila and Ophiuchus at lower right.

All along this part of the Milky Way, particularly around Deneb, the camera picks up a string of glowing red nebulas where stars are forming. The red comes from hydrogen atoms emitting deep red light, as hydrogen is wont to do.

Summer Milky Way from Backyard (Sept 9, 2013)

This image is from a couple of nights earlier. I used a wider angle lens to take in the full sweep of the summer Milky Way, from Sagittarius skimming the horizon, to Cassiopeia past the zenith at the top. You can see the Summer Triangle in the top half of the image, the part of the sky now overhead on early September nights from the northern hemisphere.

I took both shots with a filter-modified Canon 5D MkII placed on a little iOptron SkyTracker for tracked long exposures (4 to 5 minutes). The main image was with a 24mm Canon lens, the bottom image with a 14mm Rokinon lens.

– Alan, September 12, 2013 / © 2013 Alan Dyer


Log Cabin in the Milky Way

Milky Way over Log Cabin (July 11, 2013)

The summer Milky Way shines over a log cabin in the woods of the Cypress Hills.

This was the view this morning, at 2 a.m., as the Milky Way of northern summer shone over my vacation log cabin on the Reesor Ranch in Saskatchewan. After the clouds cleared the sky was beautifully dark for a while before the early dawn twilight came on.

The view here takes in the Milky Way from the Scutum star cloud above the trees to the dark dust clouds of northern Cygnus overhead. The trio of Summer Triangle stars, Deneb, Vega and Altair, flank the Milky Way.

This is a composite of five tracked and stacked images for the sky and one image for the foreground shot with the iOptron Skytracker running at half speed to minimize the blurring from the tracking motion. The lens was the 14mm Samyang at f/2.8.

– Alan, July 12, 2013 / © 2013 Alan Dyer


Milky Way and the Northern Lights

Aurora and the Milky Way (May 6, 2013)

The Milky Way appears from behind the colourful curtains of the Northern Lights.

This was the scene last Saturday night, into the pre-dawn hours of Sunday morning, May 5, as the summer Milky Way rose in the east while a display of aurora  played across the northern sky. The Northern Lights weren’t particularly bright this night, but the long 2-minute exposure I used to bring out the Milly Way recorded the aurora with colours and an intensity only the camera could see this night.

The green is from oxygen glowing in the lower part of the atmosphere, though still some 80 km up, where only rockets and high-altitude balloons can fly. The tops of the auroral curtains are tinged with the pinks from another type of oxygen emission possible only at the very top of our atmosphere, where molecules are few and far between and what’s left of the air that surrounds us meets the vacuum of space some 150 km up.

From Earth it’s hard to visualize just what we are seeing when we look at display like this. But check out some of the Aurora videos at  NASA’s Gateway to Astronaut Photography of Earth. You’ll see time-lapse videos taken from the Space Station as it flies by and through the same types of aurorae with green lower bands and pink upper fringes, beautifully captured  floating high above the Earth in vertical curtains reaching up into the blackness of space.

– Alan, May 8, 2013 / © 2013 Alan Dyer


Star Death Site

This is the graveyard of where a star died at the dawn of civilization.

The Veil Nebula, made of several fragments, is the remains of a star that exploded as a supernova some 5000 to 8000 years ago. With a telescope you can see this deep sky wonder high overhead these nights, in Cygnus the swan. A decent sized telescope, say 15 to 25cm diameter, can show a lot of the detail recorded here, but only in black-and-white. It takes a photo to pick up the magentas, from glowing hydrogen, and cyans, from oxygen being excited into shining by the shockwave created as the expanding cloud ploughs into the surrounding interstellar gas.

The whole complex is called the Veil Nebula but the segment at right passing through the star 52 Cygni is called the Witch’s Broom Nebula.

I shot this from home a couple of nights ago during a continuing run of typically fine fall weather, which usually brings the best nights of the year for astronomy. For this shot I used a new Lunt 80mm apochromatic refractor on loan for testing. It works very well! This is a stack of five 15-minute exposures.

– Alan, September 22, 2012 / © 2012 Alan Dyer

The Northern Nebulas of the Milky Way

This is the prime celestial real estate above us now on northern summer nights.

This wide-angle shot takes in the Milky Way from Cygnus at right to Perseus at left, an area populated by lots of nebulas, both bright and dark. A couple of previous posts (The Subtle Shades of Cepheus and The Dark Clouds of Cygnus) featured close-up views of sections of this sky, the areas at centre in this wider context image in northern Cygnus and southern Cepheus.

At bottom is the elliptical glow of the Andromeda Galaxy, another “milky way” beyond ours.

I boosted the contrast and colour more than I normally do for astrophotos, to punch out the nebulas and the subtle dark lanes of dust that permeate this part of the Milky Way. I shot this last weekend from the star party in Cypress Hills, Saskatchewan. With three clear nights it was a productive weekend!

– Alan, August 26, 2012 / © 2012 Alan Dyer

Horizon to Horizon Milky Way

The view doesn’t get any wider than this. This fish-eye image takes in the entire night sky and summer Milky Way.

I shot this last weekend at the Saskatchewan Summer Star Party in Cypress Hills. Red lights of observers streak along the horizon around the perimeter of the circular image. At centre is the zenith, the point in the sky straight overhead.

The sky was very dark, but the sky close to the horizon is tinted with the faint glows of aurora and airglow.

The Milky Way is the main feature of the summer sky, here stretching from Sagittarius in the south at bottom to Perseus at top in the north. Wide shots like this really put the giant lanes of dust into proper context; you can see their full structure and faint tendrils extending well off the Milky Way band.

For these fish-eye shots (suitable for projection in a planetarium) I used a Sigma 8mm fish-eye lens and a full-frame Canon 5D MkII camera. This is a stack of five 5-minute exposures, all tracked. The landscape is from just one of the images, to minimize blurring of the ground.

— Alan, August 23, 2012 / © 2012 Alan Dyer

The Dark Clouds of Cygnus

Stare into the starfields of Cygnus and ponder what lies undiscovered in our part of the Milky Way.

You are looking down the spiral arm we live in, into clouds of stars seemingly packed together. Every one of those specks is a sun like ours. With planets? Very likely, as we now know.

Amid the stars float glowing red clouds of hydrogen gas. The North America Nebula shines at lower right.

Snaking northward from the “arctic” region of the bright nebula is a river of dust that broadens into a delta of dark nebulosity. Once thought to be holes in the sky allowing us to see deeper into space, we know now that these dark nebulas are really foreground dust clouds filled with the soot of dying stars, carbon dust that absorbs starlight and obscures the more distant parts of the Milky Way.

This dust cloud is called Le Gentil 3, named for the 18th century French astronomer who first noted its position in the sky. Le Gentil’s dust cloud is one of the easiest features of the summer Milky Way to see. Look north of Deneb, the bright star at the right of the image, and with the unaided eye on a dark moonless night you’ll see what looks like a dark hole in the Milky Way. That’s Le Gentil 3.

I use this dust cloud as a measure of sky brightness. On a truly dark night, Le Gentil 3 looks darker than any other area of sky, even relatively starless regions off the Milky Way. Most of the sky brightness we see from a dark site is really starlight. But Le Gentil’s proximity and opaqueness makes it appear darker than the more distant starlit sky background.

This image covers about the width of a binocular field. I shot it from the Cypress Hills in Saskatchewan this past weekend, using the Canon 5D MkII at ISO 1600 and Canon 135mm telephoto lens at f/2.8. It’s a stack of 10 five-minute exposures.

— Alan, August 22, 2012 / © 2012 Alan Dyer

Lost in the Milky Way

Just lie back and lose yourself in the Milky Way.

That’s what one person is doing here, under the starry skies of Cypress Hills, Saskatchewan. In summertime the Milky Way is the main attraction at night. Here, it rises from the south, a region containing the centre of our Galaxy in Sagittarius, to climb up overhead through the star clouds of Scutum and Aquila, then into Cygnus in our local spiral arm, and on into Cassiopeia at the top of the frame in the north.

As in most deep sky photos, I’ve boosted the contrast and colour to make a dramatic image. To the eye the Milky Way appears in subtle shades of grey painted with the dark brushstrokes of dust lanes winding through the bright clouds of stars. But your eye does see much of this structure.

I like these types of ultra-wide images. They capture the mind’s eye impression of what the Milky Way looks like across the vault of heaven.

This is a stack of four 5-minute exposures, all tracked on a small equatorial mount, the Kenko SkyMemo, and all taken with the Canon 5D MkII at ISO 800 and Canon’s ultra-wide 15mm lens at f/4, as you can see from the photo data at left. I retained the ground from just one image, to minimize the blurring from the slowly moving camera tracking the stars. I masked out the ground in the other 3 images. They help smooth out noise in the sky.

— Alan, August 21, 2012 / © 2012 Alan Dyer

Continent in the Sky

Shining overhead on northern summer nights right now is the blue supergiant star Deneb, in Cygnus. Nearby glow the magenta clouds of the North America Nebula.

This image shot with a telephoto lens takes in roughly the same field of view as a pair of binoculars. But being a long time exposure it reveals much more of the faint nebula than even the aided eye can see. However, even binoculars will show a greyish cloud near Deneb in roughly the shape of North America. It is actually a continent of stars and hydrogen gas, glowing with hydrogen’s characteristic magenta colour, a mix of deep red and blue emission lines. The gas may be electrified into glowing by the searing radiation from the star Deneb, some 1400 light years away from Earth.

I shot this on a July night, with some haze passing by during some of the exposures. The haze added the photogenic glows around the stars.

— Alan, August 8, 2012 / © 2012 Alan Dyer

The Stellar Triangle of Summer

When the Summer Triangle sinks into the west, we know summer has come to an end. While the stars of the Summer Triangle are now high overhead from northern latitudes as the sky gets dark, by late evening the Summer Triangle is setting into the west.

These three bright stars are an example of stellar variety:

– At bottom is Altair in Aquila the eagle. It’s a white main-sequence star 17 light years away, fairly nearby by stellar standards. Leslie Nielson and his crew went to Altair in the 1950s movie Forbidden Planet.

– At top right is Vega, in Lyra the harp, a hotter and more luminous blue-white star than Altair, making it appear brighter than Altair, despite Vega being farther away, at 25 light years distant. Jodi Foster went to Vega in the movie Contact.

– But the third member of the Triangle, Deneb, at top left, is an extreme star. It appears a little fainter than Vega, but looks can be deceiving. Deneb is actually a luminous supergiant star, putting out 54,000 times the energy of our Sun. Deneb is about 1,400 light years away and yet, due to its fierce output of light, appears almost as bright as Vega. Light from Deneb left that star in the 6th century. I don’t know of any movie heroes who went to Deneb. The name means “tail of the Swan,” hardly a romantic destination for space-faring adventurers.

Look toward the Summer Triangle and you are looking down the spiral arm of the Milky Way that we live in. The stars of that arm appear as a packed stellar cloud running through Cygnus the swan, the constellation that contains Deneb.

I took this shot Saturday night, from home, on what turned out to be a very clear night, once some clouds got out of the way in the early evening. This is a 4-image stack of 8-minute exposures, at f/4 with the 35mm Canon lens, a favourite of mine, on the Canon 5D MkII at ISO 800. I added in exposures taken through a soft-focus filter to give the added glows around the stars to help make the bright stars and their colours more visible.

— Alan, September 25, 2011 / Image © 2011 Alan Dyer

September Milky Way


This was the scene from my rural backyard on Tuesday night, September 20, with the Milky Way at its best across the sky.

September usually brings the best nights of the year for dark-sky observing and shooting the Milky Way. Nights are clear, dry, and transparent. The Milky Way stretches across the sky from southwest to northeast in the early evening.

Under clear skies on Tuesday the dark lanes and structure of the Milky Way really stood out, both to the eye and to the camera. Image processing for contrast does bring out the dust lanes, including the subtle patches off the main Milky Way band.

The centre of the image contains the three bright stars of the Summer Triangle. They frame the bright Cygnus starclouds and glowing red nebulas that mark the spiral arm that we live in. Above, at top left in the image, is a bluer section of the Milky Way formed by the more distant Perseus spiral arm, the one further out from us in the Galaxy.

I took this shot with the Canon 5D MkII and Canon 15mm lens, for a stack of five 6-minute exposures at f/4 and ISO 800.

— Alan, September 21, 2011 / Image © 2011 Alan Dyer


The Glowing Heart of Cygnus

Look straight up on a summer night in the northern hemisphere and you are looking into this region of sky. This is the centre — the heart — of Cygnus the swan, marked here by the bright star called Sadr, or Gamma Cygni.

While the star is easily visible to the unaided eye, the glowing clouds of gas surrounding it are not. Only long exposure images reveal the amazing swirls of nebulosity in the middle of Cygnus.

The main cloud at left, split by a dark lane of dust, is catalogued as IC 1318. The little crescent-shaped nebula at right is NGC 6888, or more appropriately, the Crescent Nebula. It formed when a hot giant star blew off its outer layers, to add to the general melee of hydrogen and other elements. But note the little blue reflection nebulas at top left. Oddly out of place!

New stars are forming in this region, located about 1500 light years away down the Cygnus arm that we live in, in the Milky Way Galaxy.

This field can be framed nicely by binoculars or a low-power telescope, but only the brightest bits of this nebulosity will show up in the eyepiece as grey ghosts, and then only with the aid of a specialized nebula filter.

I took this shot on Saturday night, July 30, 2011 with the Borg 77mm f/4 astrograph lens and Canon 5D MkII camera. Other stats are similar to the previous blog post. It’s certainly my best shot of this area of sky.

— Alan, August 1, 2011 / Image © 2011 Alan Dyer