Ten Tips for Taking Time-Lapses


Selfie at Grasslands National Park

I present my top 10 tips for capturing time-lapses of the moving sky. 

If you can take one well-exposed image of a nightscape, you can take 300. There’s little extra work required, just your time. But if you have the patience, the result can be an impressive time-lapse movie of the night sky sweeping over a scenic landscape. It’s that simple. 

Or is it? 

Here are my tips for taking time-lapses, in a series of “Do’s” and “Don’ts” that I’ve found effective for ensuring great results. 

But before you attempt a time-lapse, be sure you can first capture well-exposed and sharply focused still shots. Shooting hundreds of frames for a time-lapse will be a disappointing waste of your time if all the images are dark and blurry. 

For that reason many of my tips apply equally well to shooting still images. But taking time-lapses does require some specialized gear, techniques, planning, and software. First, the equipment. 

NOTE: This article appeared originally in Issue #9 of Dark Sky Travels e-magazine.


SELECTING EQUIPMENT

Camera on Tripod
Essential Gear
Time-lapse photography requires just the camera and lens you might already own, but on a solid tripod (a carbon-fibre Manfrotto with an Acratech ball-head is shown here), and with an intervalometer. 

TIP 1 — DO:  Use a solid tripod 

A lightweight travel tripod that might suffice for still images on the road will likely be insufficient for time-lapses. Not only does the camera have to remain rock steady for the length of the exposure, it has to do so for the length of the entire shoot, which could be several hours. Wind can’t move it, nor any camera handling you might need to do mid-shoot, such as swapping out a battery. 

The tripod needn’t be massive. For hiking into scenic sites you’ll want a lightweight but sturdy tripod. While a carbon fibre unit is costly, you’ll appreciate its low weight and good strength every night in the field. Similarly, don’t scrimp on the tripod head. 

TIP 2 — DO:  Use a fast lens

Csmera on Ball Head
The All-Important Lens
A fast lens is especially critical for time-lapses to allow capturing good sky and ground detail in each exposure, as compositing later won’t be feasible. This is the Sigma 20mm f/1.4 Art lens.

As with nightscape stills, the single best purchase you can make to improve your images of dark sky scenes is not buying a new camera (at least not at first), but buying a fast, wide-angle lens. 

Ditch the slow kit zoom and go for at least an f/2.8, if not f/2, lens with 10mm to 24mm focal length. This becomes especially critical for time-lapses, as the fast aperture allows using short shutter speeds, which in turn allows capturing more frames in a given period of time. That makes for a smoother, slower time-lapse, and a shoot you can finish sooner if desired. 

TIP 3 — DO:  Use an intervalometer

3A-Intervalometer-Canon
Canon intervalometer functions
3B-Intervalometer-Nikon
Nikon intervalometer functions
Intervalometer Trio
Automating the Camera
The intervalometer is also key. For cameras without an internal intervalometer (screens from a Canon and a Nikon are shown above), an outboard unit like one of these, is essential. Be sure to get the model that fits your camera’s remote control jack.

Time-lapses demand the use of an intervalometer to automatically fire the shutter for at least 200 to 300 images for a typical time-lapse. Many cameras have an intervalometer function built into their firmware. The shutter speed is set by using the camera in Manual mode. 

Just be aware that a camera’s 15-second exposure really lasts 16 seconds, while a 30-second shot set in Manual is really a 32-second exposure. 

So in setting the interval to provide one second between shots, as I advise below, you have to set the camera’s internal intervalometer for an interval of 17 seconds (for a shutter speed of 15 seconds) or 33 seconds (for a shutter speed of 30 seconds). It’s an odd quirk I’ve found true of every brand of camera I use or have tested. 

Alternatively, you can set the camera to Bulb and then use an outboard hardware intervalometer (they sell for $60 on up) to control the exposure and fire the shutter. Test your unit. Its interval might need to be set to only one second, or to the exposure time + one second. 

How intervalometers define “Interval” varies annoyingly from brand to brand. Setting the interval incorrectly can result in every other frame being missed and a ruined sequence.


SETTING YOUR CAMERA

TIP 4 — DON’T:  Underexpose

4-Histogram Example
Expose to the Right
When shooting, choose settings that will yield a histogram that is not slammed to the left, but is shifted to the right to minimize noise and lift details in the shadows.

As with still images, the best way to beat noise is to give the camera signal. Use a wider aperture, a longer shutter speed, or a higher ISO (or all of the above) to ensure the image is well exposed with a histogram pushed to the right. 

If you try to boost the image brightness later in processing you’ll introduce not only the very noise you were trying to avoid, but also odd artifacts in the shadows such as banding and purple discolouration. 

With still images we have the option of taking shorter, untrailed images for the sky, and longer exposures for the dark ground to reveal details in the landscape, to composite later. With time-lapses we don’t have that luxury. Each and every frame has to capture the entire scene well. 

At dark sky sites, expose for the dark ground as much as you can, even if that makes the sky overly bright. Unless you outright clip the highlights in the Milky Way or in light polluted horizon glows, you’ll be able to recover highlight details later in processing. 

After poor focus, underexposure, resulting in overly noisy images, is the single biggest mistake I see beginners make.

TIP 5 — DON’T:  Worry about 500 or “NPF” Exposure Rules

Milky Way and ISS over Waterton Lakes
Stills from a Sequence
A stack of single frames from a time-lapse sequence can often make a good still image, such as this scene of the Space Station rising over Waterton Lakes National Park. The 30-second exposures were just within the “500 Rule” for the 15mm lens used here, but minor star trailing won’t be that noticeable in a final movie.

While still images might have to adhere to the “500 Rule” or the stricter “NPF Rule” to avoid star trailing, time-lapses are not so critical. Slight trailing of stars in each frame won’t be noticeable in the final movie when the stars are moving anyway. 

So go for rule-breaking, longer exposures if needed, for example if the aperture needs to be stopped down for increased depth of field and foreground focus. Again, with time-lapses we can’t shoot separate exposures for focus stacking later. 

Just be aware that the longer each exposure is, the longer it will take to shoot 300 of them. 

Why 300? I find 300 frames is a good number to aim for. When assembled into a movie at 30 frames per second (a typical frame rate) your 300-frame clip will last 10 seconds, a decent length of time in a final movie. 

You can use a slower frame rate (24 fps works fine), but below 24 the movie will look jerky unless you employ advanced frame blending techniques. I do that for auroras.

5B-PhotoPills Calculator
PhotoPills Calculator
Apps such as PhotoPills offer handy calculators for juggling exposure time vs. the number of frames to yield the length of the time-lapse shoot.

Bonus Tip

How long it will take to acquire the needed 300 frames will depend on how long each exposure is and the interval between them. An app such as PhotoPills (via its Time lapse function) is handy in the field for calculating exposure time vs. frame count vs. shoot length, and providing a timer to let you know when the shoot is done. 

TIP 6 — DO:  Use short intervals

6A-Intervals-No Gaps

6B-Intervals-Gaps
Mind the Gap!
At night use intervals as short as possible to avoid gaps in time, simulated here (at top) by stacking several time-lapse frames taken at a one-second interval into one image. Using too long an interval, as demonstrated just above, yields gaps in time and jumps in the star motion, simulated here by stacking only every other frame in a sequence. 

At night, the interval between exposures should be no more than one or two seconds. By “interval,” I mean the time between when the shutter closes and when it opens again for the next frame. 

Not all intervalometers define “Interval” that way. But it’s what you expect it means. If you use too long an interval then the stars will appear to jump across the sky, ruining the smooth motion you are after. 

In practice, intervals of four to five seconds are sometimes needed to accommodate the movement of motorized “motion control” devices that turn or slide the camera between each shot. But I’m not covering the use of those advanced units here. I cover those options and much, much more in 400 pages of tips, techniques and tutorials in my Nightscapes ebook, linked to above.

However, during the day or in twilight, intervals can be, and indeed need to be, much longer than the exposures. It’s at night with stars in the sky that you want the shutter to be closed as little as possible. 

TIP 7 — DO:  Shoot Raw

7-Camera Raw Comparison
The Power of Raw
Shooting raw, even for time-lapse frames that will eventually be turned into JPGs, allows for maximum control of shadows, highlights, colour balance, and noise reduction. “Before” is what came out of the camera; “After” is with the development settings shown applied in Camera Raw.

This advice also applies to still images where shooting raw files is essential for professional results. But you likely knew that.

However, with time-lapses some cameras offer a mode that will shoot time-lapse frames and assemble them into a movie right in the camera. Don’t use it. It gives you a finished, pre-baked movie with no ability to process each frame later, an essential step for good night time-lapses. And raw files provide the most data to work with.

So even with time-lapses, shoot raw not JPGs. 

If you are confident the frames will be used only for a time-lapse, you might choose to shoot in a smaller S-Raw or compressed C-Raw mode, for smaller files, in order to fit more frames onto a card. 

But I prefer not to shrink or compress the original raw files in the camera, as some of them might make for an excellent stacked and layered still image where I want the best quality originals (such as for the ISS over Waterton Lakes example above). 

To get you through a long field shoot away from your computer buy more and larger memory cards. You don’t need costly, superfast cards for most time-lapse work. 


PLANNING AND COMPOSITION

TIP 8 — DO:  Use planning apps to frame 

8A-TPE Screen
Planning the Shoot
Apps such as The Photographer’s Ephemeris (shown here set for the author’s Waterton Lakes site for moonrise) help in planning where the Sun, Moon and Milky Way will be from your site during the shoot.
8B-TPE 3D Demo
Simulating the Shoot
The companion app to The Photographer’s Ephemeris, TPE 3D, shown above in the inset, exactly matches the real scene for the mountain skyline, placement of the Milky Way, and lighting from the rising Moon. 

All nightscape photography benefits from using one of the excellent apps we now have to assist us in planning a shoot. They are particularly useful for time-lapses. 

Apps such as PhotoPills and The Photographer’s Ephemeris are great. I like the latter as it links to its companion TPE 3D app to preview what the sky and lighting will look like over the actual topographic horizon from your site. You can scrub through time to see the motion of the Milky Way over the scenery. The Augmented Reality “AR” modes of these apps are also useful, but only once you are on site during the day.

For planning a time-lapse at home I always turn to a “planetarium” program to simulate the motion of the sky (albeit over a generic landscape), with the ability to add in “field of view” indicators to show the view your lens will capture. 

You can step ahead in time to see how the sky will move across your camera frame during the length of the shoot. Indeed, such simulations help you plan how long the shoot needs to last until, for example, the galactic core or Orion sets.

Planetarium software helps ensure you frame the scene properly, not only for the beginning of the shoot (that’s easy — you can see that!), but also for the end of the shoot, which you can only predict. 

8C-Stellarium Start

8D-Stellarium End
Planetarium Planning
An alternative is to use a planetarium program such as the free Stellarium, shown above, which can display lens fields of view. These scenes show the simulated vs. real images (insets) for the start (top) and end (bottom) of the Waterton Lakes time-lapse with a 35mm lens frame, outlined in red. 

To save you from guessing wrong, try the free Stellarium (stellarium.org), or the paid Starry Night (starrynight.com) or SkySafari (skysafariastronomy.com). I use Starry Night. 

Bonus Tip

If your shoot will last as long as three hours, do plan to check the battery level and swap batteries before three hours is up. Most cameras, even new mirrorless models, will now last for three hours on a full battery, but likely not any longer. If it’s a cold winter night, expect only one or two hours of life from a single battery.


PROCESSING

TIP 9 — DO:  Develop one raw frame and apply settings to all

9A-Bridge-Copy

9B-Bridge-Paste
Copy and Paste Settings
Most raw developers or photo library programs (Adobe Bridge is shown here) offer the essential ability to copy settings from one image and paste them onto hundreds of others in a folder, developing all the time-lapse frames in a snap.

Processing the raw files takes the same steps and settings as you would use to process still images. 

With time-lapses, however, you have to do all the processing required within your favourite raw developer software. You can’t count on bringing multiple exposures into a layer-based processor such as Photoshop to stack and blend images. That works for a single image, but not for 300. 

I use Adobe Camera Raw out of Adobe Bridge to do all my time-lapse processing. But many photographers use Lightroom, which offers all the same settings and non-destructive functions as Adobe Camera Raw. 

For those who wish to “avoid Adobe” there are other choices, but for time-lapse work an essential feature is the ability to develop one frame, then copy and paste its settings (or “sync” settings) to all the other frames in the set. 

Not all programs allow that. Affinity Photo does not. Luminar doesn’t do it very well. DxO PhotoLab, ON1 Photo RAW, and the free Raw Therapee, among others, all work fine. 

HOW TO ASSEMBLE A TIME-LAPSE

Once you have a set of raws all developed, the usual workflow is to export all those frames out as high-quality JPGs which is what movie assembly programs need. Your raw developing software has to allow batch exporting to JPGs — most do. 

9C-Image Processor Screen
Photoshop Batch Export
Raw developers usually have a batch export function. So does Photoshop, via its Image Processor utility, shown here (found under File>Scripts>Image Processor) that can export a folder of raws into JPGs or TIFFs, and re-size them, often needed for final 4K or HD movies. 

However, none of the programs above (except Photoshop and Adobe’s After Effects) will create the final movie, whether it be from those JPGs or from the raws. 

9D-TLDF Screen
Assembling JPGs
The author’s favourite assembly program is TimeLapse DeFlicker (TLDF). It can turn a folder of JPGs into movies as large as 8K and with ProRes codecs for the highest quality.

So for assembling the intermediate JPGs into a movie, I often use a low-cost program called TLDF (TimeLapse DeFlicker) available for MacOS and Windows (timelapsedeflicker.com). It offers advanced functions such as deflickering (i.e. smoothing slight frame-to-frame brightness fluctuations) and frame blending (useful to smooth aurora motions or to purposely add star trails).

While there are many choices for time-lapse assembly, I suggest using a program dedicated to the task and not, as many do, a movie editing program. For most sequences, the latter makes assembly unnecessarily difficult and harder to set key parameters such as frame rates. 

TIP 10 — DO:  Try LRTimelapse for more advanced processing

10A-LRT-Bridge Keyframes
Working on Keyframes
The advanced processing program LRTimelapse creates several keyframes through the sequence (seven are shown here in Adobe Bridge) which you develop so each looks its best. During this sequence, the Moon rose changing the lighting toward the end of the shoot (in the last three keyfames). 

Get serious about time-lapse shooting and you will want — indeed, you will need — the program LRTimelapse (LRTimelapse.com). A free but limited trial version is available. 

This powerful program is for sequences where one setting will not work for all the frames. One size does not fit all.

Instead, LRTimelapse allows you to process a few keyframes throughout a sequence, say at the start, middle, and end. It then interpolates all the settings between those keyframes to automatically process the entire set of images to smooth (or “ramp”) and deflicker the transitions from frame to frame. 

10B-LRT-Final Screen
LRTimelapse Ramping
LRTimelapse reads your developed keyframe data and applies smooth transitions of all settings to each of the raw files between the keyframes. The result is a seamless and smooth final movie. The pink curve shows how the scene brightened at moonrise. The blue diamonds on the yellow line mark the seven keyframes. 

This is essential for sequences where the lighting changes during the shoot (say, the Moon rises or sets), and for so-called “holy grails.” Those are advanced sequences that track from daylight or twilight to darkness, or vice versa, over a wide range of camera settings.

However, LRTimelapse works only with Adobe Lightroom or the Adobe Camera Raw/Bridge combination. So for advanced time-lapse work Adobe software is essential. 

A Final Bonus Tip

Keep it simple. You might aspire to emulate the advanced sequences you see on the web, where the camera pans and dollies during the movie. I suggest avoiding complex motion control gear at first to concentrate on getting well-exposed time-lapses with just a static camera. That alone is a rewarding achievement.

But before that, first learn to shoot still images successfully. All the settings and skills you need for a great looking still image are needed for a time-lapse. Then move onto capturing the moving sky. 

I end with a link to an example music video, shot using the techniques I’ve outlined. Thanks for reading and watching. Clear skies!

The Beauty of the Milky Way from Alan Dyer on Vimeo.


© 2019 Alan Dyer

Alan Dyer is author of the comprehensive ebook How to Photograph and Process Nightscapes and Time-Lapses. His website is www.amazingsky.com 

For a channel of his time-lapse movies, music videos, and tutorials on Vimeo see https://vimeo.com/channels/amazingsky 

 

A Wonderful Night in Waterton


The Milky Way over Vimy Peak

A clear break between storms provided a marvellous night in the mountains to shoot nightscapes. 

Every year I travel to Waterton Lakes National Park in southwest Alberta to deliver public talks and photo workshops, usually as part of one of the festivals held each year. I was there June 15 to 17 to participate in the annual Wildflower Festival.

On Sunday, June 17 skies cleared to allow my workshop group to travel to one of my favourite spots, Maskinonge, to practice nightscape shooting techniques. The sunset was stunning, then as skies darkened the Moon and Venus over Waterton River provided the scene.

As twilight deepened, a display of noctilucent clouds appeared to the north, my first sighting of the season for this unusual northern sky phenomenon. These clouds at the edge of space are lit by sunlight even at local midnight and form only around summer solstice over the Arctic.

As the sky slowly darkened and the Moon set, the Milky Way appeared arching across the east and down into the south. The sky was never “astronomically dark,” but even with perpetual twilight illuminating the sky, the Milky Way still made a superb subject, especially this night with it reflected in the calm waters on this unusually windless night for Waterton.

On the way back to town, I stopped at another favourite spot, Driftwood Beach on Middle Waterton Lake, to take more images of the Milky Way over Waterton, including the lead image at top.

It was a perfect night in Waterton for shooting the stars and enjoying the night sky. By morning it was raining again!

— Alan, June 21, 2018 / © 2018 Alan Dyer / AmazingSky.com

 

Halo Around the Moon


Halo Around the Solstice Moon

On the night before the solstice Full Moon, the sky added a coloured halo around the Moon.

On June 19 I was at Waterton Lakes National Park, Alberta to teach a workshop on night photography, as one of the programs of the Park’s annual Wildflower Festival. The night proved hazy, but that added the attraction of an ice crystal halo around the Moon.

The lead image above is from Driftwood Beach, looking south across Middle Waterton Lake. Note Mars shining above the mountains at right.

Earlier in the night, at Red Rock Canyon, we watched the Moon rise in the twilight, then climb up the side of Mt. Blakiston. Here (below) it shines above the summit, surrounded by its hazy halo.

Lunar Halo over Mt. Blakiston
Lunar halo in a hazy sky at Red Rock Canyon, Waterton Lakes National Park, Alberta, with the Full Moon over Mt. Blakiston. This is a high-dynamic range stack of 6 exposures, to avoid the area around the Moon from blowing out too much while recorded detail in the dark foreground. All with the 20mm lens and Nikon D750.

The workshop participants made the best of the night, shooting the moonlit scene down the canyon, toward the north and Cassiopeia.

Photographer Shooting at Red Rock Canyon
Nightscape photographer at a workshop I was presenting, shooting Red Rock Canyon in the moonlight at Waterton Lakes National Park, June 19, 2016. Cassiopeia is in the sky to the north. This is a single exposure for 13 seconds at f/2.8 and ISO 800 with the 20mm lens and Nikon D750.

And as here, shooting from the canyon footbridge, toward the very photogenic Anderson Peak, with Jupiter just above the peak.

Night Photographers at Red Rock Canyon
A workshop group of photographers at Red Rock Canyon at Waterton Lakes National Park, Alberta, during the 2016 Wildflower Festival, June 19, 2016. Taken by the light of the Full Moon at solstice. Jupiter is the bright object behind Anderson Peak.

In keeping with the wildflower theme, I shot wild roses, Alberta’s provincial flower, in the moonlight, with Anderson Peak and stars in the distance.

Wild Roses in the Mountain Moonlight
Alberta wild roses in the moonlight with Anderson Peak in the background, at Red Rock Canyon, Waterton Lakes National Park, Alberta. Taken on Full Moon night June 19, 2016, at a workshop on nightscape imaging I was teaching as part of the Waterton Wildflower Festival. This is a single exposure at f/8 for 20 seconds at ISO 3200 with the 20mm lens and Nikon D750.

While we might like dark skies when going to places like Waterton, there are many magical options for photography when the Moon is shining.

— Alan, June 23, 2016 / © 2016 Alan Dyer / www.amazingsky.com

 

Waterton Lakes by Moonlight


Cassiopeia and the northern stars over Red Rock Canyon in Waterton Lakes National Park, Alberta, with illumination from a waxing gibbous Moon. This is a composite of three 30-second exposures for the ground to smooth noise and one 30-second exposure for the sky, all with the 24mm lens at f/3.5 and Canon 6D at ISO 1600.

Mountain scenes take on a new look when photographed by moonlight.

Last week I spent four wonderful nights shooting the landscapes of Waterton Lakes National Park under the light of the waxing Moon. For two of the evenings I taught small groups of photographers eager to learn how to extend their photo skills into the night.

A nightscape photographer from one of my workshops, shooting in the moonlight at Red Rock Canyon, in Waterton Lakes National Park, Alberta. Clouds partly obscure the gibbous Moon but add a colourful iridescent corona around the Moon, which is reflected in the Red Rock Canyon Creek. This is an HDR stack of 5 exposures with the 14mm lens and Canon 6D, to preserve detail in the bright clouds and the disk of the Moon, and in the dark shadows.

We shot at Red Rock Canyon both nights, an ideal spot for its many composition options for shooting both toward and away from the Moon.

The lead image is a view looking up the canyon, with Cassiopeia in view. Always nice to have a recognizable constellation so well positioned.

The image just above looks toward the Moon, partly hidden by colourful clouds diffracting the moonlight. A student is at left trying out a composition.

Photographers at a Nightscapes Workshop at Red Rock Canyon in Waterton Lakes National Park, Alberta, June 2015, in the moonlight.

Here, students, silhouetted by the Moon, use the footbridge as their vantage point to photograph moonlight on the canyon waters and walls.

Alpine flowers in the moonlight at Red Rock Canyon, in Waterton Lakes National Park, with the scene lit by light from the waxing gibbous Moon. The “Matterhorn” style peak is Anderson Peak. This is a blend of two exposures: 30 seconds for the sky and 50 seconds for the ground, all with the 24mm lens at f/5 and Canon 6D at ISO 3200.

My workshops were part of the annual Waterton Wildflower Festival. So, a number of us tried to shoot flowers by moonlight, no easy task considering the wide apertures and shallow depth of field usually required, even under bright moonlight.

But the photo above is my take on summer alpine flowers in a meadow with the iconic Anderson Peak in the distance.

A panorama of the flower-filled Blakiston Valley on a moody moonlit cloudy night at Waterton Lakes National Park, June 24, 2015. The Big Dipper is at upper right, with its handle pointing to Arcturus at left of centre. Spica is at far left. A subtle halo surrounds the first quarter Moon which has just set behind Crandell Mountain at left.  This is a 9-segment panorama with the Nikon D750 and 24mm lens, mounted portrait, and stitched with Photoshop using spherical geometry and corrected with Wide Angle Adaptive Lens Correction to straighten the scene. Liberal use of Highlight and Shadow recovery in ACR and Shadows and Highlights in PS brought out the flower-filled foreground while retaining detail in the bright sky. Each segment was 30 seconds at f/2.8 and ISO 1600.

Three nights were wonderfully clear. But my first night, set aside for scouting locations for the Workshops, was beset by some clouds. However, I made use of them to create a moody moonlit cloudscape panorama of the Big Dipper over Blakiston Valley.

I’ll be back in Waterton in September for the Wildlife Festival. We won’t try to shoot bears by moonlight! One did wander by at the start of our Saturday Workshop!

Instead, we’ll concentrate on photographing the Milky Way. That’s Friday, September 18.

– Alan, July 3, 2015 / © 2015 Alan Dyer / www.amazingsky.com 

Waterton Lakes in the Twilight


The waxing gibbous Moon over Upper Waterton Lake in Waterton Lakes National Park, Alberta with the iconic Prince of Wales Hotel in the distance, on a calm evening with still waters, rare in Waterton. This is an HDR stack of 3 exposures with the Canon 60Da and 16-35mm lens, shot from Driftwood Beach.

Happy Canada Day! From one of the most scenic places in the country.

I spent a wonderful four days and nights last week at Waterton Lakes National Park, Alberta, with near perfect weather conditions.

For one, the infamous winds of Waterton weren’t blowing, allowing me to shoot the iconic Prince of Wales Hotel reflected in the calm waters of Middle Waterton Lake at Driftwood Beach, with the waxing Moon above in the twilight sky.

Earlier in the evening, I was at the Maskinonge Overlook shooting some video for upcoming tutorials. At sunset I shot this image, below, of the Moon above the alpenglow of the last rays of sunlight.

The rising waxing gibbous Moon in the sunset sky over Maskinonge Wetlands at Waterton Lakes National Park, Alberta, June 2015. The last rays of sunset are illuminating the peaks in alpen glow. This is an HDR stack of 3 exposures with the Canon 60Da and 16-35mm lens.
The rising waxing gibbous Moon in the sunset sky over Maskinonge Wetlands at Waterton Lakes National Park, Alberta, June 2015. The last rays of sunset are illuminating the peaks in alpen glow. This is an HDR stack of 3 exposures with the Canon 60Da and 16-35mm lens.

Happy Canada Day!

And don’t forget to look west for the ongoing Venus-Jupiter conjunction. I missed the best night last night, June 30 – clouds! But here’s hoping for tonight.

– Alan, July 1, 2015 / © 2015 Alan Dyer / www.amazingsky.com

 

The Great Solstice Aurora of 2015


The all-sky aurora of June 22, 2015, during a level 7 to 9 geomagnetic storm, as the display began already active in the darkening twilight of a solstice night. This is one frame from a 568-frame time-lapse, taken with the 8mm Sigma fish-eye lens at f/3.5 and with the Canon 6D, composed for projection in tilt-dome digital planetariums. I was on the south shore of Crawling Valley Lake and Reservoir in southern Alberta.

Aurora watchers were on alert! Look up after sunset on June 22 and the sky should be alive with dancing lights.

And the predictions were right.

I headed out to a nearby lake in preparation for seeing and shooting the show. And as soon as the sky got dark enough the Lights were there, despite the bright solstice twilight.

The all-sky aurora of June 22, 2015, during a level 7 to 9 geomagnetic storm, as the display began already active in the darkening twilight of a solstice night. This is one frame from a 960-frame time-lapse, taken with the 15mm full-frame fish-eye lens at f/2.8 and with the Canon 60Da, looking north to the perpetual twilight of solstice. I was on the south shore of Crawling Valley Lake and Reservoir in southern Alberta.

The display reached up to the zenith, as seen in my fish-eye images, like the one below. I shot with three cameras, all shooting time-lapses, with the fish-eye camera recording the scene suitable for projection in a digital planetarium.

The all-sky aurora of June 22, 2015, during a level 7 to 9 geomagnetic storm, as the display peaked in a substorm with rays converging at the zenith in the darkening twilight of a solstice night. This is one frame from a 568-frame time-lapse, taken with the 8mm Sigma fish-eye lens at f/3.5 and with the Canon 6D, composed for projection in tilt-dome digital planetariums. I was on the south shore of Crawling Valley Lake and Reservoir in southern Alberta.

However, it was apparent we here in western Canada were seeing the end of the display that had been going on for hours during an intense geomagnetic storm. The aurora was most intense early in the evening, with a minor outburst about 11:30 to 11:45 pm MDT.

The all-sky aurora of June 22, 2015, during a level 7 to 9 geomagnetic storm, as the display began already active in the twilight of a solstice night. This is one frame from a 960-frame time-lapse, taken with the 15mm full-frame fish-eye lens at f/2.8 and with the Canon 60Da, looking north to the perpetual twilight of solstice. I was on the south shore of Crawling Valley Lake and Reservoir in southern Alberta.

The aurora then subsided in structure and turned into a more chaotic pulsating display, typical of the end of a sub-storm.

A sky-covering display of Northern Lights, here in the western sky over a distant thunderstorm on the Alberta prairies. I shot this June 22, 2015 on a night with a grand display over most of the sky, with the sky bright with solstice twilight. The site was on the south shore of Crawling Valley Lake in southern Alberta. This is one frame from a 350-frame time-lapse, taken with the Nikon D750 and 24mm lens,

However, an attraction of this display was its juxtaposition over another storm, an earthly one, flashing lightning to the northwest of me.

The all-sky aurora of June 22, 2015, during a level 7 to 9 geomagnetic storm, as the display brightened again in the middle of the night at about 1 am, with rays converging at the zenith in the perpetual twilight of a solstice night. This is one frame from a 568-frame time-lapse, taken with the 8mm Sigma fish-eye lens at f/3.5 and with the Canon 6D, composed for projection in tilt-dome digital planetariums. I was on the south shore of Crawling Valley Lake and Reservoir in southern Alberta.

By 1 a.m. MDT the display, while still widespread over a large area of the northern sky, had turned into a diffuse glow.

But 60 gigabytes of images later, I headed home. The time-lapse compilation will come later!

– Alan, June 23, 2015 / © 2015 Alan Dyer / www.amazingsky.com

Red Rock Canyon by Starlight


Red Rock Canyon by Starlight

The Milky Way illuminates the trail at Red Rock Canyon, in Waterton Lakes National Park.

Last Sunday night was incredibly clear. I trekked around Waterton Lakes National Park, taking panoramas at various sites. This is Red Rock Canyon, a popular spot by day.

By night it is one of the darkest accessible places in the Park. Here the landscape is lit only by the light of the stars and Milky Way.

This is a composite of two exposures, both on a tripod with no tracking of the sky motion:

– one exposure was 60 seconds for the sky to minimize star trailing.

– the other exposure, taken immediately following, was 3 minutes for the ground, to bring out detail in the dark, starlit landscape.

I blended the two exposures in Photoshop, creating a single image with the best of both worlds, earth and sky.

– Alan, September 25, 2014 / © 2014 Alan Dyer