On November 11, I traveled to the near-flung corners of my backyard to observe the rare transit of Mercury across the Sun.
History is replete with tales of astronomers traveling to the far corners of the Earth to watch dark objects pass in front of the Sun — the Moon in eclipses, and Mercury and Venus in transits.
On November 11, to take in the last transit of Mercury until 2032, I had planned a trip to a location more likely to have clear skies in November than at home. A 3-day drive to southern Arizona was the plan.
But to attend to work and priorities at home I cancelled my plans. Instead, I decided to stay home and take my chances with the Alberta weather, perhaps making a run for it a day’s drive away if needed to chase into clear skies.
As it turned out, none of that was necessary. The forecast for clear, if cold, skies held true and we could not have had a finer day for the transit. Even the -20° C temperatures were no problem, with no wind, and of course sunshine!
Plus being only steps from home and a warming coffee helped!
As it turned out, the site in Arizona I had booked to stay was clouded out for the entire event. So I was happy with my decision!
For my site in Alberta, as for all of western North America, the Sun rose with the transit in progress. But as soon as the Sun cleared the horizon there was Mercury, as a small, if fuzzy, black dot on the Sun.
As the Sun rose the view became sharper, and was remarkable indeed — of a jet black dot of a tiny planet silhouetted on the Sun.
I shot through two telescopes, my 4-inch and 5-inch refractors, both equipped with solar filters of course. I viewed through two other telescopes, for white-light and hydrogen-alpha filtered views.
I was able to follow the transit for three hours, for a little more than half the transit, until Mercury exited the Sun just after 11 a.m. MST. The view below is from moments before Mercury’s exit, or “egress.”
I shot still frames every 15 seconds with each of the two cameras and telescopes, for a time-lapse, plus I shot real-time videos.
At this transit Mercury passed closer to the centre of the Sun’s disk than it will for any other transit in the 21st century, making this event all the more remarkable. That point is recorded above, from a shot taken at 8:19 a.m. MST.
Stacking a selection of the time-lapse frames, ones taken 1-minute intervals, produced this composite of the transit, from just before mid-transit until Mercury’s egress.
I assembled all the best images and 4K videos together into a movie, which I narrated live at the telescope as the transit was happening. I hope this provides a sense of what it was like to view this rare event.
The Transit of Mercury from Alan Dyer on Vimeo.
We won’t see another until 2032, but not from North America. The next transit of Mercury viewable from here at home is not until 2049! This was likely my last transit, certainly for a while!
P.P.S.: And for tech details on the images and videos in this blog, please click through to Vimeo and the video description I have there of cameras, scopes, and settings.
I present the final cut of my eclipse music video, from the Teton Valley, Idaho.
I’ve edited my images and videos into a music video that I hope captures some of the awe and excitement of standing in the shadow of the Moon and gazing skyward at a total eclipse.
Totality over the Tetons from Alan Dyer on Vimeo.
The video can be viewed in up to 4K resolution. Music is by the Hollywood session group and movie soundtrack masters, Audiomachine. It is used under license.
Me at the 2017 total solar eclipse celebrating post-eclipse with four of the camera systems I used, for close-up stills through a telescope, for 4K video through a telephoto lens, and two wide-angle time-lapse DSLRs. A fifth camera used to take this image shot an HD video selfie.Never before have I been able to shoot a total eclipse with so many cameras to capture the scene from wide-angles to close-ups, in stills, time-lapses, and videos, including 4K. Details on the setup are in the caption for the video on Vimeo. Click through to Vimeo.
I scouted this site north of Driggs, Idaho two years earlier, in April 2015. It was perfect for me. I could easily set up lots of gear, it had a great sightline to the Grand Tetons, and a clear horizon for the twilight effects. And I had the site almost to myself. Observing with a crowd adds lots of energy and excitement, but also distraction and stress. I had five cameras to operate. It was an eclipse experience I’ll likely never duplicate.
If you missed this eclipse, you missed the event of a lifetime. Sorry. Plain and simple.
A composite of the 2017 eclipse with time running from left to right, depicting the onset of totality at left, then reappearance of the Sun at right. Taken with the 4-inch telescope shown above.If you saw the eclipse, and want to see more, then over the next few years you will have to travel far and wide, mostly to the southern hemisphere between now and 2024.
But on April 8, 2024 the umbral shadow of the Moon once again sweeps across North America, bringing a generous four minutes of totality to a narrow path from Mexico, across the U.S., and up into eastern Canada.
It will be the Great North American Eclipse. Seven years to go!
I present my Top 10 Tips for photographing the August 21 total eclipse of the Sun.
If the August total eclipse will be your first, then you could heed the advice of many and simply follow “Tip #0:” Just don’t photograph it! Look up and around to take in the spectacle. Even then, you will not see it all.
However, you might see less if you are operating a camera.
But I know you want pictures! To help you be successful, here are my tips for taking great photos without sacrificing seeing the eclipse.
An iPhone in a tripod bracket and on a small tabletop tripod.
TIP #1: Keep It Simple
During the brief minutes of totality, the easiest way to record the scene is to simply hold your phone camera up to the sky and shoot. Zoom in if you wish, but a wide shot may capture more of the twilight effects and sky colors, which are as much a part of the experience as seeing the Sun’s gossamer corona around the dark disk of the Moon.
Better yet, use an adapter to clamp your phone to a tripod. Frame the scene as best you can (you might not be able to include both the ground and Sun) and shoot a time-lapse, or better yet, a video.
Start it 2 or 3 minutes before totality (if you can remember in the excitement!) and let the camera’s auto exposure take care of the rest. It’ll work fine.
That way you’ll also record the audio of your excited voices. The audio may serve as a better souvenir than the photos. Lots of people will have photos, but nobody else will record your reactions!
Just make sure your phone has enough free storage space to save several minutes of HD video or, if your camera has that feature, 4K video.
A wide shot of the 2006 eclipse in Libya with a high altitude Sun. 10mm lens on a cropped-frame Canon 20Da camera.
TIP #2: Shoot Wide With a DSLR
For better image quality, step up to this hands-off technique.
Use a tripod-mounted camera that accepts interchangeable lenses (a digital single lens reflex or a mirrorless camera) and use a lens wide enough to take in the ground below and Sun above.
Depending on where you are and the sensor size in your camera, that’ll likely mean a 10mm to 24mm lens.
By going wide you won’t record details in the corona of the Sun or its fiery red prominences. But you can record the changing sky colors and perhaps the dark shadow of the Moon sweeping from right to left (west to east) across the sky. You can also include you and your eclipse group silhouetted in the foreground. Remember, no one else will record you at the eclipse.
A sequence of shots of the 2012 eclipse from Australia, with a wide 15mm lens and camera on Auto Exposure showing the change of sky color.The total eclipse of the Sun, November 14, 2012, from a site near Lakeland Downs, Queensland, Australia. Shot with the Canon 5D Mark II and 15mm lens for a wide-angle view showing the Moon’s conical shadow darkening the sky and the twilight glow on the horizon. Taken near mid-eclipse.
TIP #3: Shoot on Auto Exposure
For wide shots, there’s no need to attend to the camera during the eclipse. Set the camera on Auto Exposure – Aperture Priority (Av), the camera ISO between 100 to 400, and your lens aperture to f/2.8 (fast) to f/5.6 (slow).
Use a higher ISO if you are using a slower lens such as a kit zoom. But shoot at ISO 100 and at f/2.8 if you have a wide lens that fast.
In Av mode the camera will decide what shutter speed to use as the lighting changes. I’ve used this technique at many eclipses and it works great.
An accessory intervalometer set for an interval of 1 second.
TIP #4: Let the Camera Do the Shooting
To make this wide-angle technique truly hands-off use an intervalometer (either built into your camera or a separate hardware unit) to fire the shutter automatically.
Once again, start the sequence going 3 to 5 minutes before totality, with the intervalometer set to fire the shutter once every second. Don’t shoot at longer intervals, or you’ll miss too much. Shutter speeds won’t likely exceed one second.
Again, be sure your camera’s memory card has enough free space for several hundred images. And don’t worry about a solar filter on your lens. It’ll be fine for the several minutes you’ll have it aimed up.
Out of the many images you’ll get, pick the best ones, or turn the entire set into a time-lapse movie.
A Nikon DSLR and lens set to Manual Focus.
TIP #5: Shoot on Manual Focus
Use Auto Exposure and an intervalometer. But … don’t use Auto Focus.
Switch your lens to Manual Focus (MF) and focus on a distant scene element using Live View.
Or use Auto Focus to first focus on something in the distance, then switch to Manual and don’t touch focus after that. If you leave your lens on Auto Focus the shutter might not fire if the camera decides it can’t focus on the blank sky.
A comparison of a Raw image as it came from the camera (left) and after developing in Lightroom (right).
TIP #6: Shoot Raw
For demanding subjects like a solar eclipse always shoot your images in the Raw file format. Look in your camera’s menus under Image Quality.
Shoot JPGs, too, if you like, but only Raw files record the widest range of colors and brightness levels the camera sensor is capable of detecting.
Later in processing you can extract amazing details from Raw files, both in the dark shadows of the foreground, and in the bright highlights of the distant twilight glows and corona around the Sun. Software to do so came with your camera. Put it to use.
A 200mm telephoto and 1.4x Extender, with the camera on a sturdy and finely adjustable tripod head.
TIP #7: OK, Use a Telephoto Lens! But …
If you really want to shoot close-ups, great! But don’t go crazy with focal length. Yes, using a mere 135mm or 200mm lens will yield a rather small image of the eclipsed Sun. But you don’t need a monster 600mm lens or a telescope, which typically have focal lengths starting at 600mm. With long focal lengths come headaches like:
•Keeping the Sun centered. The Earth is turning! During the eclipse that motion will carry the Sun (and Moon) its own diameter across your frame from east to west during the roughly two minutes of totality. While a motorized tracking mount can compensate for this motion, they take more work to set up properly, and must be powered. And, if you are flying to the eclipse, they will be much more challenging to pack. I’m trying to keep things simple!
•Blurring from vibration. This can be an issue with any lens, but the longer your lens, the more your chances of getting fuzzy images because of camera shake, especially if you are touching the camera to alter settings.
An ideal focal length is 300mm to 500mm. But …
When using any telephoto lens, always use a sturdy tripod with a head that is easy to adjust for precise aiming, and that can aim up high without any mechanical issues. The Sun will be halfway, or more, up the sky, not a position some tripod heads can reach.
A re-processed version of a still frame of the total solar eclipse of November 14, 2012 taken from our site at Lakeland Downs, Queensland, Australia. This is a still frame shot during the shooting of an HD video of the eclipse, using the cropped-frame Canon 60Da and Astro-Physics Traveler 4-inch apo refractor telescope at f/5.8 (580mm focal length). The image is 1/60th second at ISO 100. This is a full-sized still not a frame grab taken from the movie.A sequence from a movie showing the camera adjusting the exposure automatically when going from a filtered view (left) to an unfiltered view of the diamond ring (right).
TIP #8: Use Auto Exposure, or … Shoot a Movie
During totality with your telephoto, you could manually step through a rehearsed set of exposures, from very short shutter speeds (as short as 1/4000 second) for the diamond rings at either end of totality, to as long as one or two seconds at mid-totality for the greatest extent of the corona’s outermost streamers.
But that takes a lot of time and attention away from looking. Yes, there are software programs for automating a camera, or techniques for auto bracketing. But if this is your first eclipse an easier option is to simply use Auto Exposure/Aperture Priority and let the camera set the shutter speed. Again, you could use an intervalometer to fire the shutter so you can just watch.
Don’t use high ISO speeds. A low ISO of 100 to 400 is all you need and will produce less noise. The eclipsed Sun is still bright. You don’t need ISO 800 to 3200.
Even on Auto Exposure, you’ll get good shots, just not of the whole range of phenomena an eclipsed Sun displays.
Or, once again and better yet – put your camera into video mode and shoot an HD or 4K movie. Auto Exposure will work just fine, allowing you to start the camera then forget it.
Place the Sun a solar diameter or two to the left of the frame and let the sky’s motion drift it across the frame for added effect. Start the sequence running a minute or two before totality with your solar filter on. Then just let the camera run … except …
A small refractor telescope with a solar filter over the front aperture. That filter has to be removed for totality.
TIP #9: Remember to Remove the Filter!
You will need a safe solar filter over your lens or telescope to shoot the partial phases of the eclipse, and to frame and focus the Sun. This cannot be a photo neutral density or polarizing filter. It must be a filter designed for observing and shooting the Sun, made of metal-coated glass or Mylar plastic. Anything else is not safe and likely far too bright.
But you do NOT need the filter for totality.
Remove it … when?
The answer: a minute or so before totality if you want to capture the first diamond ring just before totality officially starts. Set a timer to remind you, as visually it is very difficult to judge the right moment with your unaided eye. The eclipse will start sooner than you expect.
If you have your camera on Auto Exposure, it will compensate just fine for the change in brightness, from the filtered to the unfiltered view.
But don’t leave your unfiltered camera aimed at the Sun. Replace the filter no more than a minute or so after totality and the second diamond ring ends.
The partial eclipse of the Sun, October 23, 2014, shot through a mylar filter, on the front of the 66mm f/7 apo refractor shown above (450mm focal length), using a cropped-frame Canon 60Da camera for 1/8000 second exposure at ISO 100. Focus on the sharp tips of the crescent Sun or a sunspot if one is present.
TIP #10: Focus!
Everyone worries about getting the “best exposure.” Don’t! You’ll get great looking telephoto eclipse close-ups with any of a wide range of exposures.
What ruins most eclipse shots, other than filter forgetfulness, is fuzzy images, from either shaky tripods or poor focus.
Focus manually using Live View on the filtered partially eclipsed Sun. Zoom up on the edge of the Sun or sharp tip of the crescent. Re-focus a few minutes before totality, as the changing temperature can shift the focus of long lenses and telescopes.
But you needn’t worry about re-focusing after you remove the filter. The focus will not change with the filter off.
Me in Libya in 2006 with my eclipse setup: a small telescope on an alt-azimuth mount.
TIP #1 AGAIN: Keep It Simple!
I’ll remind you to keep things simple for a reason other than giving you time to enjoy the view, and that’s mobility.
You might have to move at the last minute to escape clouds. Complex photo gear can be just too much to take down and set up, often with minutes to spare, as many an eclipse chaser can attest is often necessary. Keep your gear light, easy to use, and mobile. Committing to an overly ambitious and inflexible photo plan and rig could be your undoing.
By following both my “Ten Tips” advice blogs you should be able to get great eclipse images to wow your friends and fans, all without missing the experience of actually seeing … and feeling … the eclipse.
However … may I recommend …
My 295-page ebook on photographing the August 21 total eclipse of the Sun is now available. See http://www.amazingsky.com/eclipsebook.html It covers all techniques, for both stills, time-lapses, and video, from basic to advanced, plus a chapter on image processing. And a chapter on What Can Go Wrong?! The web page has all the details on content, and links to order the book from Apple iBooks Store (for the best image quality and navigation) or as a PDF for all other devices and platforms. Thanks! Clear skies on eclipse day, August 21, 2017.
For much more detailed advice on shooting options and techniques, and for step-by-step tutorials on processing eclipse images, see my 295-page eBook on the subject, available as an iBook for Apple devices and as a PDF for all computers and tablets.
The most spectacular sight the universe has to offer is coming to a sky near you this summer.
On August 21 the Moon will eclipse the Sun, totally!, along a path that crosses the continental USA from coast to coast. All the details of where to go are at the excellent website GreatAmericanEclipse.com.
If this will be your first total solar eclipse, you might want to just watch it. But many will want to photograph or video it. It can be easy to do, or it can be very complex, for those who are after ambitious composites and time-lapses.
To tell you how to shoot the eclipse, with all types of cameras, from cell phones to DSLRs, with all types of techniques, from simple to advanced, I’ve prepared a comprehensive ebook, How to Photograph the Solar Eclipse.
It is 295 pages of sage advice, gathered over 38 years of shooting 15 total solar eclipses around the world.
The book is filled with illustrations designed specifically for the 2017 eclipse – where the Sun will be, how to frame the scene, what will be in the sky, how the shadow will move, where the diamond rings will be, what lenses to use, etc.
Here are a few sample pages:
I cover shooting with everything from wide-angle cameras for the entire scene, to close-ups with long telephotos and telescopes, both on tripods and on tracking mounts.
I cover all the details on exposures and camera settings, and on focusing and ensuring the sharpest images. Most bad eclipse pix are ruined not by poor exposure but poor focus and blurry images – the Sun is moving!
A big chapter covers processing of eclipse images, again, from simple images to complex stacks and composites.
For example, I show how to produce a shot like this, from 2012, combining a short diamond ring image with a long-exposure image of the corona.
A final chapter covers “what can go wrong!” and how to avoid the common mistakes.
The ebook is available on the Apple iBooks Store for Mac and iOS devices. This version has the best interactivity (zoomable images), higher quality images (less compression), and easiest content navigation.
However, for non-Apple people and devices, the ebook can also be purchased directly from my website as a downloadable PDF, which has embedded hyperlinks to external sites.
I think you’ll find the ebook to be the most comprehensive guide to shooting solar eclipses you’ll find. It is up to date (as of last week!) and covers all the techniques for the digital age.
Many thanks, and clear skies on August 21, wherever you may be in the shadow of the Moon!
This is a video 37 years in the making, compiling images and videos I’ve shot of total solar eclipses since my first in 1979.
Though I’ve “sat out” on the last couple of total eclipses of the Sun in 2015 and 2016, I’m looking forward to once again standing in the shadow of the Moon in 2017 – on August 21.
If you have not yet seen a total eclipse of the Sun, and you live in North America, next year is your chance to. It is the most spectacular and awe-inspiring event you can witness in nature.
I hope my video montage relays some of the excitement of being there, as the Moon eclipses the Sun.
As always, click HD and enlarge to full screen.
My montage features images and movies shot in:
• Manitoba (1979)
• Chile (1994)
• Curaçao (1998)
• Turkey (1999)
• Zimbabwe (2001)
• Australia (2002)
• Over Antarctica (2003)
• South Pacific near Pitcairn Island (2005)
• Libya (2006)
• Over Arctic Canada (2008)
• South Pacific near the Cook Islands (2009)
• Australia (2012)
• Mid-Atlantic Ocean (2013)
Out of the 15 total solar eclipses I have been to, only the 1991 and 2010 eclipses that I did go to are not represented in the video, due to cloud. Though we did see much of the 1991 eclipse from Baja, clouds intervened part way through, thwarting my photo efforts.
And I only just missed the 2010 eclipse from Hikueru Atoll in the South Pacific as clouds came in moments before totality. Of course, it was clear following totality.
Cameras varied a lot over those years, from Kodachrome film with my old Nikon F, to digital SLRs; from 640×480 video with a Sony point-and-shoot camera, to HD with a DSLR.
I shot images through telescopes to capture the corona and prominences, and with wide-angle lenses to capture the landscape and lunar shadow. I rarely shot two eclipses the same way or with the same gear.
I hope you enjoy the video and will be inspired to see the August 21, 2017 eclipse. For more information about that eclipse, visit:
On May 9, a last-minute chase into clear skies netted me a view of the rare transit of Mercury across the Sun.
The forecast called for typical transit weather – clear the day before, and clear the day after. But the day of the transit of Mercury? Hopeless at home in Alberta, unless I chanced the prospects of some clearing forecast for central Alberta.
As the satellite image below, for 8:30 a.m. MDT on May 9, shows, that clearing did materialize. But I headed west, as far west as I needed to go to be assured of clear skies – to central BC. Kamloops in fact.
I stayed at the Alpine Motel, got a great room as the end, and set up in the parking lot away from traffic. Not the most photogenic of observing sites, but I was happy! I had my clear skies!
I set up two telescopes, above: a 130mm refractor to shoot through, and an 80mm refractor to look through. Both with dense solar filters!
Both worked great. However, low cloud prevented me seeing the Sun as soon as it cleared the eastern hills. So this was my first good look, below, at the transit as the Sun rose above the clouds.
The May 9, 2016 transit of Mercury taken about half an hour after sunrise, as the Sun emerged from low horizon cloud. Taken from Kamloops, British Columbia, where the transit was well underway at sunrise. Mercury appears as the circular dot at lower left, with a sunpot group above centre. I shot this with the 130mm Astro-Physics refractor at f/6 prime focus with the Canon 60Da camera at ISO 100. Shot through a Kendrick white light solar filter. The low atltitude added much of the yellow colouration.
There it was – the fabled “little black spot on the Sun today.” Mercury is the dot at lower left, with a sunspot group at upper right. This was the first transit of Mercury since November 8, 2006. We see only about 13 Mercury transits a century, so in a lifetime of stargazing (the Sun is a star!) even the most avid amateur astronomer might see only a handful. This was only my third transit of Mercury.
The May 9, 2016 transit of Mercury taken about 45 minutes after sunrise, as the Sun emerged from low horizon cloud. I shot this with the 130mm Astro-Physics refractor at f/6 prime focus with the Canon 60Da camera at ISO 100. Shot through a Kendrick white light solar filter.
This was the view, above, a little later, as the Sun entered more assuredly clear skies. From about 7 a.m. PDT on, the Sun was in the clear most of the morning, with just occasional puffy clouds intervening now and then.
I shot still images every 30 seconds, to eventually turn into a time-lapse movie (after a ton of work hand registering hundreds of frames!).
But for now, I’ll be content with this composite of 40 frames, below, taken at 7-minute intervals. It shows the progress of Mercury across the Sun over the last 4.5 hours or so of the event, until egress at 11:38 a.m. PDT.
This motion is due to Mercury’s movement around the Sun. A transit is one of the few times you can easily see a planet actually orbiting the Sun.
For all images I used the 130mm f/6 Astro-Physics refractor with a 2X Barlow for an effective focal length of 1560mm and the Canon 60Da camera (at ISO 100) to yield an image size with the Sun just filling the frame. Exposures were 1/250th second through a Kendrick white light Mylar filter. Yellow colouration of the solar disk added in processing.
In this composite, the disks of Mercury are not all perfect dots. The wobbly seeing conditions distorted the images from frame to frame. But I used the actual images taken at that moment, rather than clone some perfect image across the disk to simulate the path.
To wrap up, here’s Mercury Transit: The Movie! I shot several HD and zoomed-in “crop mode” movies at the beginning of the transit and again at the final egress. Commentary is from me talking live into the camera mic as I was shooting the clips. Background noise is courtesy Pacific Drive and the Trans-Canada Highway!
Enjoy, and do enlarge to HD and full-screen for the best look.
The next transit of Mercury is November 11, 2019. If you are hoping for a transit of Venus, good luck. The next is not until December 10, 2117!
A successful solar eclipse! Always a great thing to celebrate!
Today, several hundred people, including students from the nearby elementary and high schools, enjoyed views of the Moon eclipsing the Sun from Jasper, Alberta. The eclipse event in Centennial Park was part of the Park’s annual Dark Sky Festival, held to celebrate the National Park’s status as a Dark Sky Preserve.
The photo above is a long 1/25 second exposure, though still taken through a solar filter, of the eclipsed Sun dimmed by clouds. The longer exposure enabled me to pick up the clouds and iridescent colours around the Sun.
The photo below is a single exposure capturing the viewing through the many telescopes supplied by volunteers from the Royal Astronomical Society of Canada (Edmonton and Regina Centres), as well as capturing the crescent Sun, seen here though a handheld solar filter.
Clouds came and went over the afternoon, but when they needed to be gone, clouds cleared off around the Sun for great views of the Moon hiding then revealing the giant sunspot that was the highlight of this eclipse.
The image below, which I shot through a small telescope at 1/8000th second through a filter, shows the big spot group about to be hidden by the advancing limb of the Moon.
This event was our last solar eclipse visible from most of Canada until the long-awaited “Great American Eclipse” of August 21, 2017, when the lunar umbral shadow will sweep across the United States, bringing a total eclipse to the U.S. and a substantial partial eclipse to Canada.
A solar halo and sundogs surround the Sun on a cold winter day in Alberta.
I’m back home amid the snow and cold. The one celestial treat to such a clear but cold winter day is the appearance of sundogs and solar halos around the cold Sun.
This was this morning, with the low winter Sun above my snow-covered backyard, and the air filled with tiny ice crystals. You can see them as sparkly “stars” in the sky and in the foreground. Those crystals are refracting the sunlight and making the coloured “rainbows” on either side of the Sun called “parhelia” or sundogs. A faint halo encircles the Sun, topped by an upper tangent arc.
You can read more about halos and their origin at Les Cowley’s AtmosphericOptics website.
Here’s another view with a wider-angle lens. I’ve punched up the vibrance to bring out the fact that the shadows on such a day are not black or grey but blue, coloured by the intense blue light streaming down from the sky.
With these winter scenes, I wish all my blog fans and followers a very Merry Christmas, happy holidays and a very happy New Year. Clear skies to all in 2014!
I superimposed the actual footage of Comet ISON passing by the Sun onto a graphic simulating its predicted path around the Sun at perihelion. They match!
This is an animation of Comet ISON at perihelion. I superimposed the actual SOHO satellite movie footage, released Friday, Nov 29, onto a still-image sky background (created with Starry Night™ software) that shows the scene at the moment of perihelion, and that displays the predicted orbital path of ISON plus labels the stars.
You’ll see the star fields (real and simulated) register fairly closely (check Antares at lower left) around the time of perihelion. It’s neat how the comet follows its predicted path! Well, of course! Newtonian gravity stills rules the solar system.
But I am amazed at how well the simulation (which is done from the viewpoint of the surface of Earth) lines up with the real movie (which was taken by the SOHO satellite from the L1 point 1.5 million km away from Earth but in the Earth-Sun line).
The Sun rises into a pastel palette of sky and earth tones.
I woke up early, just at sunrise, looked outside and wow!
I grabbed the camera and telephoto and got another nice shot right from my back deck. The canola field next to my yard is proving to be a photogenic foreground now that it’s in full bloom, just in the last couple of weeks.
There was enough haze and humidity in the air to dull the Sun to a fiery orange. The range of shades in earth and sky was wonderful. It was a classic prairie scene worth getting up for.
Being able to see the horizon is why I live on the plains and not in the foothills or mountains. And certainly not in the city!
This is the “director’s cut” movie of the November 14 total eclipse of the Sun in Australia, unabridged and unedited.
I shot this movie of the eclipse through a telescope to provide a frame-filling closeup view of totality. This is the entire eclipse, from just before totality until well after. So it includes both diamond rings: at the onset of totality and as totality ends.
A few seconds into the movie I remove the solar filter which produces a flash of light until the camera readjusts to the new exposure. Then you really see the eclipsed Sun!
We got 1m28s of totality from our viewing site near Lakeland Downs, Queensland. But the movie times out at slightly less, because at several points where you hear a shutter click, I took a still frame which interrupts the movie. You can see some of those still images in earlier blog posts.
My timing was a little off, as I opened up the exposure to reveal more of the outer corona only moments before the end of totality, so the first moment of the final diamond ring is a little overexposed. During totality I was looking with binoculars, and made the mistake of going over and checking on my other wide-angle time-lapse camera. That wasted time needlessly. I should have spent more time attending to the movie camera and taking more stills at various exposures. No eclipse every goes quite as planned. Losing 30 seconds of totality in order to seek out clearer skies did cost me some images and enjoyment time in the umbra. But our experience was far less stressful than those who dodged clouds (or failed to miss the clouds, in some cases) at sites closer to or at the coast.
The original of this movie is in full 1920 x 1080 HD, shot with the Canon 60Da through the 105mm f/5.8 Astro-Physics apo refractor, on an equatorial mount tracking the Sun. I rarely have the luxury of shooting an eclipse through such extravagant gear, as I would never haul that type of hefty gear now on an aircraft to remote sites. But this equipment emigrated to Australia in 2002 for the total eclipse in South Australia and has been here down under ever since. So this is its second Australian eclipse. Mine, too!
The Sun sets in a ball of fire behind the skyline of Calgary.
For this shot on September 27 I found a spot on an overpass on the Ring Road east of Calgary to look west. Using an app for the iPad, LightTrac, I was able to locate the exact spot where the Sun would set behind the skyline, including the new 50-storey Bow Tower.
Getting the Sun big compared to the buildings means shooting from a distance with a telephoto lens. I used a 200mm and 1.4x extender here.
It would have been nice to have shot from a higher altitude but such places are hard to find east of Calgary where the land flattens out onto the prairie. However, this was a good test of the technique for lining up a rising or setting Sun or Moon with a photogenic foreground. That’ll come in handy this weekend for the Harvest Moon.
Smoke reddened the Sun and turned it into a ball of fire setting into the west.
This was Monday night, September 24, looking toward the hills in the west end of Calgary. I positioned myself on the north side of the Bow River across from the downtown core, at the top of the river valley to catch the Sun in this telephoto shot. The other camera was taking a time-lapse sequence in a wider scene with the Bow River in view.
We are certainly having some fine sunsets of late, thanks to forest fire smoke.
The day looked hopeless with not a chance of clear skies. But a small hole opened, revealing Venus on the Sun.
I had seen this sight before, in 2004 from Egypt. But my first reaction upon seeing it again, albeit briefly, was [Expletive Deleted]!!! No photos really provide the visual impression of just how enormous Venus appears on the Sun. We’re used to sunspots (and there were lots today) and some quite large. But nothing we ever see on the Sun matches the size of Venus. The eyepiece impression is of something much larger than the photos show. It’s like Moon illusion at work on the Sun.
It had been hopelessly cloudy all day in Calgary. Interpretive obligations over at the science centre (where we showed the NASA webcast from Hawaii), I hit the highway in search of a clear hole … and found one northeast of the city, one at first that seemed to be wide and stable. I stopped, looked with the filtered naked eye, then drove on seeking slightly less cloud, getting greedy! I should have stopped sooner. By the time I did stop and hurriedly set up the little 80mm refractor telescope, I had about 30 seconds for a great clean view, then switched to the camera. By the time I got it set, clouds were coming out of nowhere and thickening fast. I couldn’t shoot through the solar filter. This is a filterless shot, at 1/8000th second! Clouds provided the natural filtration. Fine! At least I got the camera focused, for a crisp view of Venus next to the clusters of sunspots, something no one alive has seen — in 2004 the Sun was virtually spotless.
So, not a view or photo under the best of conditions, but an experience I am happy to settle for. Now, I just want clear skies in Australia for November’s total solar eclipse. Please!!
This was the first significant solar eclipse in many years that I did not travel to. For the May 20, 2012 eclipse I was content to stay at home on the sidelines and take in the partial eclipse of the Sun.
From Calgary, the Moon covered about 62% of the Sun at mid-eclipse, which this shot captures, taken at maximum eclipse for us. Here, a big sunspot group is just being uncovered by the passing Moon. Having lots of spots on the Sun this day made the partial eclipse all the more interesting, though still no comparison to the annular eclipse visible over the spectacular landscapes of the southwestern U.S.
I would have been there, in the Moon’s ant-umbral shadow, had it not been for the fact that at home I am very much involved in the opening of a new planetarium and digital dome theatre at the science centre, TELUS Spark, where I work. This is a milestone event in one’s life, one I’ve had the privilege of experiencing twice before, in 1984 in Edmonton with the opening of its new science centre and planetarium, and in 1996 when we converted the old Calgary Centennial Planetarium into a then state-of-the-art tilt-dome theatre. Oddly coincidental, I missed seeing the May 15, 1984 annular eclipse in the SE United States due to the imminent opening of the Edmonton theatre. History repeats itself — a Saros cycle of science centres perhaps?
For this eclipse we conducted a public viewing session and managed to grab excellent views once clouds cleared away before mid-eclipse. Eclipse anxiety was running high leading up to and through the initial minutes of the eclipse as it looked like clouds were going to skunk us. But wonder of wonders, the sky cleared and the eclipsed Sun was revealed, to my great relief. Missing the annular eclipse is bad enough; I didn’t want to miss the partial eclipse, too!
Now, we just need clear skies on June 5 for the transit of Venus.
This is the news maker of the week, the sunspot group known as Region #1429.
It hit the headlines this past week as it let loose several intense solar flares, triggering geomagnetic storms around Earth and some aurora displays. Even as I took this shot of the Sun on Saturday afternoon, through a normal white light filter, Region #1429 was unleashing another intense flare, visible in red H-alpha light as a brilliant bright spot embedded in the dark sunspot. We can expect some more solar storms heading our way, and perhaps displays of northern lights.
The Sun is picking up in activity and there will be lots more of these headline events over the next few years, as the news media latch onto to any story that promises to wreak mayhem and chaos here on Earth. In reality, these events won’t have much effect on us in everyday life except to create beautiful auroras we can admire.
I can count on one hand how many shots of the Sun I’ve taken in the last decade that weren’t at an eclipse, or a sunrise/sunset. I just don’t do much solar shooting. But today I had to resurrect some old gear to get this shot. The Sun was putting on a fabulous show this afternoon (Sunday, June 5, 2011) with an army of huge prominences rimming the edge of the Sun. Very impressive. And looking very HOT!
After 2 to 3 years of record low activity, the Sun is picking up, returning to its normal self, with sunspots and prominences a daily occurrence. But these were especially dramatic. Each of these prominence “flames: towers tens of thousands of kilometre above the surface of the Sun. The Earth would be a dot next to one of them.
To get this shot, I created a masked composite in Photoshop of two exposures, a short 1/13s second shot to record the disk detail, and a long 1/2 second shot to record the fainter limb prominences. For a telescope I used my little Coronado PST H-alpha scope, a special scope just for solar viewing that filters out all but a narrow wavelength of red light, allowing the prominences to be seen.
Trouble is, my DSLR cameras won’t reach focus on the Coronado scope. So I dusted off the little 2003 vintage Sony DSC-V1 point and shoot camera and a Scopetronix 40mm eyepiece and “afocal” adapter, so the camera was screwed onto and looking into the eyepiece which was then inserted into the scope. I hadn’t used an afocal setup like that since the Venus transit in 2004.
It was tough to focus the stack, so focus was a bit of a guess — it was helped here with a liberal application of Photoshop’s Smart Sharpen filter! In all, it is a crude system but in a pinch it does work. Maybe I’ll have to get better gear just to take solar shots. With the Sun becoming more active, there certainly will be lots more to shoot.