Touring the Wonders of the Winter Sky


The Wonders of the Winter Sky

I present a tour of the deep-sky wonders of the winter sky.

While some might think the Milky Way is only a summer sight, the winter Milky Way is well worth a look!

In January and February we are looking outward from our location in the Milky Way, toward the Orion Spur, the minor spiral arm we live in. In it, and in the major Perseus Arm that lies beyond, lie hotbeds of star formation.

Artist's impression of the Milky Way (updated - annotated)
Courtesy European Southern Observatory

These star forming areas create a panorama of star clusters and glowing nebulas along the winter Milky Way and surrounding the constellation of Orion. The montage above shows the best of the deep-sky sights at this time or year.

(And yes, for southern hemisphere viewers I know this is your summer sky! But for us northerners, Orion is forever associated with frosty winter nights.)

The closeups below are all with a 200mm telephoto lens providing a field of view similar to that of binoculars. However, most of these nebulas are photographic targets only.


The Belt and Sword of Orion

The Belt and Sword of Orion with Barnard's Loop
This is a stack of 16 x 2- to 3-minute exposures with the filter-modified Canon 5D MkII at ISO 800 to 1250 and 200mm Canon L-Series lens at f/2.8. Taken with the Fornax Lightrack tracker as part of testing. Taken from home on January 8, 2019 during a clear couple of hours between passing haze and cloud.

This is the heart of the star formation activity, in the centre of Orion.

The bright Orion Nebula (or Messier 42 and 43) at bottom in Orion’s Sword is obvious in binoculars and glorious in a small telescope.

The Horsehead Nebula above centre and just below Orion’s Belt is famous but is a tough target to see through even a large telescope.

Barnard’s Loop at left is a wave of nebulosity being blown out of the Orion area by strong stellar winds. Any sighting of this object by eye is considered a feat of observing skill!


The Rosette Nebula and Area

Rosette and Christmas Tree Cluster with 200mm
The area of the Rosette Nebula (bottom) and Christmas Tree Cluster (top) in Monoceros with the Fornax Lightrack tracker and 200mm lens and filter modified Canon 5D MkII. This is a stack of 10 x 3 minute exposures at ISO 800.

The small cluster of hot young stars inside the Rosette Nebula is blowing a hole in the nebula giving it its Rosette name. Above is a loose star cluster called the Christmas Tree, surrounded by more faint nebulosity that includes the tiny Cone Nebula.


Gemini Clusters and Nebulas

The Clusters and Nebulas of Gemini
This is a stack of 10 x 3-minute exposures with the filter-modified Canon 5D MkII at ISO 800 and 200mm Canon L-Series lens at f/2.8. Some light haze passing through in some exposures added the natural star glows. I left those in as part of the stack to add the glows. Taken with the Fornax Lightrack tracker as part of testing. Taken from home on a rare fine and mild winter night, January 4, 2019.

This field of clusters and nebulosity is above Orion in Gemini, with Messier 35 the main open star cluster here at top. Below M35 is the tiny star cluster NGC 2158. The nebulosity at left between Mu and Eta Geminorum is IC 443, a remnant of a supernova explosion, and is aka the Jellyfish Nebula. The nebula at bottom is IC 2174, just over the border in Orion and aka the Monkeyhead Nebula.


Auriga Clusters and Nebulas

The Clusters and Nebulas of Auriga
This is a stack of 5 x 3-minute exposures with the filter-modified Canon 5D MkII at ISO 800 and 200mm Canon L-Series lens at f/2.8. Taken with the Fornax Lightrack tracker as part of testing. Diffraction spikes added with Astronomy Tools actions. Taken from home on January 4, 2019.

Above Gemini and Orion lies Auriga, with its rich field of clusters and nebulosity, with — from left to right — Messier 37, Messier 36, and Messier 38, as the main open star clusters here. Below M38 is NGC 1907. The nebulosity at right is IC 410 and IC 405, the Flaming Star Nebula.

In between them is the colourful asterism known as the Little Fish. Messier 38 is also known as the Starfish Cluster while Messier 36 is called the Pinwheel Cluster. The bright red nebula at top is Sharpless 2-235. The little nebulas at centre are NGC 1931 and IC 417.


The California Nebula

The California Nebula in Perseus
This is a stack of 5 x 3-minute exposures with the filter-modified Canon 5D MkII at ISO 800 and 200mm Canon L-Series lens at f/2.8. An additional exposure taken through the Kenko Softon A filter is layered in to add the star glows to bring out their colours. Taken with the Fornax Lightrack tracker. Taken from home on a rare fine and mild winter night, January 4, 2019.

Now we enter Perseus, more an autumn constellation but well up through most of the winter months. It contains the aptly named California Nebula, NGC 1499, at top left, with the bright star Zeta Persei. at bottom A small region of reflection nebulosity, IC 348, surrounds the star Atik, or Omicron Persei, at bottom right. The star just below NGC 1499 is Menkib, or Xi Persei, and is likely energizing the nebula.


The Pleiades, or Seven Sisters

Pleiades M45 with 200mm Lens
The Pleiades with the Fornax Lightrack tracker and 200mm lens + Canon 5D MkII in a stack of 10 x 3 minute exposures at ISO 800.

Obvious to the eye and central to the sky lore of many cultures is the Pleiades, aka the Seven Sisters, in Taurus the bull. It is also called Messier 45.

This is a newly formed cluster of hundreds of stars, passing through a dusty region of the Milky Way, which adds the fuzzy glows around the stars — an example of a reflection nebula, glowing blue as it reflects the blue light of the young stars.


The Hyades

The Hyades Star Cluster with NGC 1647 in Taurus
This is a stack of 5 x 2-minute exposures with the Canon 5D MkII at ISO 800 and 200mm Canon L-Series lens at f/2.8. An additional exposure taken through the Kenko Softon A filter is layered in to add the star glows to bring out their colours. Taken with the Fornax Lightrack tracker. Diffraction spikes added with Astronomy Tools actions for artistic effect.

Below the Pleiades in Taurus lies the larger Hyades star cluster. The V-shaped cluster stars are all moving together and lie about 150 light years away. Bright yellow Aldebaran, the eye of Taurus, is an intruder and lies at only half that distance, so is not a member of Hyades but is a more nearby star. The smaller, more distant star cluster NGC 1647 appears at left.


Seagull Nebula

Seagull Nebula and Sirius with 200mm
This is a stack of 10 x 3 minute exposures at ISO 800 (with the filter-modified Canon 5D MkII and Canon 200mm lens at f/2.8). The rings of colour around Sirius are an artifact of the sensor filter, I think!

Low in my northern winter sky is the brightest star in the sky of any season, Sirius. Just above and to the east of Sirius lies the Seagull Nebula (at top left), also called IC 2177, on the Canis Major-Monoceros border. Like many of these nebulas. the Seagull is too faint to easily see even with a telescope, but shows up well in photographs.


Lambda Orionis Nebula

Lambda Orionis Nebula with 200mm
With the Fornax Lightrack tracker and 200mm lens and filter-modified Canon 5D MkII. A stack of 10 x 3 minute exposures at ISO 800 with the filter-modified Canon 5D MkII and Canon 200mm lens at f/2.8.

This is the head of Orion, with the red supergiant star Betelgeuse at bottom left and the blue giant star Bellatrix right at bottom right. The brightest star at top is Meissa or Lambda Orionis, and is surrounded by a large and very faint area of hydrogen nebulosity. The open cluster around Meissa is catalogued as Collinder 69.

While the winter Milky Way might not look as bright and spectacular as the summer Milky Way of Sagittarius and Scorpius, it does contains a wealth of wonders that are treats for the eye and telescope … and for the camera.

PS.: The techniques for taking and processing images like these form the content of our new Deep Sky with Your DSLR video course now being promoted on KickStarter until the end of February, and available for purchase once it is published later this spring.

See my previous blog post for details.  Thanks and clear skies!

— Alan, February 17, 2019 / © 2019 Alan Dyer / AmazingSky.com 

 

Moonlight in the Badlands


Stars over Sedimentary Layers

Clear nights and a waxing Moon made for great opportunities to shoot the Badlands under moonlight.

This has not been a great spring. Only now is the last of the snow melting here in Alberta.

But some mild and clear nights this week with the waxing gibbous Moon allowed me to head to the Red Deer River valley near where I live in Alberta for some moonlit nightscapes.

 

Big Dipper over the Badlands

Here’s the Big Dipper high overhead as it is in spring pointing down to Polaris.

I shot this and some other images in this gallery with the new Sony a7III mirrorless camera. A full test of its astrophoto abilities is in the works.

Jupiter Rising over Red Deer River Badlands

This is Jupiter rising, with the Moon lighting the sky, and illuminating the landscape. Moonlight is the same colour as sunlight, just much fainter. So while this might look like a daytime scene, it isn’t.

Venus in Twilight at the Hoodoos

This is Venus setting in the evening twilight at the Hoodoos on Highway 10 near Drumheller. The winter stars are setting into the west, to disappear for a few months.

Venus, Pleiades and Hyades in Twilight

Here’s Venus in closeup, passing between the Hyades and Pleiades star clusters in Taurus, low in the twilight over the scenic Horsethief Canyon area of the Red Deer River.

While Venus is climbing higher into our evening sky this spring, the Pleiades, Hyades and all the winter stars are fast disappearing from view.

We say goodbye to winter, and not a moment too soon!

— Alan, April 28, 2018 / © 2018 Alan Dyer / AmazingSky.com

 

Hello, Austral Autumn Sky


Southern Autumn Sky Panorama (Spherical)

The sky looks very different from down under. This is the entire sky of early evening as autumn begins in the southern hemisphere.

My last post showed Orion and the winter sky disappearing into the west, from home in Alberta.

This post shows that same area of sky (here at top) also setting into the west. But that’s the only area of sky familiar to northern hemisphere stargazers.

Everything below Orion and Sirius is new celestial territory for the northern astronomer. Welcome to the fabulous southern hemisphere sky.

And to the autumn sky – From home it is spring. From here in the southern hemisphere summer is giving way to cool nights of autumn.

Straight up, at centre, is the faint Milky Way area containing the constellations of Puppis and Vela, formerly in the constellation of Argo Navis.

Below, the Milky Way brightens in Carina and Crux, the Southern Cross, where dark lanes divide the Milky Way.

At right, the two patches of light are the Large and Small Magellanic Clouds, satellite galaxies of our Milky Way.

The bright object at left is Jupiter rising over the Tasman Sea.

Southern Autumn Sky Panorama (with Labels)

I shot this 360° panorama on March 31, 2017 from Cape Conran on the Gippsland Coast of Victoria, Australia, at a latitude of 37° South.

I’ve turned the panorama so Orion appears as we’re used to seeing him, head up and feet below. But here in the southern hemisphere the image below despicts what he looks like, as he dives headfirst into the west in the evening twilight.

Orion and Waxing Moon Setting at Cape Conran

The bright object here is the waxing crescent Moon, here in Taurus. Taurus is below Orion, while Sirius (the bright star at top) and the stars of Canis Major are above Orion.

Orion, the Milky Way and Waxing Moon at Cape Conran

This view above takes in more of Canis Major. Note the Pleiades to the right of the Moon.

Visiting the southern hemisphere is a wonderful experience for any stargazer. The sky is disorienting, but filled with new wonders to see and old sights turned quite literally on their heads!

— Alan, April 4, 2017 / © 2017 Alan Dyer / AmazingSky.com

 

Farewell Winter Sky


Panorama of the Winter Sky in March

As we celebrate the official arrival of spring in the Northern Hemisphere, we bid adieu to the stars of winter.

This was the scene last night from my backyard, of Orion and the surrounding constellations of the winter sky setting into the southwest in the early evening. Each night they will set sooner and sooner, even as the nights continue to grow shorter and the Sun sets later.

By late April Orion will be gone from our Northern Hemisphere sky — he hangs around until well into May for sites south of the equator.

Panorama of the Winter Sky in March (with Labels)
A horizon-to-zenith panorama of the winter consellations on a March evening as they set into the southwest. Taken from home March 19, 2017. This is a panorama of 5 panels, each with the 20mm Sigma Art lens at f/2, and Nikon D750 at ISO 3200, for 25 seconds each. Stitched with Adobe Camera Raw.

In this version I’ve labeled the main characters in this winter hunting scene – including some of the deep-sky “Messier”  objects like M45, the Pleiades; M44, the Beehive star cluster; and M42, the Orion Nebula.

At the same time this year, we also say goodbye to Venus which has shone so brightly these last few months as an evening star. By this weekend, it will be lost from sight as it passes between Earth and the Sun.

Mercury Rising and Venus Descending (with Labels)
Mercury (left) and Venus (right and bright) shinng low in the evening twilight, on March 19, 2017. Mercury was then 2 weeks before greatest elongation while Venus was a week before inferior conjunction. So Mercury was rising into the evening sky while Venus was rapidly descending. This is a 7-image HDR stack of exposures from 2.5 seconds to 1.6-second at ISO 200 with the Canon 6D and with the Sigma 50mm lens at f/4.

Meanwhile, Mercury is rising into view in the evening twilight, in its best evening showing of the year from northern latitudes. The view below is also from March 19, with Mercury to the left of brighter Venus.

Over the next two weeks, look low in the west for a bright star amid the twilight. Mercury appears farthest from the Sun on April 1, the date of its “greatest elongation.”

Having Mercury in our evening sky is a sure sign of spring.

Leo and the Spring Stars Rising
Leo rising in the east along with the northern hemisphere spring stars. Numerous satellite trails are visible. I didn’t clone them out. This is a vertical panorama of 4 frames, with the 20mm Sigma Art lens at f/2 and 25 seconds at ISO 3200 with the Nikon D750. Stitched with PTGui using Transverse Equirectangular projection.

Another sign of spring is Leo the lion.

While Orion sets in the west, the stars of spring are rising in the east. The panorama above depicts the scene in the eastern sky these nights, as Leo rises below the Big Dipper.

The Big Dipper is at upper left, with its handle pointing down to Arcturus at bottom left. The Bowl of the Dipper points down to the right to Regulus and the stars of Leo.

Above Leo is the star cluster M44, the Beehive, in Cancer. Below Leo at centre is the star cluster Mel 111, the Coma Berenices star cluster near the North Galactic Pole.

Happy Equinox! 

— Alan, March 20, 2017 / © 2017 Alan Dyer / amazingsky.com

 

 

The Ghostly Glow of Gegenschein


Northern Spring Sky Panorama

It takes a dark spring night to see it well, but now lurking near Jupiter is a ghostly sky glow called Gegenschein. 

This diffuse glow lies directly opposite the Sun. It is caused by sunlight reflecting off interplanetary dust particles in the outer solar system. They reflect light more effectively at the anti-Sun point where each dust particle is fully lit by the Sun.

Like the Sun, the Gegenschein moves around the sky along the ecliptic, moving about a degree from west to east from night to night. March and April provide good nights for seeing the Gegenschein as it then lies in an area of sky far from the Milky Way.

Even so, it is very subtle to the unaided eye. Look south at about 1 a.m. local daylight time.

However, this year, in early April the Gegenschein will be more difficult as it will then lie right on top of Jupiter, as that planet reaches its point opposite the Sun on April 7. Jupiter will then be superimposed on the Gegenschein.

The main image at top is a 7-image vertical panorama of the spring sky, from Corvus and Virgo above the horizon, up past Leo, into Ursa Major and the Big Dipper overhead. Spica lies below bright Jupiter, Arcturus in Böotes is at left, while Regulus in Leo is at right. The grouping of stars near centre is the Coma Berenices star cluster.

Orion over the Old Barn

Earlier in the night, I shot the sky’s other main glow – the Milky Way, as the winter portion of the Milky Way around Orion set into the southwest.

But over in the west, at the right edge of the frame, is the Zodiacal Light, caused by the same dust particles that create the Gegenschein, but that are located in the inner solar system between us and the Sun.

The Zodiacal Light is better depicted in images in my previous post from Dinosaur Park

We bid adieu to the winter Milky Way now. As it departs we are left with an evening sky without the Milky Way visible at all. As seen from northern latitudes it lies along the horizon.

But later in spring, late at night, we’ll see the summer Milky Way rising, beginning its seasons of prominence until late autumn.

— Alan, March 19, 2017 / © 2017 Alan Dyer / AmazingSky.com 

 

Toward the Centre of the Galaxy


Toward the Centre of the Galaxy

From southern latitudes the most amazing region of the sky shines overhead late on austral autumn nights. 

There is no more spectacular part of the Milky Way than the regions around its galactic centre. Or at least in the direction of the galaxy’s core.

We can’t see the actual centre of the Galaxy, at least not with the cameras and telescopes at the disposal of amateur photographers such as myself.

It takes large observatory telescopes equipped with infrared cameras to see the stars orbiting the actual centre of the Milky Way. Doing so over many years reveals stars whipping around an invisible object with an estimated 4 million solar masses packed into the volume no larger than the solar system. It’s a black hole.

By comparison, looking in that direction with our eyes and everyday cameras, we see a mass of stars in glowing clouds intersected by lanes of dark interstellar dust.

The top image shows a wide view of the Milky Way toward the galactic centre, taking in most of Sagittarius and Scorpius and their incredible array of nebulas, star clusters and rivers of dark dust, all located in the dense spiral arms between us and the galactic core.

Starclouds and Stardust – Mosaic of the Galactic Centre
This is a mosaic of 6 segments, each segment being a stack of 4 x 3-minute exposures at f/2.8 with the 135mm Canon L-Series

Zooming into that scene reveals a panoramic close-up of the Milky Way around the galactic centre, from the Eagle Nebula in Serpens, at left, to the Cat’s Paw Nebula in Scorpius, at right.

This is the richest hunting ground for stargazers looking for deep-sky wonders. It’s all here, with field after field of telescopic and binocular sights in an area of sky just a few binocular fields wide.

The actual galactic core area is just right of the centre of the frame, above the bright Sagittarius StarCloud.

Centre of the Galaxy Area
This is a stack of 5 x 5 minute exposures with the Borg 77mm f/4 astrograph and filter-modified Canon 5D MkII at ISO 1600, taken from Tibuc Cottage near Coonabarabran, NSW, Australia.

Zooming in again shows just that region of sky in an even closer view. The contrast between the bright star fields at left and the dark intervening dust at right is striking even in binoculars – perhaps especially in binoculars.

The visual impression is of looking into dark canyons of space plunging off bright plateaus of stars.

In fact, it is just the opposite. The dark areas are created by dust much closer to us, hiding more distant stars. It is where the stars are most abundant, in the dust-free starclouds, that we see farthest into the galaxy.

In the image above the galactic centre is at right, just above the small diffuse red nebula. In that direction, some 28,000 light years away, lurks the Milky Way’s monster black hole.

Milky Way Overhead Through Trees
This is a stack of 5 x 6-minute tracked exposures with the 15mm fish-eye lens at f/4 and Canon 5D MKII at ISO 1600. The trees appear to be swirling around the South Celestial Pole at lower right above the Cottage.

To conclude my tour of the galactic centre, I back out all the way to see the entire sky and the Milky Way stretching from horizon to horizon, with the galactic centre nearly overhead in this view from 3 a.m. earlier this week.

Only from a latitude of about 30° South can you get this impressive view, what I consider one of the top “bucket-list” sights the sky has to offer.

– Alan, April 17, 2016 / © 2016 Alan Dyer / www.amazingsky.com

 

Red Rivals in Scorpius


Red Rivals in Scorpius

Mars outshines his rival red star Antares in the heart of the Scorpion.

This was the view last night from my observing site in Australia, of red Mars shining near the red star Antares, whose very name means “rival of Mars.” But as Mars nears its closest approach to Earth next month it is already far brighter than Antares, easily winning the rivalry now.

The view takes in the head of Scorpius, one of the most colourful areas of the night sky when photographed in long exposures. Uniquely, Antares illuminates a nearby dust cloud with its light which is more yellow than red.

Other dust clouds reflect the blue light of hot young stars in this section of the Milky Way. Red nebulas are emitting their own light from glowing hydrogen.

The area around Antares is also streaked with lanes of dark dust that absorb light and at best appear a dull brown.

Mars reaches its closest point to Earth since 2005 on May 30. All through May and June Mars will shine as a brilliant red star near Antares. A telescope will provide the best view of the red planet we’ve had in a decade.

Saturn and Mars in Scorpius
This is a stack of 4 x 3 minute exposures with the 135mm telephoto lens at f/2.8 and filter-modified Canon 5D MkII at ISO 1600, shot April 14, 2016 from Tibuc Cottage, Australia.

While you are in the area aim your telescope a little to the east to catch Saturn, also in the area, though technically over the border in the constellation of Ophiuchus the Serpent Bearer.

In the view above, Saturn is the bright “star” to the left of Mars. Saturn reaches its closest to Earth in early June. Its rings are now wide open and a spectacular picture postcard sight in any telescope.

Scorpius Rising in Moonlight
This is a stack of 2 x 30-second exposures for the sky and ground, both tracked, plus a 30-second exposure through the Kenko Softon A filter to add the star glows to make the constellation pattern stand out. All with the 35mm lens at f/2 and Canon 6D at ISO 1600. Taken from Tibuc Cottage, Australia.

This final view shows Mars and Saturn rising with Scorpius in the moonlight from two nights ago. From my current latitude of 32° south, Scorpius comes up on his side.

— Alan, April 15, 2016 / © 2016 Alan Dyer  / www.amazingsky.com