The Coming Trio of Total Eclipses


If you saw the total eclipse in 2024 (or you missed it!) you have three chances in the next three years to see another. But you will have to travel. 

Typically, total eclipses of the Sun occur about 18 to 24 months apart. Unusually, in the next three years, we have a trio of total eclipses each only a year apart. Or to be precise, a lunar year โ€” 12 lunar phase cycles โ€” apart. 

The map above (courtesy EclipseAtlas.com) plots the paths of all central solar eclipses (annulars, totals and hybrids) from 2021 to 2030. Included are the paths of the 2023 annular and 2024 total in North America you might have seen.ย 

But the next total eclipse in populated North America is not until August 2044, then again in August 2045. To see a total eclipse in the next few years, those of us in the Americas will have to travel. 

However, those in Europe can drive to the next eclipse, to their first total eclipse at home since August 1999. 


August 12, 2026

Path of the August 12, 2026 TSE, courtesy EclipseWise.com

A year from now as I write this, the Moonโ€™s umbral shadow will intercept the Earth for the first time since April 8, 2024. The path of this next total eclipse is unusual in that it starts in northern Russia, travels north over the North Pole, then sweeps down from the north to cross eastern Greenland, nipping the west coast of Iceland, then crossing Spain, to end at sunset over the Balearic Islands of Spain.ย 

Weather prospects are surprisingly good for the several cruise ships planning to be in a Greenland fjord. Iceland is iffy, but had the eclipse been this year (on August 12, 2025) many people would have seen it. Spain was the opposite โ€” statistically it has the best weather prospects along the 2026 path, but on August 12, 2025 most of the country was beset by storms. 

From northern Spain, where I intend to be and as I show above, the Sun will be low in the west in the early evening sky, for a relatively short 1m40s of totality. A low eclipse can be spectacular, but riskier as thereโ€™s a greater chance of clouds hiding a low Sun.ย 

This and the other images of the Sunโ€™s position at each eclipse are pages from my eclipse ebook, described below.


August 2, 2027

Path of the August 2, 2027 TSE, courtesy EclipseWise.com

Twelve new Moons later, the lunar shadow again crosses the Earth, this time passing over North Africa where skies are almost always clear in summer. But the days are hot! The shadow crosses the Strait of Gibraltar and passes over Morocco, Algeria, Tunisia, Libya, Egypt, and Saudi Arabia. In addition to the good weather, the attraction is that this is the longest total eclipse for the rest of the 21st century. 

The spectacular temples of Luxor, Egypt are at the point of maximum eclipse, with an unusual 6m23s of totality with the Sun high overhead. Even at Gibraltar, totality is 4m35s, seven seconds longer than the maximum in Mexico in 2024. 

From Tunisia, as I show above, the Sun is 55ยบ high over the Mediterranean, and totality is a generous 5m44s.


July 22, 2028

Path of the July 22, 2028 TSE, courtesy EclipseWise.com

Another 12 lunar months later, the Moon shadow sweeps across the southern hemisphere, for another generously long eclipse. Remote Western Australia enjoys 5m10s of totality on a winterโ€™s day. 

But millions lie in the path in New South Wales, where Sydneysiders can watch a total eclipse over Sydney Harbour lasting 3m48s. The sky scene is below, with a late afternoon winter Sun heading down in the west. From Farm Cove, the eclipsed Sun will be over the Opera House and Harbour Bridge, for a never-to-be-repeated photo op. 

The South Island of New Zealand sees a sunset eclipse (the shadow passes over Milford Sound) that lasts 2m55s, longer than the 2017 eclipse in the United States. 

Coincidentally, Australia also hosts the next total eclipse to follow, after a gap of 28 months, on November 25, 2030. And the lunar shadow crosses Australia on July 13, 2037 and December 26, 2038 โ€” a Boxing Day eclipse down under. So Australia is the place to be for the next decade or so. 

But between 2026 and 2028, Spain is host to three eclipses, as the 2027 total crosses Spanish territory, and the January 26, 2028 annular eclipse ends at sunset in western Spain. At this eclipse the Moon is not large enough to completely hide the Sun, so at mid-eclipse we see a bright ring of light, similar to the annular eclipse here in North America on October 14, 2023. 


My Plans

Where will I be? For 2026 I have signed onto a trip to Spain with the well-travelled photo tour company CaptureTheAtlas.com.

They are planning a very photo-centric tour to Spain for viewing the eclipse from a winery near Burgos. Iโ€™ll be one of the instructors, among a stellar line-up of eclipse veterans and astrophoto experts. I invite you to check out the details of the tour here at its webpage. Weโ€™d love to have you join us!ย 

For 2027 I am planning to be in Tunisia, on the Mediterranean coast, with a tour group from Astro-Trails.com.ย 

For 2028 I can return to Australia on my own, to view the eclipse from the very areas I go to anyway on my trips down under for night sky photography.ย 

The path of totality passes just a few kilometres from Coonabarabran, the โ€œAstronomy Capital of Australia,โ€ as the Siding Spring Observatory is just down the Timor Road in the path. In July the Milky Way is at its best, with the centre of the Galaxy high overhead at nightfall. Thatโ€™s a sight equal to an eclipse for bucket-list spectacle.


My EBook 

The cover of my new 400-page ebook

For 2017โ€™s eclipse I prepared an ebook on how to photograph it. It proved popular, and so for the 2023 and 2024 eclipses I revised it to cover both the annular and total eclipses. 

Its popularity prompted me to revise it again, this time to cover the coming trio of eclipses, plus I included pages on the January 2028 annular, as many who visit Spain for the totals may plan to return for the sunset annular (low annulars are also the most spectacular!). 

My new ebook is 40 pages larger than the previous edition, with most of the added content in the 100-page chapter on processing eclipse images, from wide-angles, to time-lapses, and to blended exposures of totality close-ups.ย I include lots of information on choosing the right gear โ€” filters, camera, lenses, telescopes, and tracking mounts.

The slide show above presents images of sample pages.ย Do page through the gallery for a look at the content.

But for all the details and links to buy the book (from Apple Books or as a PDF for all platforms) see its webpage at my website. ย 

It will be a busy three years for eclipse chasers, as rarely do we get three-in-a-row like this. The diversity of locations and eclipse circumstances make this an exciting trio to chase. But you can just go back to Spain to see most of them! 

โ€” Alan, August 14, 2025 / AmazingSky.com ย 

Chasing the Red Moon to the Mountains


It took a last-minute chase, but I managed to capture the total eclipse of the Moon on March 14, 2025.

It would not be an eclipse without a chase. Solar eclipses of the total kind almost always involve travel, often to exotic locales around the world. But total lunar eclipses come to you, as they can be seen from an entire hemisphere of the planet.

Except there’s one problem โ€” clouds! Over the last decade since 2014, of the eight total lunar eclipses (TLEs) I was home in Alberta for, I had to chase into clear skies for all but one. A recounting of one such chase from January 2019 is here.

Only for the TLE before this most recent (on November 8, 2022) was I able to stay home to watch it. Though in that case a snowstorm the day before made the roads and travel poor, so I had to stay home. I recounted that eclipse story here. You’ll find links to my other lunar eclipse stories below.

Once again, for the March 13/14, 2025 TLE, weather prospects looked poor. Not just in my area but in many regions of the continent. But there was hope!

Astrospheric and Environment Canada cloud forecast + Moon information

The forecast cloud cover showed home to be hopeless. But a clear area was supposed to be open in southwestern Alberta, marked by the red circle above. That’s Waterton Lakes National Park, just on the US border. It’s a favourite place of mine for nightscape photography anyway (see my blog from this past summer here).

The chart above from the app Astrospheric shows the clear hole, and the dark blue on the time-line indicates the period with no clouds. Note how it coincides with the wavy line below which shows Moon altitude, with the orange and red regions indicating when the eclipse would take place. Looks good! So I made my plan to chase.

I knew the area well enough to know the site would be a good one for the eclipse, and the Moon’s location to the south. But it pays to check. I use The Photographer’s Ephemeris as my main photo planning app.

TPE Plot of Sightlines

It showed the sightline toward the Moon during the eclipse as straight down Upper Waterton Lake. My chosen spot was on the lakeside Waterton Avenue, where I could set up both the wide-angle camera and a telescope without having to heft gear any distance. Winter road closures also limited my site choices. Indeed, in winter the Park is quiet, with only a few hotels and restaurants open, and many businesses boarded up.

TPE 3D Simulation

Switching to the companion app TPE 3D (above) showed a preview of the landscape and the Moon’s position in the sky relative to the scene below.

Compare the simulation to the real thing below! Pretty accurate, except for the scattered clouds that drifted through.

This is a blend of separate images for the sky and ground: a stack of two untracked images for 60 seconds each for the ground, then a third exposure for the sky and untrailed stars, taken immediately afterwards with the tracker motor on, for 30 seconds, all with the Canon RF15-35mm lens wide-open at f/2.8 and at 20mm, on the Canon R5 at ISO 1600. Separate shorter tracked exposures of 15, 8 and 4 seconds blended in kept the lunar disk from overexposing, showing it more as the eye saw it.

The above image is a blend of tracked exposures for the Moon and sky, with untracked exposures for the ground. I shot them just before mid-totality at 1 am MDT. That image was second in priority. First, was a panorama. That result is below.

This is a panorama of four segments at 30ยบ spacing, taken in two passes: first untracked for 30 seconds each, then a second pass immediately afterwards with the tracker motor on, also for 30 seconds each, all with the Canon RF15-35mm lens wide-open at f/2.8 and at 20mm, on the Canon R5 at ISO 1600, with the camera in landscape orientation. Separate shorter exposures of 15s, 10s, 5s and 2.5s at ISO 400 were blended in to preserve the lunar disk more as the eye saw it.

I shot this scene just as totality began, to ensure I got it. While the Moon was in clear sky before totality during the partial phase, sure enough as the Moon became fully eclipsed, the clouds wafting over the mountains threatened to move in and obscure the view.

Luckily, while they did hide the Moon now and then, they opened up enough for good views and images for a few minutes at a time throughout the eclipse.

For the panorama I processed the image for a more monochromatic look, to resemble the naked-eye view, but with the Moon appearing as a red globe in the sky, the only colour in the scene. (I shot the tracked shots with the MSM Nomad tracker I reviewed here.)

The site proved excellent, but it was a cold night! While the temperature was only just below freezing, the brisk Waterton wind off the lake made it a chilly experience watching the eclipse for two hours. I was actually being hit by ice pellets blowing off the lake.

I decided not to set up the telescope for close-ups; the wide-angle images were the priority anyway from such a scenic spot.

A single untracked 15-second exposure with the RF15-35mm lens at f/2.8 and 17mm on the Canon R5 at ISO 3200.

But I am not complaining. I got the eclipse, once again by chasing to where the weather predictions said it would be clear. The above is my requisite trophy shot.

Had I stayed home I would have been clouded out. Had predictions called for clear skies at home, I would not have made the trip to Waterton to enjoy the eclipse over its wonderful scenery.

The next total lunar eclipse is September 7, 2025, six months after this eclipse. But it is visible from the opposite hemisphere to this one, with no part of that eclipse visible from North America. I will not chase that far for a TLE!

The March 3, 2026 TLE from Alberta

After that, and after a passage of one lunar year (355 days or 12 lunar cycles) since the March 14, 2025 TLE, I have a chance for another total lunar eclipse from home, with western North America favoured. As I preview above, it’ll be an early morning event on March 3, 2026, with the eclipsed Moon setting in the west in the pre-dawn hours.

Sounds like another chase to a mountain site with the red Moon over the Rockies. That’ll be the plan!

โ€” Alan, March 15, 2025 / AmazingSky.com

2024 โ€” The Greatest Year of Stargazing ?


In our book The Backyard Astronomerโ€™s Guide (which we revised this year), Terence Dickinson and I created an Aah! Factor scale with various celestial sights ranked from: 

โ€ข   1, evoking just a smile, to โ€ฆ

โ€ข 10, a life-changing event! 

Our book’s Aah! Factor Scale in Chapter 1

Coming in at an 8 is a naked-eye comet. Deserving a 9 is an all-sky display of an aurora. The only sight to rate a top 10 is a total eclipse of the Sun. 

2024 brought all three, and more! 

Hereโ€™s my look back at what I think was one of the greatest years of stargazing. 


A Winter Moonrise to Begin the Year 

The rising of the winter “Wolf” Moon, the Full Moon of January, over the frozen Crawling Lake Reservoir, in southern Alberta.

Now, this was not any form of rare event. But seeing and shooting any sky sight in the middle of a Canadian winter is an accomplishment. This is the rising of the Full Moon of January, popularly called the Wolf Moon, over a frozen lake near home in Alberta, Canada ๐Ÿ‡จ๐Ÿ‡ฆ. 

It serves to bookend the collection with a Full Moon I captured eleven months later in December. 


Auroras from Churchill, Manitoba 

Had this been my only chance to see the Northern Lights fill the sky this year, I would have been happy. As we often see in Churchill, the aurora covered the sky on several nights, a common sight when you are underneath the main band of aurora borealis that arcs across the northern part of the globe. 

This is a vertical panorama of the sky-filling aurora of February 10, 2024, as seen from the Churchill Northern Studies Centre, in Churchill, Manitoba.

I attended to two aurora tour groups at the Churchill Northern Studies Centre who both got good displays to check โ€œseeing the Northern Lightsโ€ off their bucket list. Join me in 2025!


Under the Austral Sky

Ranking a respectable 7 on our Aah! Factor scale is the naked-eye sight of the galactic centre overhead, with the Milky Way arcing across the sky. Thatโ€™s possible from a latitude of about 30ยฐ South. Thatโ€™s where I went in March, back to Australia ๐Ÿ‡ฆ๐Ÿ‡บ for the first time since 2017. 

This is a framing of the most spectacular area of the southern Milky Way, from Centaurus at left, to Carina at right, with Crux, the Southern Cross, at centre.

I wrote about it in my previous blog, where I present a tour along the southern Milky Way, and wide-angle views of the Milky Way (the images here are framings of choice regions). 

This frames the southern Milky Way from Canis Major and its bright star Sirius at top, to Carina and its bright star Canopus at bottom, the two brightest stars in the night sky. The large red complex is the Gum Nebula.

It is a magical latitude that all northern astronomers should make a pilgrimage to, if only to just lie back and enjoy the view of our place in the outskirts of the Galaxy. I was glad to be back Down Under, to check this top sky sight off my bucket list for 2024. 


A Total Eclipse of the Sun 

No sooner had I returned home from Oz, when it was time to load up the car with telescope gear and drive to the path of the April 8 total solar eclipse, the first “TSE” in North America since 2017, which was the last total eclipse I had seen, in a trip to Idaho

This is a composite of telescopic close-ups of the April 8, 2024 total eclipse, with a multi-exposure blend for the corona at centre, flanked by the diamond rings.

But where? I started south to Texas, my Plan A. Poor weather forecasts there prompted a hasty return to Canada, to drive east across the country to โ€ฆ I ended up in Quรฉbec. My blog about my cross-continental chase is here. My final edited music video is linked to below.

It was gratifying to see a total eclipse from “home” in Canada, only the third time Iโ€™ve been able to do that (previously in 1979 โ€“ Manitoba, and 2008 โ€“ Nunavut). If the rest of the year had been cloudy except for this day I wouldnโ€™t have complained. Much.

This definitely earned a 10 on the Aah! Factor scale. Total eclipses are overwhelming and addictive. Iโ€™ve made my bookings for 2026 in Spain ๐Ÿ‡ช๐Ÿ‡ธ and 2027 in Tunisia ๐Ÿ‡น๐Ÿ‡ณ. 


The Skyโ€™s On Fire

It had been several years since I had seen an aurora from my backyard with colours as vivid and obvious as they were this night. But on May 10, the sky erupted with a fabulous display of aurora that much of the world saw, as aurora borealis in the north and aurora australis in the south. 

This is a 300ยบ panorama of the May 10, 2024 Northern Lights display, when the Kp Index reached 8 (out of 9), bringing aurora to the southern U.S.

This was the first of several all-sky shows this year. I blogged about the yearโ€™s great auroras here, where there are links to the movies I produced that capture the Northern Lights as only movies can, recording changes so rapid it can be hard to take it all in. Check off a 9 here! 

So not even half way through the year, I had seen three of the top sky sights: the Milky Way core overhead (7), an all-sky aurora (9), and a total eclipse of the Sun (10). 

But there was more to come! Including an Aah! Factor 8


World Heritage Nightscape Treks

This is a panorama of the arch of the Milky Way rising over the Badlands of Dinosaur Provincial Park, Alberta, with a sky tinted with twilight and airglow.

The sky took a break from presenting spectacles, allowing me to head off on short local trips, to favourite nightscape sites in southern Alberta, which we have in abundance. The Badlands of Dinosaur Provincial Park are just an hour away, the site for the scene above. 

A panorama at sunset at Writing-on-Stone Provincial Park (รรญsรญnai’pi) in Alberta, with the Milk River below and the Sweetgrass Hills in the distance in Montana. Note the people at far right.

The rock formations of Writing-on-Stone Provincial Park are a bit farther, requiring a couple of days commitment to shoot. Clouds hid the main attraction, the Milky Way, this night, but did provide a fine sunset. 

The Milky Way rises over Mt. Blakiston, in Waterton Lakes National Park, Alberta. This was June 10, 2024, so snow remains at high altitudes.

A little further west down the highway is Waterton Lakes National Park, another great spot I try to visit at least once each year. 

All locations I hit this month are U.N. World Heritage Sites, thus the theme of my blog from June. People travel from all over the world to come here, to sites I can visit in a few hours drive. 


Mountains by Starlight

In summer we now often contend with smoke from forest fires blanketing the sky, hiding not just the stars by night, but even the Sun by day. 

The Andromeda Galaxy at centre is rising above Takakkaw Falls, in Yoho National Park. Above is the W of stars marking Cassiopeia.

But before the smoke rolled in this past summer I was able to visit a spot, Yoho National Park in British Columbia, that had been on my shot list for several years. The timing with clear nights at the right season and Moon phase has to work out. In July it did, for a shoot by starlight at Takakkaw Falls, among the tallest in Canada. 

This is the Milky Way core and a bonus meteor over the peaks and valleys at Saskatchewan River Crossing, in Banff National Park, Alberta.

The following nights I was in Banff National Park, at familiar spots on the tourist trail, but uncrowded and quiet at night. It was a pleasure to enjoy the world-class Rocky Mountain scenery under the stars on perfect nights. 


The All-Sky Auroras Return 

In August I headed east to Saskatchewan and the annual Summer Star Party staged by the astronomy clubs in Regina and Saskatoon. It is always a pleasure to attend the SSSP in the beautiful Cypress Hills. The sky remained clear post-party for a trip farther east to the little town of Val Marie, where I stayed at a former convent, and had a night to remember out in Grasslands National Park, one of Canadaโ€™s first, and finest, dark sky preserves.

The Northern Lights in a superb all-sky Kp6 to 7 display on August 11-12, 2024, in Grasslands National Park, Saskatchewan.

The plan was to shoot the August 11 Perseid meteor shower, but the aurora let loose again for a stunning show over 70 Mile Butte. My earlier blog has more images and movies from this wonderful month of summertime Northern Lights. 

We are fortunate in western Canada ๐Ÿ‡จ๐Ÿ‡ฆ to be able to see auroras year-round, even in summer. Farther north at the usual Northern Lights destinations, the sky is too bright at night in summer. 


Back to Deep Sky Wonders

This is a framing of the rich starfield in Sagittarius and Serpens containing a mix of bright star clouds, glowing nebulas, and dark dust in the Milky Way.

September is the month for another astronomical party in the Cypress Hills, but on the Alberta side. At the wonderful Southern Alberta Star Party under its very dark skies, I was able to shoot some favourite deep-sky fields along the Milky Way with new gear I was testing at the time. 

This frames the complex region of emission nebulas in central Cygnus near the star Gamma Cygni, at lower left. The Crescent Nebula is at centre.

And from home, September brought skies dark and clear enough (at least when there was no aurora!) for more captures of colourful nebulas (above and below) along the summer Milky Way. 

This frames all the photogenic components of the bright Veil Nebula in Cygnus, a several-thousand-year-old supernova remnant.

We invest a lot of money into the kind of specialized gear needed to shoot these targets (and Iโ€™m not nearly as โ€œcommittedโ€ as some are, believe me!), only to find the nights when it all comes together can be few and far between. 

Plus, A Very Minor Eclipse of the Moon 

I had to include this, if only for stark contrast with the spectacular solar eclipse six months earlier. 

We had an example of the most minor of lunar eclipses on March 24, 2024, with a so-called โ€œpenumbralโ€ eclipse of the Moon, an eclipse so slight itโ€™s hard to tell anything unusual is happening. (So I’ve not even included an image here, though I was able to shoot it.)

Me at another successful eclipse chase โ€ฆ to my backyard to capture the partial lunar eclipse on September 17, 2024. The Moon is rising in the southeast.

On September 17, we had our second eclipse of the Moon in 2024. This time the Earthโ€™s umbral shadow managed to take a tiny bite out of the Full Moon. Nothing spectacular to be sure. But at least this eclipse expedition was to no farther away than my rural backyard. A clear eclipse of any kind, even a partial eclipse, especially one seen from home, is reason to celebrate. I did!

Of course, a total eclipse of the Moon, when the Full Moon is completely engulfed in Earthโ€™s umbra and turns red, is what we really want to see. They rate a 7 on our Aah! Factor scale. We havenโ€™t had a “TLE” since November 8, 2022, blogged about here.

The next is March 14, 2025. (The link takes you to Fred Espenak’s authoritative web page.)


A Bright Comet At Last!

We knew early in 2024 that the then newly-discovered Comet Tsuchinshan-ATLAS had the potential to perform this month. I planned a trip south to favourite spots in Utah and Arizona to take advantage of what we hoped would be a fine autumn comet. 

This is Comet Tsuchinshan-ATLAS (C/2023 A3) at its finest in the evening sky, on October 14, two days after its closest approach to Earth, and with it sporting a 10ยบ- to 15ยบ-long dust tail, and a short narrow anti-tail pointed toward the horizon. The location was Turret Arch in the Windows area of Arches National Park, Utah.

It blossomed nicely, especially as it entered into the evening sky in mid-October, as above. Despite the bright moonlight, it was easy to see with the unaided eye, a celestial rarity we get only once a decade, on average, if we are lucky. My blog of my comet chase is here

This is a panorama of Comet Tsuchinshan-ATLAS over Arches National Park, Utah, on a moonlit night, October 15, 2024, with the comet easy to see with the unaided eye.

A naked-eye comet ranks an 8 on our Aah! Factor scale. So now 2024 had delivered all four of our Top 4 sky sights. 

This 360ยฐ panorama captures a rare SAR (Stable Auroral Red) arc across the Arizona sky in the pre-dawn hours of October 11, 2024. The SAR arc was generated in the high atmosphere as part of the global geomagnetic storm of October 10/11, 2024, with a Kp8 rating that night.

But … just as a bonus, there was another fabulous aurora on October 10, seen in my case from the unique perspective of southern Arizona, with an appearance of a bright “SAR” arc more prominent than I had ever seen before. So that view was a rarity, too, so unusual it doesn’t even make our Aah! list, as SARs are typically not visible to the eye.


Back to Norway for Northern Lights

2024 was notable for travel getting โ€œback to normal,โ€ at least for me, with two long-distance drives, and now my second overseas trip. This one took me north to Norway ๐Ÿ‡ณ๐Ÿ‡ด, which I had been visiting twice a year as an enrichment lecturer during pre-pandemic years. 

A green and red aurora appears over the coast of Norway, with Jupiter bright at right. This was from the Hurtigruten ship m/s Nordkapp on November 10, 2024, on a coastal cruise with a Road Scholar tour group.

The auroras were excellent, though nothing like the great shows of May and October. But the location sailing along the scenic coast and fjords makes up for any shortfall in the Lights. It was good to be back. I plan to return in 2025 for two cruises in October. Join me there, too!


A Winter Moonrise to End the Year

As I write this, December has been nothing but cloud. Almost. A clear hour on Full Moon night allowed a capture of the โ€œCold Moon,โ€ with the Moon near Jupiter, then at its brightest for the year. So thatโ€™s the other lunar bookend to the year, shot from the snowy backyard. 

This is the Full Moon of December 14, 2024, near the planet Jupiter at lower right. Both were rising into the eastern sky in the early evening.

However, I did say after the clear total eclipse in April that if the rest of 2024 had been cloudy I wouldnโ€™t complain. So Iโ€™m not. 

And thereโ€™s no reason to, as 2024 did deliver the best year of stargazing I can remember. 2017 had a total solar eclipse. 2020 had a great comet. But we have to go back to 2003 for aurora shows as widespread and as a brilliant as weโ€™ve seen this year. 2024 had them all. And more!

We might see more auroras in 2025. And we have a total eclipse of the Moon. Two in fact, if youโ€™re willing to travel to the other hemisphere. 

My 2025 Calendar cover. Go to https://www.amazingsky.com/Books

My 2025 Amazing Sky Calendar lists my picks for the best sky events of the coming year, with the emphasis on events viewable from North America. For a free PDF download of my Calendar, go to my website here

Clear skies to all, in a Happy New Year! 

โ€” Alan, December 21, 2024 / amazingsky.com 

The Total Eclipse of 2024 โ€” The Video


I present a two-minute video set to music of the April 8, 2024 total solar eclipse.

In my previous blog Chasing the Cross Continental Eclipse I told the tale of my chase to see the total eclipse of the Sun. I ended up under mostly clear skies in the Eastern Townships of Quรฉbec, Canada, not Texas, my original destination.

Here I present the result of shooting with four cameras that afternoon, taking still images, time-lapses, and a 4K movie.

Be sure to watch in 4K!

The site worked out very well, as the lower Sun in eastern Canada lent itself to views framing the eclipse over a landscape below, in this case a very wavy lake. But I was lucky to have open water as other lakes in the area were still frozen.

My post-eclipse selfie at the Lac Brome site in Quebec for the April 8, 2024 total eclipse of the Sun.

As it was, a snow storm a few days earlier left lots of snow in the area to be included in my post-eclipse selfie.

The description below the video on YouTube provides lots of information about the images used in the video. Click through to the video’s page on YouTube to learn more.

This was only the third total solar eclipse I’ve seen from Canada, after February 26, 1979 from Manitoba, and August 1, 2008 from the air out of Cambridge Bay, Nunavut in the Canadian Arctic. The next total eclipse from Canada passes over my home in Alberta. But it is not until August 22, 2044!

โ€” Alan, April 28, 2024 โ€” AmazingSky.com

Chasing the Cross-Continental Eclipse


I had always planned to drive to the April 8, 2024 total eclipse of the Sun. But to where? I ended up on the other side of the continent than originally planned.

It is not often the path of the Moonโ€™s shadow crosses your home country, let alone continent. Only once before in recent years, on August 21, 2017, did the narrow shadow path pass near enough to my home in Alberta to allow me to drive to a total eclipse. They almost always require flying. 

Packed and ready to hit the highway for a long eclipse trip.

Yes, while I could drive to the April 8, 2024 eclipse, it was going to demand a much longer drive than in 2017. But driving allowed me to take a carload of telescope and camera gear. So that was the plan. 

My destination was San Antonio, Texas. Thatโ€™s where I had made a hotel booking more than a year earlier. The weather prospects in Texas were forecast to be best (at least according to the long-term averages) of any locations along the path in the U.S. or Canada. (I did not want to drive into Mexico.) 

On March 30, with some trepidation, I set out down I-15 heading south. I got as far as Great Falls, Montana, my stop for night one. But it was to be a move in the wrong direction.

The forecast for Eclipse Day as of March 30. Blue is bad; white is good!

The various long-range weather models were all agreeing, even 10 days in advance, that Texas (covered in blue above) was looking poor for eclipse day. But eastern Canada looked good! That was the exact opposite of what had been expected. 

So on Easter Sunday, I turned around and headed north, crossing back into Canada at a lonely border post in southwest Saskatchewan. 

I proceeded east along the TransCanada, Highway 1. I decided against a route across the northern U.S. and around the southern end of Lake Michigan, to avoid severe weather forecast for the middle of the U.S. 

One of my daily Facebook travelogue posts with a beer of the day.

Along the way I posted my beer-du-jour travel reports, as above from Day 8, that day from within the shadow path at last!

I also stopped at the only total eclipse site, of the 16 I had seen previously, I have ever been able to re-visit. On February 26, 1979 I and a small band of friends from Edmonton viewed the mid-winter eclipse (the last one visible from southern Canada) from a median road (Firdale Road as it is now called) on the TransCanada Highway near Carberry, Manitoba. I found the spot again, where I saw (and shot with my Questar telescope) my first total eclipse of the Sun. 

However, a day after entering Ontario, the bad weather caught up with me, forcing an extra night north of Lake Superior while the only highway across the region, Highway 17, was cleared of snow and re-opened at Wawa, the usual cross-Canada choke point. 

My new destination (after abandoning the site in the Texas Hill Country) was to be southern Ontario. 

However, as eclipse day approached and the weather predictions became more precise, it was apparent that Ontario would also be under some cloud. Southern Quรฉbec was looking better. So the Eastern Townships became my new Plan A site! I was running out of time!

Using the TPE app to check the Sun’s location once on site, the day before the eclipse.

I arrived on site in Quรฉbec with only a day to spare to check out the location I had found by exploring Google maps. 

With the Sun lower in the mid-afternoon sky in Quรฉbec compared to the high-noon Sun in Texas, I decided to shoot a wide-angle scene of the eclipse over a lake, preferably with open water, not ice! That required a site with public parking on an eastern lakeshore.

The site I found, then checked out on April 7, was on Lac Brome. It proved ideal โ€” except for the thin cloud that was now predicted to drift through during the eclipse. 

Sure enough, thatโ€™s just what happened. The cloud detracted from the eclipse only in preventing long-exposure images recording the outermost streamers in the Sunโ€™s atmosphere. 

A wide-field view of the eclipse of the Sun, taking in the bright planets Jupiter (at top) and Venus (below) that were easily visible to the unaided eye during totality.

I could have sought out clearer skies by going even farther east, but I was in a crunch for time and hotel rooms! As it was I was able to get rooms everywhere I wanted and at normal โ€œnon-eclipseโ€ rates! 

A panorama of the lakeside parking area at Lac Brome prior to the eclipse.

The Lac Brome site filled with cars during the day, with people from Quรฉbec and Ontario, but also from Alberta, and from Pennsylvania, Massachusetts and Maine โ€“ at least those were the homes of the folks I enjoyed meeting on eclipse day. 

Everyone had a great time and had a superb eclipse experience. 

The total eclipse of the Sun over the waters of Lac Brome, in the Eastern Townships of Quebec, Canada. The twilight colours come from sunlight from outside the shadow path.

The lunar shadow arrived from the southwest, from the direction of the Sun, appearing as a dark cloud racing toward us. At the end of the eclipse the sky brightened first in that same direction, as the trailing edge of the shadow shot up across the sky. The clouds helped make the shadow edge more visible. 

A time-lapse of the arrival and departure of the lunar shadow, made of 1200 frames each 1 second apart.

I shot with five cameras, just as I had done in 2017, possible only because I drove. 

The main rig was my faithful Astro-Physics Traveler, a 105mm refractor telescope the company owner designed for his personal use at the 1991 eclipse in Mexico. 

My main eclipse rig, with a 60mm visual scope on the 105mm photo scope, on an equatorial tracking mount.

My Traveler, bought in 1992, has lived up to its name, having now been to six central solar eclipses: the annular eclipses of 1994 (Arizona) and 2023 (Utah), and the total eclipses of 1998 (Curaรงao), 2012 (Queensland, Australia), 2017 (Idaho), and now 2024 in Quรฉbec, Canada. I paired it with the wonderful matching AP400 mount, which I had only just brought back with me the month before from Australia, where it had spent the last two decades. 

All the gear worked great. Unlike six months earlier for the October 14, 2023 annular eclipse in Utah, this time I remembered all the cables needed to have the telescope mount track the Sun.

I did mess up on a couple of settings (such as not framing the 4K movie camera as I should have โ€“ in pre-eclipse excitement I just forgot to check my chart). But none of the errors were serious. 

The eclipse in a blend of two exposures to display all the fiery pink prominences that were visible during totality around the lunar disk in one image, set against the bright inner corona of the Sun with the dark disk of the Moon in silhouette in front of the Sun.

Once started all my cameras, except for the one on the Traveler, ran unattended. 

At this eclipse I was determined to get a good look at it through the small visual scope I had piggybacked onto the Traveler photo scope. While I had used a similar rig in 2017, I only thought to look through the visual scope 20 seconds before totality ended. 

Not this year. 

A telescopic close-up of the eclipsed Sun. Onto the central blend of images for totality I layered in single images of each of the diamond rings before and after totality. They are when the last or first burst of sunlight shines through lunar valleys. The first diamond ring is at top left, the last at bottom right, so time runs from left to right.

I got a great look at the eclipsed Sun, its corona structures, flaming pink prominences, and breakout of the red chromosphere layer just as totality ended. (You canโ€™t easily see the chromosphere at the start of totality as it can be risky looking too soon through optics when the Sunโ€™s blindingly bright photosphere is still in view.) 

This is a composite showing the sequence of events surrounding totality, from just before totality (at upper left) to just after totality (at lower right), with totality in the middle. The contact images were taken 0.6 seconds apart.

And yet, as at all eclipses, I found the naked eye view the most compelling. The โ€œblack holeโ€ Sun looked huge and unearthly. While I had binoculars handy, the same 12×36 image-stabilized binoculars I bring to most eclipses, I completely forgot to look though them, just as I forget at most eclipses! 

This is a composite showing the complete sequence of the April 8, 2024 eclipse of the Sun, from first contact (at upper left) to last contact (at lower right), with totality at mid-eclipse in the middle.

I shot all the images with the Astro-Physics Traveler 105mm refractor at 630mm focal length and f/6, with the Canon R5 at ISO 100. The partial phases are 1/800 or 1/400 second exposures through a Kendrick/Baader solar filter.

Wanting to record the full sequence, I shot the partial phases until the bitter end. But post-eclipse, people came over and had a look through my scope (I think mine was the only telescope on site). We had a great time exchanging impressions. The hand-held phone camera photos people showed me looked fabulous! 

I looked for fleeting shadow bands just before and after totality (I laid out a white sheet on the ground for the purpose) but saw none, a negative observation confirmed by a fellow eclipse chaser at the site. 

Time-lapse movies of the second and third contact (start and end of totality) diamond rings, shot through the telescope with the Canon R5 in continuous burst mode for hundreds of frames each.

I did two live interviews for CBC Radio, for the Edmonton and Calgary stations, but not until after the eclipse ended. By the time I did those and finished packing away my carload of gear, it was 6:30 p.m., three hours after totality. 

I was the last to leave the site, with fishermen now arriving for an eveningโ€™s catch.

I was in that shadow as the Space Station flew over. Astronauts saw the elliptical shadow moving over eastern Canada.
The passage of the lunar shadow across the continent, showing where the clouds were. I was under the wispy clouds at upper right in Quรฉbec.

I faced no traffic jams heading back to the hotel at Ste. Helen-de-Bagot. I processed and posted one eclipse image that night. And I revised the price (down to $2.99 U.S.) and description of my How to Photograph the Solar Eclipses ebook, as now only the big processing chapter is of any value, post-eclipse. It continues to sell. 

This is the waxing crescent Moon on April 10, 2024, two days after it eclipsed the Sun, and with it above the bright planet Jupiter, with it also near Uranus. Below the solar system worlds is the faint Comet 12P/Pons-Brooks, visible here as a fuzzy star with a stubby tail..

On the long drive back to Alberta, with the pressure of having to make time now gone, I spent pleasant evenings stopping to see friends and family on the road home. So I didnโ€™t start work on the complex blends and composite images I show here until I got home a week after the eclipse. 

The happy eclipse chaser having bagged his game!

The 17-day-long drive was nearly 9,000 km over 100 hours behind the wheel. Was it worth it? Of course! 

Would I do it again? Itโ€™s a moot question as none of the upcoming eclipses allows for a cross-continent drive. Except perhaps in July 2028 in Australia. But I suspect just heading inland a day or two over the Great Dividing Range will be enough to get away from winter coastal cloud in New South Wales. (Sydney is in the path, but so is a cottage I rented last month near Coonabarabran for my superb March stay under the southern skies!)

The next total eclipse of the Sun visible from anywhere in Canada will be August 22, 2044. I wonโ€™t have to drive anywhere, as it passes right over my house! But I will have to live that long to enjoy a eclipse from my own backyard. 

I suspect this was my last chance to see โ€“ and drive to โ€“ a total eclipse in Canada.

โ€” Alan, ยฉ 2024 amazingsky.com 

Tutorials and Tips for the Solar Eclipse


As eclipse day approaches here are some tips and video tutorials from me about how best to capture the total eclipse of April 8, 2024.

There are many ways to capture great images and movies of a total eclipse of the Sun. I outline them all in great detail in my 380-page ebook How to Capture the Solar Eclipses, linked to at right.

Originally published in June 2023, I revised the ebook following the October 14, 2023 annular eclipse of the Sun to include “lessons learned at the eclipse,” and some processing tutorials on assembling annular eclipse composites. I’ve also added new content on using software to control cameras and updated information about solar filters.

Brief Tips and Techniques

The August 21, 2017 total solar eclipse over the Grand Tetons as seen from the Teton Valley in Idaho, near Driggs. With the Canon 6D and 14mm SP Rokinon lens at f/2.5 for 1/10 second at ISO 100.

My breakdown of recommend methods, in order from simplest to most complex, and with increasing demands on your time, is generally this:

  1. Use a Phone Camera for a Movie. While they can be used for a quick handheld grab shot during totality, a better method is to place a phone on a tripod using a clamp of some kind. Then a few minutes before totality aim and frame the scene, with no filter over the camera lens. Start it in movie mode to record video of the eclipse and sky changes, and the excited sounds of your group! Just remember to stop the video shortly after the end of totality and aim the phone away from the Sun. Never leave any unfiltered camera aimed at the Sun for a long time.
  2. Shoot a Wide-Angle Time-Lapse. Using a DSLR or mirrorless camera and a wide-angle lens (it might need to be as wide as a 14mm at sites in Mexico and the southern U.S.) aim and frame the camera to include the Sun and landscape below. Focus the lens! And leave it on manual focus. But put the camera into Auto-Exposure Aperture Priority (Av) with wide-area metering and with it set to underexpose by -1 EV Exposure Compensation. With the camera at ISO 100 or 200, use either its internal intervalometer (if it has one) or an external intervalometer to take frames once per second. Start the sequence with no filter on the lens a few minutes before totality. Let it run on its own until a few minutes after totality. The result is hundreds of frames you can turn into a time-lapse movie of the lunar shadow approaching and receding, and of the changes in sky colours. Or you can extract single frames at key points to process individually, as I did for the image above from August 2017. The advantage, as with the phone camera movie method, is that the camera, once going, requires no further attention. You can enjoy the eclipse!
  3. Shoot a Telephoto Video. Use a 300mm to 500mm lens on a DSLR or mirrorless camera to shoot a real-time close-up video of the eclipse. Start the video a minute or two before totality with the Sun positioned to the left of frame centre and with a solar filter over the lens. Use a slow ISO, the lens wide open (typically f/4 to f/5.6) and the camera on Auto-Exposure Aperture Priority (Av). Just be careful to focus precisely on the filtered Sun before starting the video. Poor focus is what spoils most eclipse images, not poor exposure. Just before totality (about 30 seconds prior to Second Contact) remove the filter. The auto-exposure will compensate and provide a proper exposure for the rest of totality. Just let the camera run and the Sun drift across the frame from left to right. Just remember to replace the filter, or cap the lens, and stop the video shortly (~30 seconds) after totality and Third Contact. The video will capture the diamond rings and a well-exposed corona. Vary the exposure compensation during totality if you wish, but that involves more work at the camera. Otherwise, you can just let the camera run. But, as I illustrate in my ebook, it’s important to plan and place the Sun correctly to begin with (using a planetarium app to plan the sequence), so it does not drift off the frame or close to the edge.
  4. Shoot Telephoto Close-Up Stills. Use the same type of gear to shoot still images. While you could shoot stills on Auto-Exposure, it’s better to shoot still images over a range of exposures, from very short (~1/1000 second) for the diamond rings and prominences, to long (~1 second) for the outer corona. No one exposure can capture all that the eye can see during totality. This takes more work at the camera, and with the camera on a static tripod you might have to re-centre the Sun during totality, another thing to fuss with and where things can go wrong. Using the camera’s Auto-Bracketing mode can help automate the shooting, allowing the camera to automatically shoot a set of 7 to 9 exposures at say, one-stop increments in quick succession with just one press of the shutter button (by using the self-timer set to 2 seconds).
  5. Shoot with a Telescope on a Tracking Mount. Telescopes (I like 60mm- to 100mm-aperture apochromatic refractors) allow longer focal lengths, though I would advise against shooting with any optics longer than 600mm to 800mm, so the image frames the corona well. Use similar settings as above, but with the telescope (or a telephoto lens) on a tracking mount to turn from east to west at the same rate as the sky moves. That will ensure the Sun stays centred on its own, provided you have at least roughly polar aligned the mount. (Set it to your site’s latitude and aim the polar axis as due north as you can determine from compass apps.)

Those are brief summaries of the methods I recommend, as they are ones I’ve used with success in the past and plan to use on April 8. My ebook contains much more information, and answers to most of the “But what about using ….?” questions. And I provide lots of information on what can go wrong! Some learned the hard way over 16 previous total solar eclipses.

Video Tutorials

For a video tutorial, check out the webinar I conducted as part of the Kalamazoo Astronomical Society’s excellent Eclipse Series here on YouTube. It is about a 1-hour presentation, plus with lots of Q&A at the end.

KAS Eclipse Series โ€” Part 1: Shooting

Of course, once you have all your images, you need to process them. My ebook’s biggest chapter (at 80 pages) is the one on processing still images and time-lapses.

So, a month after I presented the above webinar on Shooting, I was back on-line again for a follow-up webinar on Processing. You can view that KAS Eclipse Series tutorial here on YouTube.

KAS Eclipse Series โ€” Part 2: Processing

I cover processing single wide-angle images, a wide-angle time-lapse series, single-image close-ups, and blending multiple exposure composites.

A month later, I presented a further webinar to the Astronomical League as part of their AL Live series, again on shooting the eclipse, but now with an emphasis on techniques amateur astronomers and astrophotographers with typical telescope gear might use.

You can view the AL Live webinar here. My presentation begins at the 44-minute mark.

AL Live Webinar โ€” Scrub ahead to 44 minutes

I emphasized that the kinds of gear astrophotographers use these days with great success on deep-sky objects might not work well for the eclipse. The specialized cameras, and software used to control them, are just not designed for the demands of a total eclipse, where exposures have to range over a wide array of settings and change very quickly. Images have to be taken and recorded in rapid succession.

I suspect a lot of ambitious and overly-confident astrophotographers will come away from the 2024 eclipse disappointed โ€” and what’s worse, without having seen the eclipse because they were too wrapped up looking at laptop screens trying to get their high-tech gear working.

The Checklist page from my eBook

Practice, Practice, Practice

In these webinars and in my ebook, my common theme is the importance of practicing.

Don’t assume something will work. Practice with the gear you intend to use, on the Sun now (with proper filters) and on the Moon. The crescent Moon, with dim Earthshine lighting the lunar night side, is a great practice target because of its wide range of brightness. And it moves like the Sun will, to check maximum exposure times vs. image blurring from motion.

Practice with your tripod or mount aimed to the altitude and location in the sky where the Sun will be from the site you have chosen. Set a tracking mount to the latitude you will be at to be sure it will aim at and track the Sun without issues. Some telescope mounts stop tracking when they reach due south, exactly where the Sun will be at totality from southern sites. That’s a nasty surprise you do not want to encounter on eclipse day.

All this and much more is covered in my ebook, available for Apple Books and as a PDF for all platforms here from my website at https://www.amazingsky.com/EclipseBook

Good luck on eclipse day!

โ€” Alan, February 21, 2024

Chasing the Annular Eclipse


Like all eclipses, seeing the October 14 annular eclipse of the Sun was not a certainty. As good luck and planning would have it, the sky and location could not have been better!

Annular eclipses of the Sun donโ€™t present the spectacle of a total eclipse. Because the Moon is near its farthest point from Earth, its disk is not large enough to completely cover the Sun. At mid-eclipse, as I show below, a ring of sunlight (dubbed a โ€œring of fireโ€) remains, still too bright to view without a solar filter. 

The October 14, 2023 annular solar eclipse, in a single image captured at mid-eclipse, at 10:29 am MDT at the Ruby’s Inn Overlook on the rim of Bryce Canyon, Utah, a site well south of the centreline, with 3m03s of annularity.

While lacking the jaw-dropping beauty of a total, annular eclipses are rare and unique enough that every ardent skywatcher should make a point of seeing one. 

Prior to October 14, I had seen only one, on May 10, 1994, from southeast Arizona, an event I captured on film of course back then. 

A sunset annular on June 10, 2002 that I traveled to Puerto Vallarta, Mexico to see was mostly clouded out. The annular of May 20, 2012 traced a similar path across the U.S. Southwest as the 2023 eclipse. But work commitments at the science centre in Calgary kept me home for that one. A sunrise annular on June 10, 2021 in Northwestern Ontario was essentially out of reach due to COVID travel restrictions. 

With no other annular eclipses within easy reach in North America until 2039 and 2046, this was my next, and perhaps last, opportunity to see one, unless I chose to travel the world. 

I had planned for several months to watch the annular eclipse from southern Utah, ideally from Bryce Canyon National Park, shown above. (Clicking on the images brings them up full screen.) I booked accommodations in January 2023, finding even then that popular hotels in the area were already sold out. 

The final spot for the wide-angle composite shown below. The camera had to be next to that very fence post to frame the scene well.

The attraction was the landscape below the morning Sun, for a planned composite image of the eclipse over the hoodoos of Bryce. However, I had learned weeks earlier that traffic was going to be restricted to just park shuttle buses on eclipse day. Should Plan A not work out then Plan B was Kodachrome Basin, a state park nearby, which a park employee assured me would be open to cars well before sunrise on eclipse day. 

Seen on I-15 past Salt Lake City. Eclipse ahead!

So I made my plans to drive south, taking with me a carload of telescope and camera gear, an array I would never be able to take to an overseas eclipse. The centrepiece was my venerable Astro-Physics Traveler 105mm (4-inch) refractor, a telescope created for the 1991 total eclipse in Mexico. Since I bought mine in 1992 Iโ€™ve used it for five central solar eclipses, including now two annulars. It’s in the 1994 and 2023 site images above.

As per the instructions in my eclipse ebook, I practiced with the gear in the summer of 2023, documented here on my previous blog.

A week before the eclipse (as above at left), the weather prospects for the entire southwest looked poor. It was to be clouds everywhere. I even considered Plan S โ€“ Stay Home! And watch the 60% partial eclipse from Alberta where skies were to be clear. 

But undaunted, six days before the eclipse, I headed south on Interstate 15, checking the weather each day, and seeking out Plan C sites in New Mexico or Texas south of the projected mass of clouds. I checked where accommodation could be had at the last minute. 

At my stop in Richfield, Utah, four days before the eclipse, I had a crossroads turning point: either continue south to Bryce down US-89 (above), or head east on I-70, then south into New Mexico or Texas, with enough time to get there if needed. 

But by now the weather prospects were turning around. By three days out, and with the forecasts now much more reliable, it looked like southern Utah would be in the clear. I continued with my original plan to Bryce. But where exactly?

I had looked at possible sites on Google Earth and with the Sun-angle planning apps I use (such as The Photographer’s Ephemeris, or TPE) and found one just outside the Park that I hoped would be accessible to drive into. 

Upon arriving in the area three days early, the first priority was to inspect the site in person. It looked perfect! Almost too good to be true! 

A panorama of the Ruby’s Inn site with the eclipse in progress. My wide-angle camera is at left by that fencepost.

The site, known as the Rubyโ€™s Inn Overlook, provided a great view toward the eclipse with a stunning landscape below, including a river! (Well, it was actually an irrigation channel called the Tropic Ditch.) And I could park right next to my wide-angle landscape camera, to keep an eye on it over the five hours of shooting, while setting up the scope gear next to my car. 

I stayed at the Bryce View Lodge on eclipse eve, a hotel just a few hundred metres from the site. So no long pre-dawn drive on eclipse morn. However, the gated site was not going to be open until 7 a.m. on eclipse day. And admission was $20 per car, a cash donation to the Bryce Canyon City school sports teams. Fine! 

As it turned out, by the time I got on site and setup the priority wide-angle camera for the base-image sunrise shots at 7:30 a.m., the sky was too bright to polar align the telescope mount on Polaris, for accurate tracking of the Sun across the sky. 

It turned out that was the least of my concerns. 

My three eclipse cameras: the wide-angle, the one on the 105mm refractor telescope (with a smaller 60mm scope on top for visual views with a Herschel Solar Wedge), and one with a 100-400mm lens on the tripod.

As I unpacked the carload of scope gear at 8 a.m. I realized I had forgotten a crucial cable to connect the mount to the drive electronics. So the mount was not going to be able to track anyway! 

So much for my plans for a time-lapse through the scope. I had to manually centre the Sun every minute or so. I took lots of photos, but gave up on any effort to take them at a regular cadence.ย But I had enough images for the singles and composites shown here.

This is a composite of the October 14, 2023 annular solar eclipse with a sequence of six images showing the Moon advancing across a sunspot, the largest one visible on the Sun that day. The images are placed for a photogenic spacing, with time running forward from lower left to upper right, to reflect the Sun’s motion up across the morning sky.

Of course, once I got home the first thing I did was look downstairs in my scope room. Sure enough there was the cable, mixed up with the similar electronics from another mount I have from the same company, as I had been testing both prior to the eclipse. So much for my checklists! Theyโ€™re only good if they list every critical bit, and if you use them.

So that was one big user error. 

You don’t want to see this at an eclipse!

The other was a camera error, in fact Error70! I had set my main telescope camera to take rapid bursts of images (at up to 20 frames per second) at the crucial second and third contacts when annularity began and ended. With the Moonโ€™s rough limb tangent to the inside edge of the Sun, you see beads of light rapidly form and disappear at the contacts. 

This is a composite of the October 14, 2023 annular solar eclipse at second contact. It illustrates the irregular edge of the Moon breaking up the rim of sunlight as the dark disk of the Moon became tangent to the inner edge of the Sun at second contact at the start of annularity. 15 exposures taken over 20 seconds at second contact are combined with a single exposure taken about 1.5 minutes later at mid-annularity.

The camera worked great at second contact, shooting 344 frames over 20 seconds. A composite of 15 of those frames is above, layered to exaggerate the rough lunar limb and its mountain peaks. A time-lapse from those frames is below.

A time-lapse of second contact from 344 frames over ~20 seconds.

And it appeared to be working at third contact three minutes later. Until I looked down and saw the dreaded error message. In checking the camera later, none of the third contact images had recorded to either memory card. 

It is a known but intermittent bug in Canon firmware that can happen when the camera is not connected to a Canon lens (it was on a telescope it cannot communicate with). I saw the error once in testing. And I had a hard time reproducing it to take the screen shot above once I got home. But if something can go wrong โ€ฆ! 

This is a portrait of the October 14, 2023 annular eclipse of the Sun, captured in a sequence of images taken from the rim of Bryce Canyon, Utah, from sunrise until nearly the end of the eclipse before noon local time. This is a composite blend of unfiltered exposures taken at sunrise for the landscape lit by the rising Sun, and for the dawn sky. Onto the base panorama of the ground and sky I layered in 66 filtered images of the Sun, as it rose into the morning sky, and with the Moon moving across its disk over nearly 3 hours, reaching mid-eclipse at about 10:29 local MDT at upper right. It then appears as a ring, or annulus of light for one frame.

Despite the errors both human and machine, I count eclipse day as successful, considering a week earlier prospects had looked so poor. As it was, apart from some thin but inconsequential cloud that drifted through before mid-eclipse, the sky was perfect.

As was the site. I enabled me to get the main shot I was after, the wide-angle composite, above. It’s a winner! And it accurately depicts the size of the Sun and its motion across the sky, albeit set into a twilight sky taken at sunrise.

As it had been 29 years since my last annular, I wasnโ€™t sure what to expect. But the darkening of the sky and eerie level of sunlight, despite a blazing Sun in the day sky, were impressive. The morning just looked strange! It was a taste of the total to come.

Venus at its widest angle west of the Sun was easy to spot in the deep blue sky. I regret not thinking to shoot even a phone camera image of that sight.ย 

Projecting the solar crescents with a made-on-the-spot pinhole projection sign.

I had pleasant chats with other folks at the site, and enjoyed showing them telescopic views though the smaller visual scope I had piggybacked on the main scope, one that was just for looking through.ย Plus folks shot phone pix of my camera screen.

The October 14, 2023 annular solar eclipse, in a single image captured at second contact with the Moon tangent to the inside limb of the Sun, at 10:27 am MDT at the site I used.

But at the critical contacts, I was glued to that visual scope for the amazing sight of the horns of the crescent Sun rapidly wrapping around the Moon at second contact, then unwrapping at third contact.ย 

The October 14, 2023 annular solar eclipse, in a series of images captured at second contact with the Moon tangent to the inside limb of the Sun, at 10:27 am MDT at the site I used. The 7 frames here were selected from a set of 344 shot in high-speed continuous mode at 20 frames per second.

The breakup of the rim of sunlight into beads of light along the cratered and mountainous edge of the Moon was also impressive. I was not at the optimum site for seeing those beads, as the landscape dictated my choice of location. But those that I saw at each of the internal contacts were a fine bonus to a memorable morning.ย 

This is a composite that records the sequence around mid-eclipse of the October 14, 2023 annular eclipse of the Sun. This is a blend of 8 exposures each taken 2.25 minutes apart, about the minimum time to keep the disks separate and avoid them overlapping.

A third camera shooting a sequence with an untracked 400mm telephoto lens worked well. I used a subset of its images to create a still-image composite (above) and the full set for a time-lapse (below), with the position and motion of the Sun authentic, produced by the natural east-to-west motion of the sky. But against that you see the Moonโ€™s orbital motion moving its dark disk down across the disk of the Sun. 

A time-lapse from 300 frames taken at 4-second intervals with the sky’s motion carrying the Sun across the frame.

As soon as annularity ended, everyone else started to pack up and leave. For them the show was over. Understandably. On many total eclipse tours I’ve been on we’ve been on the road back to the hotel after totality and the requisite happy group shot.

Eclipse success! The trophy shot after everyone else had left.

But at this eclipse my shooting plan dictated that I stick it out. By the end of the eclipse I was the last one standing, alone to enjoy last contact and then lunch, killing time for any road congestion to diminish, as I had to head to another motel for the post-eclipse night, in nearby Panguitch. 

I had a celebratory dinner and Moab-brewed beer that night at Cowboyโ€™s, the best restaurant in Panguitch, sporting my Annular 2023 eclipse hat! 

But the next day I started the drive north again, for the three-day trek back up I-15 to the border, then home. 

Priority one upon getting home was to finish processing images, and to include them in a revised version of my ebook How to Photograph the Solar Eclipses. It is linked to above and here on the title. Images of some sample pages from the revised edition are in the slide show below.

Post-annular, the bookโ€™s title remains the same, but I revised the pages in Chapter 4 on planning for the 2023 eclipse with pages on โ€œlessons learned!โ€ And there were several! 

I expanded Chapter 11 on processing to include tutorials on assembling annular eclipse composites, now that I actually have some! 

Such as the composite of first- to last-contact telescopic close-ups below.

This is a composite of the various stages of the entire October 14, 2023 annular solar eclipse, from start (lower left) to end (upper right), with mid-eclipse at centre. So time runs forward from left to right, with the Suns positioned to reflect the approximate motion of the Sun in the morning sky when this eclipse occured at my site, with it rising higher through the progress of the eclipse. North is up in this image.

The new version of my ebook is 20 pages larger than the pre-annular edition. 

An email has gone out from eJunkie to all buyers of the earlier-edition PDF to alert them to the new version, and with a download link. Apple Books readers should get a notice when they open the book on their Mac or iPad in the Books app that a new version is available. 

I suspect that will be the last revision of my ebook before the big event โ€“ the total eclipse of the Sun on April 8, 2024. 

Hereโ€™s wishing us all clear skies for that one! That eclipse will indeed require a drive to Texas. This time I’ll remember that damned cable! 

โ€” Alan Dyer, October 31, 2023

amazingsky.com 

Testing for the Annular Solar Eclipse


With the October 14, 2023 annular eclipse of the Sun only weeks or days away, itโ€™s time to test your equipment, to ensure success on eclipse day.

On October 14 everyone in North America, Central America, and much of South America can see an eclipse of the Sun, as shown in the map below, courtesy GreatAmericanEclipse.com. The closer you are to the โ€œpath of annularityโ€ drawn in yellow here, the more of the Sun you see covered by the Moon. 

Eclipse map showing area of visibility of the October 14 eclipse courtesy GreatAmericanEclipse.com

However, for the best experience, plan to be in the central path of the Moonโ€™s shadow. In North America, as shown in the map below, that path crosses the western states, passing over the scenic landscapes of the American southwest. 

Courtesy GreatAmericanEclipse.com

Those in the main path will see an annular eclipse โ€“ the Moon will travel across the center of the Sunโ€™s disk, but wonโ€™t be large enough to completely cover the Sun. The result, as shown below, is that the Sun will be reduced to a thin ring or โ€œannulusโ€ of light at mid-eclipse, but only for a few minutes.

For details of when the eclipse occurs and how long the eclipse lasts at your site, see the interactive map at Fred Espenakโ€™s site at https://www.eclipsewise.com/solar/SEgmapx/2001-2100/SE2023Oct14Agmapx.html 

GEAR AND FILTERS

The May 10, 1994 annular eclipse of the Sun, with a trio of eclipse rigs.

To view or photograph the annular eclipse well, you need to use a long telephoto lens or a telescope. A focal length of 400mm or longer is required to make the Sunโ€™s and Moonโ€™s disks large enough to show detail well. 

As I show above, the lens or telescope can be on a solid tripod, or on an untracked alt-azimuth telescope mount, or on a mount that can track the sky, such as the equatorial mount on the right above. All will work fine, as exposures will always be short, just a fraction of a second. 

I go into the many options for photographing the eclipse in my ebook, linked to at right. It contains thorough tutorials on how to shoot the eclipses in 2023 and 2024. In this blog Iโ€™m focusing on extolling the need to practice now, with whatever gear you own and intend to use for the eclipse.

An array of solar filers, for unaided eyes, lenses and telescopes

No matter what optics you plan to use, they must be equipped with a safe solar filter mounted over the front of the optics. For the October 14 eclipse, even from sites in the path of annularity, a filter must be used at all times. It will never be safe to look at or shoot the Sun without a filter. 

And it must be a filter dense enough and designed for the purpose of aiming at the Sun. Do not use stacked neutral density filters or other jury-rigged arrangements, as other filters can transmit ultraviolet or infrared light that can still damage eyes and cameras. 

If you do not have a proper filter for your lens or telescope, get one now. Order from reputable suppliers such as AstroZap, Baader Planetarium, Kendrick Astro Instruments, Seymour Solar, Thousand Oaks Optical, or from the makers of telescopes and their dealers. 

The eyeglass or handheld style of solar filters are good for unaided eye views, and most are made by American Paper Optics or Rainbow Symphony. A list of recommended filter suppliers is available at the American Astronomical Societyโ€™s eclipse website at https://eclipse.aas.org/eye-safety. In addition, many astronomy clubs, planetariums and science centers will offer safe eyeglass-style filters they purchased in bulk from one of the suppliers above. 

However, for photography through a lens or telescope you need a filter that either screws onto the lens or clamps over the telescope, as I show below. 

Comparing different types of telescope filters โ€“ the Baader Mylar worked best in this test.

In my testing, Iโ€™ve found that the aluminized Mylarยฎ (or polyethylene) type of filter โ€“ one that looks like a silvery sheet โ€“ provides the best sharpness and contrast, despite the wrinkles. The most popular type is made by Baader Planetarium, and sold by them or by other dealers and resellers.

While metal-coated glass filters also work very well, in recent years they have become hard to find, with past suppliers of glass filters switching to black polymer plastic material. While safe and good for naked-eye views, Iโ€™ve found the image through black polymer filters can be soft and surrounded by lots of light scatter when used for photography at long focal lengths. 

TESTING, TESTING!

An eclipse rig under test, with dual scopes for shooting and looking

Once properly equipped, test your setup as soon as possible on the Sun. In the rig above I have piggybacked a smaller telescope onto the larger telescope, both with filters, the latter to shoot through while I look through the smaller scope, good for watching the few minutes of annularity. 

The key things to test for are:

  • Finding the Sun (not as easy as you might think!)
  • Focusing on the Sun (also critical and can be tough โ€“ focus on the edge or on sunspots)
  • Checking for any focus shift over a couple of hours time
  • Determining the correct exposures with your filter
  • Checking for any vibration that can blur the image
  • Operating your camera to change settings, without vibration
  • Checking to see how long batteries will last
  • Seeing how much the Sun moves across the frame during a few minutes time
  • Following the Sun or keeping it centered 
  • Making a checklist of the gear you need on eclipse day, plus any backups such as a spare battery, and tools for last-minute fixes or adjustments. 
The filters from Kendrick Astro Instruments have a handy Sun finder attachment.

You want to test how solid your setup is when aimed up. Your super-telephoto lens and tripod that work great for birds and wildlife might not be as well-suited as you thought when aimed high at the Sun. Best to find out now about any shortcomings in your gear. 

A series of images with an 80mm refractor and Kendrick Mylar filter shows a range from under to over-exposed.

Run through a set of exposures to see what produces the best result with your optics and filter. Even with the October 14 eclipse underway, the Sun will be a similar brightness as it is on any normal day. 

At best, on eclipse day you might wish to shoot a bracketed set of exposures throughout the eclipse, perhaps a frame taken at your pre-determined โ€œbestโ€ exposure, and two others: at one stop and two stops overexposed, to account for the slightly dimmer solar disk when it is mostly covered by the Moon in a deep partial or annular phase. 

Alter exposures by changing shutter speeds, not aperture or ISO. Keep the ISO speed low, and the aperture either wide open or at some middle setting such as f/5.6 for the sharpest images.

But also check what exposures might be needed when shooting the Sun through thin clouds. Any cloud or haze will require longer exposures. And you might need to change shutter speeds quickly if the Sun goes into and out of clouds. Practice that โ€“ without introducing vibration from handling the camera.

Leave the rig for a couple of hours to test how the focus might shift, as it is certain to do, as the temperature changes through the morning or afternoon. Practice touching up the focus. People fuss over the โ€œbestโ€ exposure, when it is poor focus that is the common spoiler of eclipse photos.ย 

You can find more tips for practicing for eclipse close-ups at a blog I wrote for AstronomyByNight.ca.

WIDE-FIELD OPTIONS

May 10, 1994 annular eclipse in a series of multiple exposures every 10 minutes.

An alternative way to shoot the eclipse is with a wide-angle lens, but also equipped with a solar filter, as shown above. Frame the scene to include the expected path of the Sun, determined by using planetarium software such as SkySafari or Stellarium (my ebook also has charts). Take images every minute or so, then layer those onto an unfiltered image of the sky and foreground taken either before the Sun enters the frame or after it leaves it.

A test set for a composite image.

Practice that method now, to shoot images for a test composition as I show above. It layers filtered images taken at 5-minute intervals onto an unfiltered background sky image taken after the Sun left the frame. 

However, composite images can be complex to plan and execute. 

The partial solar eclipse of October 23, 2014 as seen from Jasper, Alberta, at a public event in Centennial Park as part of the annual Dark Sky Festival. This is a single-exposure image showing the scene near mid-eclipse with telescopes from volunteers from the Royal Astronomical Society of Canada, and the mostly clear skies above with the crescent Sun visible through the handheld polymer solar filter.

A simpler method for grabbing a souvenir eclipse photo is to simply hold a handheld solar filter in front of the lens to dim the Sun but leave the rest of the scene visible. 

Again, you can practice that now to see what exposure might be best. For this type of shot I find black polymer filters best as they are less reflective than the Mylar type. 

That method, or using a long lens or telescope will work well on eclipse day no matter where you are, either in the path or elsewhere enjoying the partial eclipse, as in the example image below, also from October 23, 2014, shot with my small scope at lower left in the image above. 

The partial eclipse of the Sun, October 23, 2014, as seen from Jasper, Alberta, shot under clear skies through a Mylar filter, on the front of a 66mm f/6 apo refractor.

No matter the method and gear you use, success on eclipse day will require practicing beforehand to learn what can go wrong, and what works best for the setup you plan to use. Never assume something will work! 

Clear skies on October 14! The annular eclipse that day will serve as a great dress rehearsal for the big eclipse to come โ€“ the total eclipse of the Sun on April 8, 2024. Thatโ€™s the event you really want to get right!

โ€“ Alan, September 5, 2023 

(ยฉ 2023 Alan Dyer/AmazingSky.com

How To Photograph the Solar Eclipses


My latest ebook describes in detail the many techniques we can use to capture great still images and movies of the 2023 and 2024 eclipses of the Sun.

In the next few months we have two major eclipses of the Sun visible from North America.

On October 14, 2023 the Moon will cross the disk of the Sun creating a partial eclipse. But from along a narrow path in the western U.S. the Moon’s disk will be centered on the Sun’s disk but not be large enough to completely cover it. For a few minutes, viewers will see an “annular” eclipse, as above, as what remains of the Sun forms a brilliant ring of light around the dark disk of the Moon.

Six lunar months later, the Moon again crosses the Sun but is now large enough to completely cover the Sun’s bright disk. The result is the most spectacular celestial sight, a total eclipse of the Sun, on April 8, 2024. The last such total solar eclipse (TSE) in North America was on August 21, 2017, shown above. After 2024, the next TSE in southern North America will not be until August 23, 2044. (There’s a TSE in northern Alaska on March 30, 2033.)

In 2017 I prepared an ebook about how to shoot that year’s total eclipse. This year I revised and expanded the book extensively to cover both the 2023 annular and 2024 total eclipses. The new 350-page ebook explains how to frame the eclipses depending on where you are along the paths. New information covers the advances in camera gear, with more details added on shooting video. Revised tutorials cover new software and processing techniques.

Above is the ebook’s Contents page, so you can see what topics it covers, over an extensive 350 pages. I provide not only advice on lots of techniques and gear, but also suggestions for what not to do, and what can go wrong!


The Fundamentals

I discuss the filters needed, comparing the various types available, and when to use them, and when to remove them. (A filter is always needed for the annular eclipse, but failing to remove the filter is a common failing at a total eclipse!)

For the 2023 annular eclipse I explain how to shoot close-ups, but also another type of image, the multiple exposure composite. Framing, timing and exposing correctly are crucial.

I do the same for the 2024 total eclipse, as a wide-angle shot of the eclipsed Sun over a landscape is one of the easiest ways to capture the event. It’s possible to set up a camera to take the images automatically, leaving you free to enjoy the view of the event without fussing with gear. I explain how best to do that.

For both eclipses, many people will want to shoot close-ups with telephoto lenses or telescopes. It takes more work and more can go wrong, but I show what’s required for equipment and exposures, and explain how to avoid the common flaws of fuzzy focus and trailed images.

But good exposure is also essential. However, for a total eclipse close-up, no one exposure is best. It takes a range of exposures to record the wide dynamic range of phenomena during totality. That demands work at the camera.


Setting Cameras

I show how we can use a camera’s auto-bracketing function to help automate the process of taking a set of exposures, from short exposures for the prominences, to long for the faint outer corona.

Another option is using a continuous burst mode to capture the fleeting moments of the diamond rings at the start and end of totality in 2024. But this can also be useful for capturing the “reverse Baily’s beads” that appear briefly as the Moon reaches the inner contact points at the start and end of the annular phase of the 2023 eclipse.

Using a tracking mount can help with shooting a set of images during totality. I describe the options for choosing the right mount and telescope, and how to set it up for accurate tracking. I discuss the advantages โ€” and pitfalls โ€”ย of using a tracking mount.


Shooting Video

Video is now an important feature of many cameras. But the choices of formats and settings can be daunting! 4K, 8K, 4K HQ โ€” what to use? I illustrate the differences, using the best practice target, the crescent Moon.

Choosing the right contrast curve for your video โ€” such as CLog3 here โ€” can also make a big difference to the final video quality. It’s important to get that right. You have only one chance!

I also devote a chapter to shooting time-lapses, with wide-angle lenses and telescopes.


Image Processing

Chapter 11 is the biggest, with 68 pages of tutorials on how to process eclipse images, using the latest software. I show the benefit new AI tools can provide, but also the oddities they can impart to eclipse images.

I illustrate how to use HDR software (comparing sample results from several popular programs) to blend multiple exposures for greater dynamic range.

I illustrate other methods of stacking and blending exposure sets, such as luminosity masks and stack modes. Examples are all with Adobe products, but the methods are applicable to other layer-based programs such as Affinity Photo.

The processing chapter ends with illustrations on how to create layered composites from images taken at multiple stages of an eclipse.


What Can Go Wrong?

The ebook ends with advice for the ambitious (!) on how best to use several cameras to capture different aspects of the eclipse. And I includes lots of tips and checklists to ensure all goes well on eclipse day โ€” or what to do for Plan B if all does not go well!

The ebook is available for Apple Books (for Macs and iPads) and as a PDF for all devices. Links to buy and more details on ebook content are at my website at www.amazingsky.com/EclipseBook.

I’ll be posting more eclipse “tips and techniques” blogs in the coming months, so be sure to subscribe.

Thanks and clear skies!

โ€” Alan, June 2023

The Best Sky Sights of 2023


May 10, 1994 Annular Eclipse taken from a site east of Douglas, Arizona showing “reverse” Bailey’s Beads โ€”lunar mountains just touching Sun’s limb 4-inch f/6 apo refractor at f/15 with Barlow lens Ektachrome 100 slide film.

Hereโ€™s my preview of some of the best celestial events for 2023. Mine is certainly not an exhaustive list. Iโ€™ve picked just one event per month, and Iโ€™ve focused on events best for unaided eyes or binoculars, and visible from North America. (So the solar eclipse of April 20 visible from Australia and the South Pacific, and the two minor lunar eclipses this year donโ€™t make the cut!)

For most events, unless otherwise stated, the scene depicted is for southern Ontario, Canada. However, the view will be similar from other locations. All sky charts were created with SkySafari software, available here for desktop and mobile devices.

Click or tap on any of the illustrations to bring up a full-screen view with more detail and readable labels!


JANUARY 

As 2023 opens, Venus is beginning its climb into the evening sky, while Saturn is sinking into the sunset. The two planets pass each other on Sunday, January 22, when they appear just one-third of a degree apart in the twilight. Use binoculars to pick out dimmer Saturn. And look for the thin day-old crescent Moon just over a binocular field below the planet pair. 


FEBRUARY

A month later, on Wednesday, February 22, Venus has now ascended higher, preparing to meet up with descending Jupiter. But before they meet, the crescent Moon, with its dark side lit by faint Earthshine, joins the planets in a particularly close conjunction with Jupiter. They will appear about 1ยฐ (two Moon diameters) apart, with Venus about a binocular field below. 


MARCH

Hereโ€™s a date to circle on your calendar. On Wednesday, March 1 the skyโ€™s two brightest planets, Venus and Jupiter, pass within half a degree of each other, in arguably the yearโ€™s best conjunction. Theyโ€™ll be close enough to frame nicely at medium power in a telescope, though the featureless gibbous disk of Venus will appear small, about the third the size of Jupiterโ€™s banded globe. But Venus is by far the brighter of the two worlds. 


APRIL

If you want to check Mercury off your sighting list this year, this is a good week to do it. On April 11 Mercury reaches its greatest angle away from the Sun in the evening sky, and for northern hemisphere viewers, is angled at its highest in the western sky. Even so, look just a binocular field above the horizon. While youโ€™re at it, look higher for the fine sight of Venus near the Pleiades star cluster. 


MAY

Wednesday, May 17 brings a chance to see the crescent Moon pass in front of Jupiter. But it will be a tricky event to catch. While most of North America and parts of Northern Europe can see the occultation, it occurs in the daytime sky with the Moon only 25ยฐ west of the Sun. However, locations along the West Coast of North America can see either the start or end of the occultation in a bright pre-dawn sky. Vancouver, Canada sees Jupiter disappear before sunrise, while Los Angeles โ€“ the view shown above โ€“ sees Jupiter reappear just before sunrise. Other locations will see a close conjunction of the Moon and Jupiter low in the dawn sky.


JUNE

As June opens we have Venus still shining brightly in the evening below much dimmer Mars, now far from the Earth and tiny in a telescope. But itโ€™ll be worth a look this night even in binoculars as the red planet passes in front of the Beehive star cluster, also known as Messier 44. If you miss June 2, Mars will be close to the Beehive the night before and after. 


JULY

Venus has been bright all spring, but on July 7 it officially peaks at its maximum brilliance, reaching a blazing magnitude of -4.7. It reached its greatest angle from the Sun a month earlier on June 4 and is now dropping closer to the Sun each evening. But you still canโ€™t miss it. What you might miss is dim Mars above, now close to the star Regulus in Leo. Mars passes 3/4 of a degree above Regulus on July 9 and 10. Youโ€™ll need binoculars to pick out the pairing. 


AUGUST

Everyone looks forward to the annual summer stargazing highlight โ€“ watching the Perseid meteor shower. This is a good year, with the peak hour of the shower falling in the middle of the night of August 12/13 for North America. Thatโ€™s a Saturday night! But most importantly, the waning Moon doesnโ€™t rise until the wee hours, as shown here, so its light wonโ€™t wash out the meteors. Plan to be at a dark site for an all-night meteor watch. 


SEPTEMBER

By September Venus has made the transition into the morning sky and shines at its greatest dawn-sky brilliance on September 19. It will then be joined by Mercury, with the inner planet reaching its greatest angle away from the Sun on September 22 shown here. This is the best morning appearance of Mercury for Northern Hemisphere observers. The view this morning bookends the view five months earlier on April 11. If you are away from urban light pollution, also look for the faint glow of Zodiacal Light in the pre-dawn sky before Mercury rises. 


OCTOBER

October is solar eclipse month! On Saturday, October 14 the shadow of the Moon passes across all of North America and most of South America. Everyone on those two continents sees a partial eclipse of the Sun. But those along a narrow path sweeping across the western U.S. and down into Mexico, Central America and across northern South America can see a rare โ€œring of fireโ€ eclipse as the Moonโ€™s dark disk eclipses the Sun, but isnโ€™t quite large enough to totally cover it. This is an โ€œannularโ€ eclipse. The view above is from Albuquerque, New Mexico, one of the largest U.S. cities in the path of annularity, second only to San Antonio, Texas. 

This is the path of annularity across the western U.S. To see the Moon pass centrally across the Sun (the “ring of fire”) you have to be somewhere in that grey path. Outside the path you will see only a partial eclipse of the Sun. For detailed and zoomable eclipse path maps like the one above, please visit EclipseWise.com.


NOVEMBER

Close conjunctions between the crescent Moon and Venus are always notable. Get up early on Thursday, November 9 to see the 26-day-old Moon shining only a degree below Venus. Venus reached its greatest angle away from the Sun on October 23. It is now descending back toward the Sun, but remains high in the morning sky in early November.


DECEMBER 

Though it usually puts on a better show than the summer Perseids, the Geminid meteor shower is not as popular because itโ€™s cold! But this is also a good year for the Geminids as it peaks only two days after New Moon. The best night might be Thursday, December 14, but a good number of meteors should be zipping across the sky the night before on December 13, shown here. Start watching at nightfall and go as long as you can in the chill of a December night. 

To download my free Amazing Sky 2023 Calendar in PDF format, go to my website at https://www.amazingsky.com/Books The PDF file can be printed out at home or taken to an office supply shop to be printed and bound.

Good luck in your stargazing and clear skies for 2023!

โ€” Alan, January 15, 2023 / AmazingSky.com

The Snowbound Eclipse


For once I was able to watch a total eclipse of the Moon under clear skies from home. Good thing, as a snowstorm would have made travel a challenge.ย 

On November 8, 2022 the Full Moon once again passed through the umbral shadow of the Earth, as it has done at six-month intervals for the last two years. The Moon turned deep red for almost an hour and a half. 

This is the totally eclipsed Moon of November 8, 2022 set in the stars of Aries, with the planet Uranus nearby, visible as the greenish star about three Moon diameters away from the Moon at the 10 o’clock position.

This was to be the last total eclipse of the Moon visible from anywhere in the world until March 14, 2025. 

However, in the days leading up to the eclipse weather prospects looked poor. The worse snowstorm โ€” indeed the first major snowstorm for my area โ€” was forecast for the day before the eclipse, November 7. Of course!ย 

Weather prospects for eclipse time from the Astrospheric app.

For all the lunar eclipses in the last decade visible from my area, I have had to chase to find clear skies, perhaps a couple of hours away or a half dayโ€™s drive away. I documented those expeditions in previous posts, the latest of which is here for the May 15, 2022 total eclipse. In all cases I was successful.ย 

However, just once it would be nice to be able to stay home. The last โ€œTLEโ€ I was able to watch from home was on December 21, 2010. It had been a long decade of lunar eclipse chasing! 

But, it looked like another chase might be needed. Weather maps showed possible clear skies to the west and south of me on eclipse night. But cloud over me. 

Other forecast models were a bit more optimistic.

The problem was with six inches of new snow having fallen and temperatures forecast to be in the minus 20s Celsius, any drive to a remote site was going to be unwise, especially at 3 am for the start of the eclipse in my time zone in Alberta. 

I decided to โ€” indeed was more or less forced to โ€” stay put at home and hope for the best. So this was the โ€œsnowbound eclipse!โ€ 

Luckily, as the snowstorm receded east, clear skies followed, providing better conditions than I had expected. What a pleasure it was watching this eclipse from the comfort of home. While operating camera gear at -25ยฐ C was still a challenge, at least I could retreat inside to warm up. 

A wide-angle view of the total eclipse of the Moon of November 8, 2022, with the red Moon at right amid the stars of the northern winter sky, plus with bright red Mars at top. Above and left of the Moon is the blue Pleiades star cluster, while below it and to the left is the larger Hyades cluster with reddish Aldebaran in Taurus. The stars of Orion are left of centre, including reddish Betelgeuse, while at far left are the two Dog Stars: Procyon, at top, in Canis Minor, and Sirius, at bottom, in Canis Major.

The view with the naked eye of the red Moon set in the winter sky was unforgettable. And the views though binoculars were, as always, the best for showing off the subtle colour gradations across the lunar disk. 

A self-portrait of me observing the total eclipse of the Moon on November 8, 2022, on a very cold (-25ยฐ C) morning at 4 am.

As has been the tradition at the last few eclipses, I shot a souvenir selfie to show I was really there enjoying the eclipse. 

A view of the aurora that appeared during the November 8, 2022 total eclipse of the Moon, as the sky darkened to reveal a show of Northern Lights on this very cold and icy night at 4 am.

A bonus was the appearance of some Northern Lights during totality. As the bright Moon dimmed during its passage into Earthโ€™s umbral shadow, darkening the sky, the aurora began to appear to the north, opposite the eclipsed Moon.ย 

Not a great display, but it was the first time I can recall seeing aurora during a lunar eclipse.ย 

A parting shot of the now partially eclipsed Moon setting in the west down my driveway, early in the morning of November 8, 2022. With the Canon R6 and TTArtisan 21mm lens at f/2.8.

My parting view and photo was of the now partially eclipsed (and here overexposed) Moon emerging from the shadow and shining right down my rural snowbound driveway. 

It was a perfect last look from home of a sight we wonโ€™t see again for two and half years. 

โ€” Alan, November 9, 2022 (amazingsky.com

Chasing the Shadowed Moon (2022)


Once again, catching the eclipsed Moon required a chase to clear skies.

As with every previous eclipse of the Moon visible from my area in the last decade, I didn’t have the luxury of watching it from home, but had to chase to find clear skies.

(See my previous tales of the November 19, 2021 and May 26, 2021 eclipses.)

However, the reward was the sight of the reddened Moon from one of my favourite locations in Alberta, Reesor Lake, in Cypress Hills Interprovincial Park.

The eclipse in question was the total lunar eclipse of May 15/16, 2022. As with any eclipse, planning starts with a look at the weather forecasts, or more specifically cloud forecasts.

A few days prior, conditions didn’t look good from my home, to the west of the red marker.

Cloud forecast two days prior.

But as the chart from the app Astrospheric shows, very clear skies were forecast for southeast Alberta, in the Cypress Hills area, where I have shot many times before.

Except as eclipse evening drew closer, the forecast got worse. Now, the clouds were going to extend to my chosen site, with a particularly annoying tongue of cloud right over my spot. Clouds were going to move in just as the total eclipse began. Of course!

Cloud forecast the morning of the eclipse.

I decided to go for it anyway, as the Moon would be to the east, in the direction of the clear skies. It didn’t need to be clear overhead. Nor did I want to drive any farther than I really needed, especially to another location with an unknown foreground.

The spot I chose was one I knew well, on the west shore of scenic Reesor Lake, near the Alberta/Saskatchewan border, but on the Alberta side of Cypress Hills Interprovincial Park.

I used the app The Photographer’s Ephemeris (TPE) to help plan the shoot, to ensure the Moon would be well situated over the lake.

A screen shot from TPE

Handily, TPE provides moonrise times and angles for the chosen location, as well as eclipse times for that time zone.

The companion app, TPE 3D, provides a preview of the scene in 3D relief, with the hills depicted, as a check on Moon altitude and azimuth with respect to the horizon below.

TPE 3D’s simulation

As you can see the simulation matched reality quite well, though the image below was from an earlier time than the simulation, which was for well after mid-totality.

The eclipse over Reesor Lake, in the last stages of the partial eclipse.

However, true to the predictions, clouds were moving in from the west all during the eclipse, to eventually obscure the Moon just as it entered totality and became very dim. Between the clouds and the dark, red Moon, I lost sight of it at totality. As expected!

Below is my last sighting, just before totality began.

The eclipsed Full Moon rising over Reesor Lake in Cypress Hills Interprovincial Park, Alberta, on May 15, 2022.

However, I was content at having captured the eclipse from a photogenic site. More images of a complete eclipse would have been nice, but alas! I still consider the chase a success.

A panorama of the eclipsed Full Moon rising over Reesor Lake in Cypress Hills Interprovincial Park, Alberta, on May 15, 2022.

Just for fun, I shot a quick panorama of three segments, and it turned out to be my favourite image from the eclipse, capturing the scene very well. Pelicans and geese were plying the calm waters of the lake. And owls were hooting in the woods. It was a fabulous evening!

Me at Reesor Lake after shooting the lunar eclipse of May 15, 2022, with the Moon now in clouds behind me.

Before departing, I took my customary “trophy” shot, of the eclipse hunter having bagged his game.


Interestingly, this eclipse was a close repeat of one 19 years earlier to the day, because of the so-called Metonic Cycle where eclipses of the Sun and Moon repeat at 19-year intervals on the same calendar day, at least for 2 or 3 cycles.

The trophy shot from May 15, 2003.

On May 15, 2003, we also had a total lunar eclipse in the early evening, with the eclipsed Moon rising into a spring twilight sky. I also chased clear skies for that one, but in the opposite direction from home, to the southwest, to the foothills. At that time it was all film, and medium format at that.

Total eclipse of the Moon seen May 15, 2003 from southern Alberta (from a site west of Nanton). The Moon rose as totality started so was deep into totality by the time it was high enough to see and sky dark enough to make it stand out. Pentax 67 camera with 165mm lens at f/2.8 with Fujichrome 100F slide film.

So it was another (partially!) successful eclipse chase.

The next opportunity is on the night of November 7/8, 2022, a time of year not known for clear skies!

Just once I would like to see one from home, to make it easier to shoot with various telescopes and trackers, as the reddened Moon will be west of the photogenic winter Milky Way, and very close to the planet Uranus. Plus for me in Alberta the November eclipse occurs in the middle of the night, making a home eclipse much more convenient. After that, the next chance is March 13/14, 2025.

But no matter the eclipse, I suspect another chase will be in order! It just wouldn’t be a lunar eclipse without one.

โ€” Alan, May 19, 2022 (amazingsky.com)


Chasing the Earth-Shadowed Moon (Again!)


A selfie of the successful eclipse hunter having bagged his game, on the morning of November 19, 2021.

It’s been over 10 years since I’ve last had the luxury of observing an eclipse of the Moon from the comfort of home. Once again, a chase was needed.

During the post-midnight wee morning hours, the Moon was set to once again pass through the Earth’s shadow, this time presenting us with a deep partial eclipse, with 97% of the Full Moon’s disk immersed in the umbra and deep red.

We had another lunar eclipse in 2021, six lunar cycles earlier on May 26, an eclipse that was barely total and, for me, positioned low in the southwest at dawn. I chased that eclipse north to Rocky Mountain House, Alberta, to find clear skies on eclipse morning.

A composite “time-lapse” blend of the setting Full Moon entering the Earth’s umbral shadow on the morning of May 26, 2021.

Every lunar eclipse I’ve seen from Alberta since December 2010 I’ve had to chase to find clear skies. While the chases were all successful, this time I was hoping to stay home and enjoy the eclipse without a long drive to seek clear skies, and to then employ a telescope to shoot the Moon in close-up. In the days before the eclipse, the forecasts changed daily.

On the day before the eclipse, things looked bad, with high clouds forecast for home.

The Environment Canada forecast for eclipse time at 2 am Nov 19, as of the afternoon of Nov. 17.

It looked like a trip to north-central Alberta was warranted, perhaps to Wainwright. But rather than book a motel, I decided to wait to see if the forecast might improve. And sure enough it did.

The Environment Canada forecast for eclipse time at 2 am Nov 19, as of the morning of Nov. 18, eclipse day!

By the morning of eclipse day, prospect for clear skies from home looked better Or perhaps a short drive east would suffice. With luck!

But by the evening of the eclipse, clouds were not cooperating. The actual views from satellites showed lots of cloud over my area (as the view out the door confirmed!), and it didn’t look like the clouds were going away.

Satellite view eclipse evening, with my area in Alberta at centre.

But as the previous forecasts called for, clear skies were to be found to the north. So at 11:30 pm, with the eclipse starting in less than an hour, I packed up the car and headed north to as far as I could get โ€” and hopefully as far as I need to get โ€” to be assured of clear skies.

A selfie of the successful eclipse hunter observing the eclipse of the Moon, on the morning of November 19, 2021.

It worked! The eclipse was well underway as I made my way north, stopping to check its progress and the state of the clouds. As expected, about 90 minutes north I drove out from under the clouds you can see to the south in the photo above, where I had come from.

I chose a side road and pull off near Rowley, Alberta. I had enough time to set up three cameras, two on polar-aligned trackers to take longer, wide-field images of the Moon amid the stars, plus the static camera for the selfies.

The deep partial eclipse of the Moon of November 19, 2021, with the reddened Moon below the Pleiades star cluster, M45, in Taurus, the hallmark feature of this eclipse which at maximum at 2:03 am MST (about 8 minutes after this sequence was taken at 1:55 am MST) was 97% partial, so not quite total. This is a stack of 2 x 30-second exposures at ISO 3200 for the base sky, blended with 30s, 8s, 2s, and 0.6s exposures at ISO 800, all with the Canon EOS R6 camera on the William Optics RedCat astrograph at f/4.9, and on the Sky-Watcher Star Adventurer tracker at the sidereal rate.

The red Moon below the blue Pleiades was the unique sight at this eclipse. It can only happen if an eclipse occurs in mid-November and that won’t happen for another 19 years, on November 18, 2040, in a total eclipse visible only from the eastern hemisphere.

After some mid-eclipse equipment woes โ€” a tracker deciding to come loose from the tripod, and a lens that refused to focus โ€” I also took some wider shots of the Moon among the stars of Taurus.

This is a stack of 2 x 30-second exposures at ISO 1600 for the base sky, blended with 10s, 4s, 1s, and 0.3s exposures at ISO 800, all with the Canon EOS Ra camera and Canon RF28-70mm lens at f/2.8 and on the Sky-Watcher Star Adventurer Mini tracker.

Despite writing an extensive blog on how to shoot this eclipse, it did prove to be more of a challenge than I had anticipated. The portion of the Moon outside the umbra, even at mid-eclipse, remained very bright, and overexposed and flared in the frames with long enough shutter speeds to record the stars. A full total eclipse is easier to shoot!

This is a stack of 2 x 30-second exposures at ISO 3200 for the base sky, blended with 15s, 4s, 1s, and 0.25s exposures at ISO 400, all with the Canon EOS R6 camera and Canon RF28-70mm lens at 28mm and f/2.8 and on the Sky-Watcher Star Adventurer Mini tracker.

However, I can count this eclipse chase as a success. Of all the total (or near total in this case) lunar eclipses visible from my area of the world since 2001, I’ve seen them all. But almost all required a chase.

Will that be the case next year? We have two total lunar eclipses in 2022: on May 15 (with the Moon rising at eclipse time as seen from here in Alberta), and again six lunar cycles later on the morning of November 8, 2022, which is 12 lunar cycles after this most recent eclipse. We are in the middle of a nice run of 4 lunar eclipses, three total and one near-total.

I suspect I will be chasing both of those!

โ€” Alan, November 20, 2021 (AmazingSky.com)

How to Photograph the Lunar Eclipse


On the night of November 18/19 eclipse fans across North America can enjoy the sight of the Moon turning deep red. Hereโ€™s how to capture the scene.

Seeing and shooting this eclipse will demand staying up late or getting up very early. Thatโ€™s the price to pay for an eclipse everyone on the continent can see.

Also, this is not a total eclipse of the Moon. But itโ€™s the next best thing, a 97% partial eclipse โ€“ almost total! So the main attraction โ€” a red Moon โ€” will still be front and centre.

CLICK ON AN IMAGE to bring it up full screen for closer inspection.

NOT QUITE TOTAL

At mid-eclipse 97% of the disk of the Full Moon will be within Earthโ€™s dark umbral shadow, and should appear a bright red colour to the eye and even more so to the camera. A sliver of the southern edge of the Moon will remain outside the umbra and will appear bright white, like a southern polar cap on the Moon. 

While some references will say the eclipse begins at 1:01 am EST, thatโ€™s when the Moon first enters the outer lighter penumbral shadow. Nothing unusual can be seen at that point, as the darkening of the Moonโ€™s disk by the penumbra is so slight, you wonโ€™t notice any difference over the normally bright Full Moon. 

The extent of the umbra and penumbra at the October 2004 total lunar eclipse.

It isnโ€™t until the Moon begins to enter the umbra that you can see a dark bite being taken out of the edge of the Moon. 

WHAT TO SEE

At mid-eclipse the Full Moon will look deep red or perhaps bright orange โ€” the colours can vary from eclipse to eclipse, depending on the clarity of the Earthโ€™s atmosphere through which the sunlight is passing to light the Moon. The red is the colour of all the sunsets and sunrises going on around the Earth during the eclipse.

The total lunar eclipse of August 2007. At the November 18 eclipse the bottom edge of the Moon, as it did here, will be bright, but brighter than it appears here.

The unique aspect of this eclipse is that for the 15 to 30 minutes around mid-eclipse we might see some unusual colour gradations at the edge of the umbral shadow, from sunlight passing through Earthโ€™s upper atmosphere and ozone layer. This can tint the shadow edge blue or even green. 

Eclipse chart courtesy Fred Espenak / EclipseWise.com

WHERE CAN THE ECLIPSE BE SEEN?

The last lunar eclipse six months ago on the morning of May 26, 2021 (see my blog here) was visible during its total phase only from western North America, and then only just. However, this eclipse can be seen from coast to coast. 

Only from the very easternmost points in North America does the Moon set with the eclipse in progress, but during the inconsequential penumbral phase. All of the umbral phase is visible from the Eastern Seaboard, though the last stages will be in progress with the Moon low in the west in the pre-dawn hours. But that positioning can make for photogenic sight. 

The start, middle and end times of the umbral eclipse for Eastern and Pacific time zones. The background image is a simulation of the path of the November 18/19, 2021 eclipse when the Moon travels through the southern part of the umbra.

WHEN IS THE ECLIPSE?

The show really begins when the Moon begins to enter the umbra at 2:18 am EST (1:18 am CST, 12:18 am MST, 11:18 pm PST). 

But note, these times are for the night of November 18/19. If you go out on the evening of November 19 expecting to see the eclipse, youโ€™ll be sadly disappointed as you will have missed it. Itโ€™s the night before! 

The eclipse effectively ends at 5:47 am EST (4:47 am CST, 3:47 am MST, 2:47 am PST) when the Moon leaves the umbra. That makes the eclipse 3 1/2 hours long, though the most photogenic part will be for the 15 to 30 minutes centred on mid-eclipse at 4:03 am EST (3:03 am CST, 2:03 am MST, 1:03 am PST). 

The sky at mid-eclipse from my home on Alberta, Canada (51ยฐ N)

WHERE WILL THE MOON BE?

The post-midnight timing places the Moon at mid-eclipse high in the south to southwest for most of North America, just west (right) of the winter Milky Way and below the distinctive Pleiades star cluster. 

The view from the West Coast.

The high altitude of the Moon (some 60ยบ to 70ยบ above the horizon) puts it well above haze and murk low in the sky, but makes it a challenge to capture in a frame that includes the landscape below for an eclipse nightscape. 

ASTRONOMY 101: The high altitude of the Moon is a function of both the eclipse timing in the middle of the night and its place on the ecliptic. The Full Moon is always 180ยฐ away from the Sun. So it sits where the Sun was six months earlier, in this case back in May, when the high Sun was bringing us warmer and longer days. Winter lunar eclipses are always high; summer lunar eclipses are always low, the opposite of what the Sun does. 

The view from the East Coast.

From eastern North America the Moon appears lower in the west at mid-eclipse, making it easier to frame above a landscape. For example from Boston the Moon is 30ยบ up, lending itself to nightscape scenes. 

However, the sky will still be dark. To make use of the darkness to capture scenes which include the Milky Way, I suggest making the effort to travel away from urban light pollution to a dark sky site. That applies to all locations. Yes, that means a very long night!

PHOTO OPTIONS 1 โ€” CAMERA ON A FIXED TRIPOD

With just a camera on a tripod, if you are on the East Coast (I show Boston here) it will be possible to frame the eclipsed Moon above a landscape with a 24mm lens (assuming a full frame camera; a cropped frame camera will require a 16mm lens). 

Framing the scene from the East Coast.

What exposure will be best will depend on the level of local light pollution at your site. But from a dark site, 30 seconds at ISO 1600 and f/2.8 should work well. But without tracking, you will see some star trailing at 30 seconds. Also try shorter exposures at a higher ISO. 

Thereโ€™s lots of time, so take lots of shots. Include some short shots of just the Moon to blend in later, as the exposures best for picking up the Milky Way will still overexpose the Moon, even when it is darkest at mid-eclipse. 

Framing the scene from the West.

From western North America, including the landscape below will require wide lenses and a vertical format, with the Moon appearing quite small. But from a photogenic site, it might be worth the effort. 

Total eclipse of the Moon, December 20/21, 2010, taken from home with 15mm lens at f/3.2 and Canon 5D MkII at ISO 1600 for 1 minute single exposure, toward the end of totality.
Total eclipse of the Moon, December 20/21, 2010, taken from home with Canon 5D MKII and 24mm lens at f2.8 for stack of 4 x 2 minutes at ISO 800. Taken during totality..

However, as my images above from the December 2010 eclipse show, if thereโ€™s any haze, the Moon could turn into a reddish blob. 

You might be tempted to shoot with a long telephoto lens, but unless the camera is on a tracker, as below, the result will likely be a blurry mess. The sky moves enough during the long (over 1 second) exposures needed to pick up the reddened portion of the Moon that the image will smear when shot with long focal lengths. The solution is to use a sky tracker.

PHOTO OPTIONS 2 โ€” CAMERA ON A TRACKER

Placing the camera on a motorized tracker that has been polar aligned to follow the motion of the stars opens up many more possibilities. 

Camera on a Star Adventurer tracker showing the field of a 24mm lens.

From a dark site, make use of the Moonโ€™s position near the Milky Way to frame it and Orion and his fellow winter constellations. A 24mm lens will do the job nicely, in exposures up to 2 to 4 minutes long. But take short ones for just the Moon to layer in later. 

Showing the field of a 50mm lens.

A 50mm lens (again assuming a full frame camera) frames the Moon with the Pleiades and Hyades star clusters in Taurus. 

Showing the field of an 85mm lens,

Switching to an 85mm lens frames the clusters more tightly and makes the Moonโ€™s disk a little larger. For me, this is the best shot to go for at this eclipse, as it tells the story of the eclipse and its unique position near the two star clusters. 

Showing the field of 200mm and 250mm lenses.

But going with a longer lens allows framing the red eclipsed Moon below the blue Pleiades cluster, a fine colour contrast. A 200mm lens will do the job nicely (or a 135mm on a cropped frame camera). 

Or, as I show here, the popular William Optics RedCat with its 250mm focal length will also work well. But such a lens must be on a polar-aligned tracker to get sharp shots. Use the Sidereal rate drive speed to ensure the sharpest stars over the 1 to 4 minutes needed to record lots of stars. 

Typical settings for tracker images, with an image of the January 2019 eclipse.

Take lots of exposures over a range of settings โ€” long to bring out the deep sky detail and shorter to preserve detail in the reddened lunar disk. These can be layered and blended later in Photoshop, or in the layer-based image editing program of your choice, such as Affinity Photo or ON1 Photo RAW. 

PHOTO OPTIONS 3 โ€” THROUGH A TELESCOPE

While I think the tracked wide-field options are some of the best for this eclipse, many photographers will want frame-filling close-ups of the red Moon. While a telescope will do the job, unless it has motors to track the sky, your options are limited.

Phone on a simple Dobsonian reflector.

A phone clamped to the eyepiece of a telescope can capture the shrinking bright part of the eclipsed Moon as the Moon enters more deeply into the umbra. Exposures for the bright part of the Moon are short enough a motor drive on the telescope is not essential. 

But if you havenโ€™t shot the Moon with this gear before, eclipse night is not the time to learn. Practice on the Moon before the eclipse. 

DSLR on a beginner refractor telescope showing the adapter.

For shooting with a DSLR camera through a telescope youโ€™ll need a special camera adapter nosepiece and T-ring for your camera. Again, if you donโ€™t have the gear and the experience doing this, I would suggest not making the attempt at two in the morning on eclipse night! 

DSLR on a beginner reflector with an often necessary Barlow lens.

For example, owners of typical beginner reflectors are often surprised to find their cameras wonโ€™t even reach focus on their telescope. Many are simply not designed for photography. Adding a Barlow lens is required for the camera to reach focus, though without a drive, exposures will be limited to short (under 1/15s) shots of the bright part of the Moon.

An exposure composite of short and long exposures.

The challenge with this and all lunar eclipses is that the Moon presents a huge range of brightness. Short snapshots can capture the bright part of the Moon not in the umbra, but the dark umbral-shaded portion requires much longer exposures, usually over one second. 

Your eye can see the whole scene (as depicted above) but the camera cannot, not in one exposure. This example is a โ€œhigh dynamic rangeโ€ blend of several exposures. 

A series of the September 27, 2015 total lunar eclipse to demonstrate an exposure sequence from partial to total phase.

Plus as the eclipse progresses, longer and longer exposures are needed to capture the sequence as the Moon is engulfed by more of the umbra. 

After mid-eclipse, the exposures must get progressively shorter again in reverse order. So attempting to capture an entire sequence requires a lot of exposure adjustments. 

TIP: Bracket a lot! Take lots of frames at each burst of images shot every minute, or however often you wish to capture the progress of the eclipse for a final set. Unlike total solar eclipses, lunar eclipses provide lots of time to take lots of images. 

PHOTO OPTIONS 4 โ€” THROUGH A TRACKING TELESCOPE

If you want close-ups of the eclipsed red Moon, you will need to use a mount equipped with a tracking motor, such as an equatorial mount shown here. But for use with telephoto lenses and short telescopes, a polar-aligned sky tracker, as above, will work. 

A small apo refractor on an equatorial mount with typical settings for mid-eclipse.

Exposures can now be several seconds long, and at a lower ISO speed for less noise, allowing the Moon to be captured in sharp detail and with great colour. Long exposures will even pick up stars near the Moon. 

However, when shooting close-ups, use the Lunar drive rate (if your mount offers that choice) to follow the Moon itself, as it has a motion of its own against the background stars. Itโ€™s that orbital motion that takes it from west to east (right to left) through the Earthโ€™s shadow. 

The fields of view and size of the Moon’s disk with typical telescope focal lengths.

Filling the camera frame with the Moon requires a surprising amount of focal length. The Moon appears big to our eyes, but is only 1/2ยบ across. 

Even with 800mm of focal length, the Moon fills only a third of a full frame camera field. Using a cropped frame camera has the advantage of tightening the field of view, but it still takes 1200mm to 1500mm of focal length to fill the frame. 

But I wouldnโ€™t worry about doing so, as longer focal lengths typically also come with slower f-ratios, requiring longer exposure times or higher ISOs, both of which can blur detail. 

A camera on an alt-azimuth GoTo Schmidt-Cassegrain.

For close-ups, a polar-aligned equatorial mount is best. But if your telescope is a GoTo telescope on an alt-azimuth mount (such as a Schmidt-Cassegrain shown here), you should be able to get good shots.

The field of view will slowly rotate during the eclipse, making it more difficult to later accurately assemble a series of shots documenting the entire sequence. 

But any one shot should be fine, though it might be best to keep exposures shorter by using a higher ISO speed. As always, take lots of shots at different settings. 

You wonโ€™t be able to tell which is sharpest until you inspect them later at the computer.

TIP: People worry about exposures, but the flaw that ruins many eclipse shots is poor focus. Use Live View to focus carefully on the sharp edge of the bright part of the Moon. Or better yet, focus on a bright star nearby. Zoom up to 10x to make it easier to see when the star is in sharpest focus. It can be a good idea to refocus through the night as the changing temperature can shift the focus point of long lenses and telescopes. That might take moving the scope over to a bright star, which wonโ€™t be possible if you need to preserve the framing for a composite. 

PHOTO OPTIONS 5 โ€” HDR COMPOSITES

Using an equatorial mount tracking at the lunar rate keeps the Moon stationary. This opens up the possibility of taking a series of shots over the wide range of exposures needed to capture the Moon from bright to dark, to assemble later in processing. Take 5 to 7 shots in quick succession. 

An HDR composite from the December 2010 eclipse.

High dynamic range software can blend the images, or use luminosity masks created by extension panels for Photoshop such as Lumenzia, TK8 or Raya Pro. Either technique can create a final image that looks like what your eye saw. The key is making sure all the images are aligned. HDR software likely won’t align them for you very well.

The January 2019 eclipse layered and blended in Photoshop.

Blending multiple exposures will also be needed to properly capture the eclipsed Moon below the Pleiades, similar to what I show here (and below) from the January 2019 eclipse when the Moon appeared near the Beehive star cluster. 

PHOTO OPTIONS 6 โ€” ECLIPSE TRACK COMPOSITES

Another popular form of eclipse image (though also one rife for laughably inaccurate fakes) is capturing the entire path of the Moon across the sky over the duration of the eclipse from start to end. 

The track of the September 2015 eclipse, accurately assembled to correct scale.

It can be done with a fixed camera on a tripod but requires a wide (14mm to 20mm) and properly framed lens, to capture the sequence as it actually appeared to proper scale, and not created by just pasting over-sized moons onto a sky to โ€œsimulateโ€ the scene, usually badly. By the end of the day on November 19 the internet will be filled with such ugly fakes. 

You could set the camera at one exposure setting (one best for when the Moon and sky are darkest at mid-eclipse) and let the camera run, shooting frames every 5 seconds or so. The result might work well as a time-lapse sequence, showing the bright sky darkening, then brightening again. 

But chances are the frames taken at the start and end when the sky is lit by full moonlight will be blown out. It will still take some manual camera adjustments through the eclipse. 

For a still-image composite, you should instead expose properly for the Moonโ€™s disk at all times, a setting that will change every few minutes, then take a long exposure at mid-eclipse to pick up the stars and Milky Way. The short Moon shots are then blended into the base-layer sky image later in processing. 

Framing the eclipse path for the start of the sequence.
Framing the path so the Moon ends up at a desired location on the frame.

If the camera has been well-framed and was not moved over the 3.5 hours of the eclipse, the result is an accurate and authentic record of the Moonโ€™s path and passage into the shadow, and not a faked atrocity! 

But creating a real image requires a lot of work at the camera, and at the computer. 

TIP: Shooting for composites is not work I would recommend attempting while also running other cameras. Focus on one type of image and get it right, rather than trying to do too many and doing them all poorly. 

PHOTO OPTION 7 โ€” ECLIPSE SHADOW COMPOSITE

One of the most striking types of lunar eclipse images is a close-up composite showing the Moon passing through the Earthโ€™s umbral shadow, with the arc of the shadow edge on the Moon defining the extent of the shadow, which is about three times larger than the Moon.

Such a composite can be re-created later by placing individual exposures accurately on a wider canvas, using screen shots from planetarium software as a template guide. 

A composite of the Moon moving through the umbra.

But to create an image that is more accurate, it is possible to do it โ€œin camera.โ€ Unlike in the film days, we donโ€™t have to do it with multiple exposures onto one piece of film. 

We take lots of separate frames with a telescope or lens wide enough to contain the entire path of the Moon through the umbra. A polar-aligned equatorial mount tracking at the sidereal rate is essential. That way the scope follows the stars, not the Moon, and so the Moon travels across the frame from right to left. 

Framing for a shadow composite.

Start such a sequence with the Moon at lower right if you are framing just the path through the shadow. Use planetarium software (I used Starry Nightโ„ข to create the star charts for this blog) to plan the framing for your camera, lens and site, so the Moon ends up in the middle of the frame at mid-eclipse. This is not a technique for the faint of heart!  

A shadow-defining composite from January 2019, with the Moon near the Beehive cluster.

An interesting variation would be using a 200mm to 250mm lens to frame the Moonโ€™s shadow passage below the Pleiades, to create an image as above. That will be unique. Again, an accurately aligned tracker turning at the sidereal rate will be essential.

Acquiring the frames for any composite takes constantly adjusting the exposure during the length of eclipse, which can try your patience and gear during the wee hours of the morning. 

Iโ€™ll be happy just to get a good set of images at mid-eclipse to make a single composite of the red Moon below the Pleiades. 

TIP: It could be cold and lenses can frost over. A battery-powered heater coil on the optics might be essential. And spare warm batteries.

The 4-day-old waxing crescent Moon on April 8, 2019 in a blend of 7 exposures from 1/30 second to 2 seconds, blended with luminosity masks in Photoshop.

PRACTICE!

To test your equipment and your skills at focusing, you can use the waning crescent Moon in the dawn hours on the mornings of October 29 to November 2 or, after New Moon on November 4, the waxing crescent Moon on the evenings of November 6 to 10. While the crescent Moon isnโ€™t as bright as the Full Moon, it will be a good stand in for the bright part of the eclipsed Moon when it is deep in the umbra.ย 

Even better, the dark part of the crescent Moon lit by Earthshine is a good stand-in for the part of the Moon in the umbra. Like the eclipsed Moon, the crescent Moonโ€™s bright and dark parts canโ€™t be captured in one exposure. So itโ€™s a good test for the range of exposures youโ€™ll need for the eclipse, for practising changing settings on your camera, and for checking your tracking system.  

The crescent Moon is also useful to test your manual focusing, though the sharp detail along the terminator (the line dividing the bright crescent from the earthlit dark part of the Moon) is much easier to focus on than the flat, low contrast Full Moon.

A selfie of me looking up at the total eclipse of the Moon on January 20, 2019, using binoculars to enjoy the view.

DONโ€™T FORGET TO LOOK!

Amid all the effort needed to shoot this or any eclipse, lunar or solar, donโ€™t forget to just look at it. No photo can ever quite capture the glowing nature of the eclipsed Moon set against the stars. 

A selfie of the successful eclipse chaser bagging his trophy, the total lunar eclipse of January 20, 2019.

I wish you clear skies and good luck with your lunar eclipse photography. If you miss it, we have two more visible from North America next year, both total eclipses, on May 15/16 and November 8, 2022. 

โ€” Alan, www.amazingsky.com 

Chasing the Shadowed Moon


The tradition continued of chasing clear skies to see a lunar eclipse.

It wouldnโ€™t be an eclipse without a chase. Total eclipses of the Sun almost always demand travel, often to the far side of the world, to stand in the narrow path of the Moonโ€™s shadow. 

By contrast, total eclipses of the Moon come to you โ€” they can be seen from half the planet when the Full Moon glides through Earthโ€™s shadow. 

Assuming you have clear skies! Thatโ€™s the challenge. 

Of the 14 total lunar eclipses (TLEs) visible from here in Alberta since 2000, I have seen all but one, missing the January 21, 2000 TLE due to clouds. 

But of the remaining 13 TLEs so far in the 21st century, I watched only three from home, the last home lunar eclipse being in December 2010. 

The total lunar eclipse of May 26, 2021 here in the initial partial phases with it embedded in thin cloud. The clouds add a glow of iridescent colours around the Moon, with the part of the Moon’s disk in the umbral shadow a very deep, dim red. A subtle blue band appears along the umbral shadow line, usually attributed to ozone in Earth’s upper atmosphere. With the Canon 60Da and 200mm lens.

I viewed three TLEs (August 2007, February 2008, and December 2011) from the Rothney Observatory south-west of Calgary as part of public outreach programs I was helping with. 

In April 2014, I was in Australia and viewed the eclipsed Moon rising in the evening sky over Lake Macquarie, NSW. 

A year later, in April 2015, I was in Monument Valley, on the Arizona-Utah border for the short total eclipse of the Moon at dawn. 

But of the eclipses Iโ€™ve seen from Alberta since 2014, I have had to chase into clear skies for all of them โ€” to Writing-on-Stone Provincial Park in both October 2014 and September 2015, to the Crowsnest Pass for January 2018, and to Lloydminster for January 2019. 

A selfie of the successful eclipse chaser bagging his trophy, the total lunar eclipse of January 20, 2019. This was from a site south of Lloydminster on the Alberta-Saskatchewan border, but just over into the Saskatchewan side.

The total lunar eclipse on the morning of May 26, 2021 was no exception. 

Leading up to eclipse day prospects for finding clear skies anywhere near home in southern Alberta looked bleak. The province was under widespread cloud bringing much-needed rain. Good for farmers, but bad for eclipse chasers.

Then, two days prior to the eclipse a hole in the clouds was predicted to open up along the foothills in central Alberta just at the right time, at 4 a.m. The predictions stayed consistent a day later. 

Environment Canada predictions, as displayed by the wonderful Astrospheric app, showed Rocky Mountain House (the red circle) on the edge of the retreating clouds.

So trusting the Environment Canada models that had served me well since 2014, I made plans to drive north the day before the eclipse to Rocky Mountain House, a sizeable town on Highway 11 west of Red Deer, where the foothills begin. โ€œRockyโ€ was predicted to be on the edge of the clearing, with a large swath of clear sky in the right direction, to the southwest where the Moon would be.

Fortunately, COVID restrictions are not so severe here as to demand stay-at-home orders. I could travel, at least within Alberta. Hotels were open, but restaurants only for takeaway.

The Starry Night desktop planetarium program provided a preview of the eclipsed Moon’s location and movement, plus the field of view of lenses, to plan the main shots with an 85mm lens (the time-lapse) and a 200mm lens (the close-ups over the horizon).

This was going to be a tough eclipse even under the best of sky conditions, as for us in Alberta the Moon would be low and setting into the southwest at dawn. The Moon would be darkest and in mid-eclipse just as the sky was also brightening with dawn twilight. 

However, a low eclipse offers the opportunity of a view of the reddened Moon over a scenic landscape, in this case of the eclipsed Moon setting over the Rockies. That was the plan.

Unfortunately, Rocky Mountain House wasnโ€™t the ideal destination as it lies far from the mountains. I was hoping for a site closer to the Rockies in southern Alberta. But a site with clear skies is always the first priority.

The task is then finding a spot to set up with a clear view to the southwest horizon, which from the area around Rocky is tough โ€” itโ€™s all trees! 

This is where planning apps are wonderful. 

The Photographer’s Ephemeris app showed possible side road sites and the position of the eclipsed Moon relative to the site terrain. The arc of spheres is the Milky Way.

I used The Photographerโ€™s Ephemeris (TPE) to search for a side road or spot to pull off where I could safely set up and be away from trees to get a good sightline to the horizon and possibly distant mountains.ย 

A site not far from town was ideal, to avoid long pre- and post-eclipse drives in the wee hours of the morning. The timing of this eclipse was part of the challenge โ€” in having to be on site at 4 a.m.

TPE showed several possible locations and a Google street view (not shown here) seemed to confirm that the horizon in that area off Highway 11 would be unobstructed over cultivated fields. 

But you donโ€™t know for sure until you get there. 

The PhotoPills AR mode overlays a graphic of the night sky on top of a live view from the phone’s camera, useful when on site to check the shooting geometry for that night. The Moon was in the right place!

So as soon as I arrived, I went to one site I had found remotely, only to discover power lines in the way. Not ideal.

I found another nearby side road with a clean view. From there I used the PhotoPills app (above) and its augmented reality โ€œARโ€ mode to confirm, that yes, the Moon would be in the right place over a clear horizon at eclipse time the next morning.ย 

The Theodolite app records viewing directions onto site images, useful for documenting sites for later use at night.

Another app I like for site scouting, Theodolite, also confirmed that the view toward the eclipsed Moonโ€™s direction (with an azimuth of about 220ยฐ) would be fine from that site.ย 

As a Plan B โ€” itโ€™s always good to have a Plan B! โ€” I also drove west along Highway 11, the David Thompson Highway, toward the mountains, in search of a rare site away from trees, just in case the only clear skies lay to the west. I found one, some 50 km west of Rocky, but thankfully it was not needed. The Plan A site worked fine, and was just 5 minutes south of town, and bed!

My eclipse gear at work with the eclipse in progress in the morning twilight at 4:30 a.m.

I set up two tripods. One was for the Canon R6 with an 85mm lens for a โ€œtime-lapseโ€ sequence of the Moon moving across the frame as it entered the Earthโ€™s umbral shadow. 

The other tripod I used for closeups of just the Moon using the Canon 60Da and 200mm lens, then switched to the Canon Ra and a 135mm lens, then the longer 200mm lens once the Moon got low enough to also be in frame with the horizon. Those were for the prime shot of the eclipse over the distant mountains and skyline. 

A composite “time-lapse” blend of the setting Full Moon entering the Earth’s umbral shadow on the morning of May 26, 2021. This shows the Moon moving into Earth’s shadow and gradually disappearing in the bright pre-dawn sky. I shot images with the 85mm lens at 1-minute intervals but choose only every 5th image for this blend, so the Moons are spaced at 5-minute intervals.

It all worked! The sky turned out to be clearer than predicted, a pleasant surprise, with only some light cloud obscuring the Moon halfway through the partial phases (the first image at top). 

The other surprise was how dark the shadowed portion of the Moon was. This was a very short total eclipse, with totality only 14 minutes long. With the Moon passing through the outer, lighter part of the umbral shadow, I would have expected a brighter eclipse, making the reddened Moon stand out better in the blue twilight.

As it was, in the minutes before the official start of totality at 5:11 a.m. MDT, the Moon effectively disappeared from view, both to the eye and camera. 

The total lunar eclipse of May 26, 2021, here in the late partial phase about 15 minutes before totality began, with a thin arc of the Full Moon at the top of the disk still in sunlight. The rest is in the red umbral shadow of the Earth. The same pinkish-red light is beginning to light the distant Rocky Mountains in the dawn twilight. This is a single 1.3-second exposure with the 200mm lens and Canon Ra, untracked on a tripod. I did blend in a short 1/6-second exposure for just the bright part of the Moon to tone down its brightness.

My best shots were of the Moon still in partial eclipse but with the umbral shaded portion bright enough to show up red in the images. The distant Rockies were also beginning to light up pink in the first light of dawn. 

The total lunar eclipse of May 26, 2021, taken at 5:01 a.m. MDT, about 10 minutes before the start of totality, with a thin arc of the Full Moon at the top of the disk still in sunlight. The rest is in the red umbral shadow of the Earth but the eclipsed portion of the Moon was so dim it was disappearing into the brightening twilight. This is a single 0.8-second exposure with the 200mm lens and Canon Ra.

My last view was of a sliver-thin Moon disappearing into Earthโ€™s shadow just prior to the onset of totality. I packed up and headed back to bed with technically the Moon still up and in total eclipse, but impossible to see. Still I was a happy eclipse chaser! 

It was another successful eclipse trip, thwarted not so much by clouds, but by the darkness of our planetโ€™s shadow, which might have been due to widespread cloud or volcanic ash in the atmosphere of Earth. 

The other factor at play was that this was a โ€œsupermoon,โ€ with the larger Moon near perigee entering more deeply into the umbra than a normal-sized Moon. 

A preview using Starry Night of the November 18/19, 2021 near-total lunar eclipse from the longitude and latitude of Alberta, with the Moon hight in the south west of the Milky Way.

The next lunar eclipse is six months later, on the night of November 18/19, 2021 when the Moon will not quite fully enter Earthโ€™s umbral shadow, for a 97% partial eclipse. But enough of the Moon will be in the dark umbra for most of the Moon to appear red, with a white crescent โ€œsmileโ€ at the bottom. 

As shown above, from my location in Alberta the Moon will appear high in the south, in Taurus just west of the Milky Way. The winter stars and Milky Way will โ€œturn onโ€ and fade into view as the eclipse progresses.

We shall see if that will be a rare โ€œhomeโ€ eclipse, or if it will demand another chase to a clear hole in the clouds on a chilly November night. 

โ€” Alan, ยฉ 2021 amazingsky.com 

The Best Sky Sights of 2021


Two major eclipses of the Moon and a partial eclipse of the Sun over eastern North America highlight the astronomical year of 2021.

I provide my selection of three dozen of the best sky sights for 2021. I focus on events you can actually see, and from North America. I also emphasize events with the potential for good โ€œphoto ops.โ€ 

What I Donโ€™t Include

Thus, Iโ€™m excluding minor meteor showers and ones that peak at Full Moon, and events that happen with the objects too close to the Sun. 

I also donโ€™t include events seen only from the eastern hemisphere, such as the April 17 occultation of Mars by the Moon โ€” it isnโ€™t even a close conjunction for us in North America. The August 15 rare triple transit of three Galilean moons at once on the disk of Jupiter occurs during daylight hours for western North America, rendering it very challenging to see. An outburst on August 31 of the normally quiet Aurigid meteor shower is predicted to happen over Asia, not North America.

I also donโ€™t list the growing profusion of special or โ€œsupermoonsโ€ that get click-bait PR every year, choosing instead to limit my list to just the Harvest Moon of September as a notably photogenic Moon. 

Good Year for Lunar Eclipses

But two Full Moons โ€” in May and in November โ€” do undergo eclipses that will be wonderful sights for the eye and camera. As a bonus, the Full Moon of May is the closest Full Moon of 2021, making it, yes, a โ€œsupermoon.โ€ 

The New Moon eclipses the Sun on June 10, bringing an annular eclipse to remote regions of northern Canada and the Arctic (including the North Pole!). Eastern North America and all of Europe can witness a partial solar eclipse this day. 

Recommended Guides

For an authoritative annual guide to the sky and detailed reference work, see the Observerโ€™s Handbook published each year in Canadian and U.S. editions by The Royal Astronomical Society of Canada. I used it to compile this list.

The RASC has also partnered with Firefly Books to publish a more popular-level guide to the coming yearโ€™s sky for North America, in the 2021 Night Sky Almanac, authored by Canadian science writer Nicole Mortillaro. It provides excellent monthly star charts.

However, feel free to print out my blog or save it as a PDF for your personal reference. To share my listing with others, please send them the link to this blog page. Thanks!


January

The year begins with a chance to see three planets together at dusk.

January 10 โ€” Mercury, Jupiter and Saturn within 2 degrees (ยฐ)

Even three weeks after their much publicized Great Conjunction, Jupiter and Saturn are still close and visible low in the evening twilight. On January 10 Mercury joins them to form a neat triangle of worlds, but very low in the southwest. Clear skies and binoculars are a must!

NOTE: The red circle on this and most charts represents the 6.5ยฐ field of view of a typical 10×50 binocular. So you can see here how binoculars will frame the trio perfectly. All charts are courtesy the desktop app Starry Nightโ„ข by Simulation Curriculum

January 14 โ€” Thin waxing crescent Moon above line of Mercury, Jupiter and Saturn 

Saturn disappears behind the Sun on January 23, followed by Jupiter on January 28, so early January is our last chance to see the evening trio of planets, tonight with the crescent Moon. 

January 20 โ€” Mars and Uranus 1.6ยฐ apart

Uranus will be easy to spot in binoculars as a magnitude 5.8 green star below red Mars, so this is your chance to find the seventh planet. The quarter Moon shines below the planet pair. 

January 23 โ€” Mercury at a favourable evening elongation 

This and its appearance in May are the best opportunities for northern hemisphere observers to catch the innermost planet in the evening sky in 2021. Look for a bright magnitude -0.8 โ€œstarโ€ in the dusk twilight. 


February

This is a quiet month with Mars the main evening planet, but now quite small in the telescope. 

February 18 โ€” Waxing Moon 4ยฐ below Mars

The pairing appears near the Pleiades and Hyades star clusters high in the evening sky.


March 

Mars shines high in evening sky in Taurus, while the three planets that were in the evening sky in January begin to emerge into the dawn sky. 

A 200+ degree panorama of the arch of the winter Milky Way, from south (left) to northwest (ar right) with the Zodiacal Light to the west at centre. This was from Dinosaur Provincial Park in southern Alberta on February 28, 2017.

March 1 โ€” Zodiacal light โ€œseasonโ€ begins in the evening 

From sites away from light pollution look for a faint glow of light rising out of the southwest sky on any clear evening for the next two weeks with no Moon.

March 3 โ€” Mars 2.5ยฐ below the Pleiades

This will be a nice sight in binoculars tonight and tomorrow high in the evening sky, and a good target for tracked telephoto lens shots.

March 4 โ€” Mercury and Jupiter just 1/2ยฐ apart 

Close to be sure! But this pairing will be so low in the dawn sky it will be difficult to spot. They will appear equally close on March 5 should clouds intervene on March 4.

March 9 โ€” Line of Mercury, Jupiter, Saturn and waning crescent Moon 

Three planets and the waxing crescent Moon form a line across the dawn sky but again, very low in the southeast. The even thinner Moon will be below Jupiter on March 10. Observers at low latitudes (south of 35ยฐ N) will have the best view on these mornings. 

March 20 โ€” Equinox at 5:37 a.m. EDT

Spring officially begins for the northern hemisphere, autumn for the southern, as the Sun crosses the celestial equator heading north. Today, the Sun rises due east and sets due west for photo ops. 

March 30 โ€” Zodiacal light season again!

With the Moon out of the way, the faint zodiacal light can again be seen and photographed in the west over the next two weeks, but only from a site without significant light pollution on the western horizon.


April

The inner planets appear in the evening sky, while Mars meets M35.

The arch of the Milky Way over the Red Deer River valley and badlands at Dry Island Buffalo Jump Provincial Park, Alberta, on May 19/20, 2018 just after moonset of the waxing crescent Moon.

April 6 โ€” Milky Way arch season begins

With the waning Moon just getting out of view, this morning and for the next two weeks are good nights to shoot panoramas of the bright summer Milky Way as an arch across the sky, with the galactic core in view to the south. The moonless first two weeks of May, June and July will also work this year, but by August the Milky Way is reaching high overhead and so is difficult to capture in a horizontal landscape panorama. 

April 24 โ€” Mercury and Venus 1ยฐ apart

The two inner planets will be very low in the western evening sky tonight and tomorrow, but with clear skies this is a chance to catch both at once. Use a telephoto lens for the best image. 

April 26 โ€” Mars passes 1/2ยฐ north of M35 star cluster

This will be a fine scene for binoculars or a photo op for a tracked telephoto lens or telescope in a long enough exposure to reveal the rich star cluster Messier 35 in Gemini.


May

On May 26 a totally eclipsed Moon shines red in the west before sunrise for western North America. 

May 12 โ€” Venus and Moon 1.5ยฐ apart

Look low in the western evening sky this night for the pairing of the thin crescent Moon and Venus, and the next night, May 13, for the crescent Moon higher and 4ยฐ away from Mercury. These are good nights to capture both inner planets using a short telephoto lens. 

May 16 โ€” Mercury at a favourable evening elongation

With Mercury angled up high in the northwest this is the best week of the year to catch it in the evening sky from northern latitudes. 

The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in western Monument Valley, Utah. This is a single 5-second exposure at f/2.8 and ISO 400 with the Canon 24mm lens and Canon 6D, untracked. The sky is brightening with blue from dawn twilight.

May 26 โ€” Total Eclipse of the Moon

The first total lunar eclipse since January 20, 2019, this โ€œTLEโ€ can be seen as a total eclipse only from western North America, Hawaii, and from Australia and New Zealand. Totality lasts a brief 15 minutes, with the Moon in Scorpius not far from red Antares. The red Moon in a twilight sky will be beautiful, as it was for the April 4, 2015 eclipse at dawn over Monument Valley, Utah shown above.

Those in western North America will see the totally eclipsed Moon setting into the southwest in the dawn hour before sunrise, as depicted here. Over a suitable landscape this will be a photogenic scene, as even at mid-eclipse the Moon will be bright red because it passes so far from the centre of Earthโ€™s umbral shadow.

Unfortunately, those in eastern North America will have to be content with a view of a partially eclipsed Moon setting in the morning twilight. 

A bonus is that this is also the closest and largest Full Moon of 2021, with a close perigee of 357,311 kilometres occurring just 9 hours earlier. So the Full Moon that rises on the evening of May 25 will be the yearโ€™s โ€œsupermoon.โ€ 

See Fred Espenakโ€™s EclipseWise.com page for details on timing and viewing regions. The dark region on this map does not see any of this eclipse.

May 26 โ€” Comet 7/P Pons-Winnecke at perihelion

The brightest comet predicted to be visible in 2021 (as of this writing) is the short-period Comet Pons-Winnecke (aka Comet 7/P). It reaches its closest point to the Sun โ€” perihelion โ€” the night of the lunar eclipse and is well placed in Aquarius high in the southeastern dawn sky above Jupiter and Saturn. 

But โ€ฆ it is expected to be only 8th magnitude, making it a binocular object at best, looking like a fuzzball, not the spectacular object depicted here in this exaggerated view of its brightness and tail length. 

May 28 โ€” Mercury and Venus less than 1/2ยฐ apart

Look low in the northwest evening sky for a very close conjunction of the two inner worlds. A telescope will frame them well, with Mercury a tiny crescent and Venus an almost fully illuminated disk. 


June

While eastern North America misses the total lunar eclipse, two weeks later observers in the east do get to see a partial solar eclipse.

May 10, 1994 Annular Eclipse taken from a site east of Douglas Arizona Showing “reverse” Bailey’s Beads — lunar mountains just touching Sun’s limb 4-inch f/6 apo refractor at f/15 with Barlow lens, and with Ektachrome 100 slide film !

June 10 โ€” Annular eclipse of the Sun

Should you manage to get yourself to the path of the Moonโ€™s anti-umbral shadow you will see the dark disk of the Moon contained within the bright disk of the Sun but not large enough to cover the Sun completely. You see a ring of light, as above from a 1994 annular eclipse.

The Moon is near apogee, so its disk is about as small as it gets, in contrast to the perigee Moon two weeks earlier. During the maximum of 3 minutes 51 seconds of annularity the sky will get unusually dark, but none of the dramatic effects of a total eclipse will appear. The annulus of sunlight that remains is still so bright special solar filters must be used at all times, covering the eyes and lenses.

The region with the best accessibility to the path is northwestern Ontario north and east of Thunder Bay. However, the annular phase of the eclipse there occurs at or just after sunrise, so clouds are likely to obscure the view, as are trees! 

The eastern seaboard of the U.S. and much of eastern Canada can see a partial eclipse of the Sun, as can most of Europe. For details of times and amount of eclipse see Fred Espenakโ€™s EclipseWise website

For an interactive Google map of the path see this page.

June 20 โ€” Solstice at 11:32 p.m. EDT

Summer officially begins for the northern hemisphere, winter for the southern, as the Sun reaches its most northerly position above the celestial equator. The Sun rises farthest to the northeast and sets farthest to the northwest, and the length of daylight is at its maximum.

June 22 โ€” Mars passes through the Beehive star cluster

Mars, now at a modest magnitude +1.8, appears amid the Beehive star cluster, aka M44, tonight and tomorrow evening, but low in the northwest in the twilight sky. Use binoculars or a telescope for the best view. 


July 

Venus and Mars put on a show low in the western twilight.  

July 2 โ€” Venus passes through the Beehive star cluster 

Venus (at a brilliant magnitude -3.9) follows Mars through the Beehive cluster this evening, but with the pairing even lower in the sky, making it tough to pick out the star cluster. 

July 4 โ€” Mercury at a good morning elongation

Though not at its best for a morning appearance from northern latitudes, Mercury should still be easy to spot and photograph in the pre-dawn sky in Taurus, outshining bright Aldebaran. 

July 11 โ€” Grouping of Venus, Mars and waxing crescent Moon 

Look low in the evening sky for the line of the thin crescent Moon, bright Venus and dim Mars all in the same binocular field. Venus passes 1/2ยฐ above Mars on the next two nights, July 12 and 13. 

July 21 โ€” Grouping of Venus, Mars and Regulus

The two planets appear with bright Regulus in Leo, all within a binocular field, but again, low in the northwest twilight. The colour contrast of red Mars with white Venus and blue-white Regulus should be apparent in binoculars. 


August

The popular Perseid meteors peak, and we can see (maybe!) the extremely close conjunction of Mercury and Mars. 

The core of the Milky Way in Sagittarius low in the south over the Frenchman River valley at Grasslands National Park, Saskatchewan.

August 1 โ€” Milky Way core season opens

For southerly latitudes, the first two weeks of May and June are also good, but from the northern U.S. and much of Canada, the nights donโ€™t get dark enough to see and shoot the bright galactic centre until August. The rich star clouds of Sagittarius now shine due south as it gets dark each night over the next two weeks. 

August 2 โ€” Saturn at opposition

Saturn is at its closest and brightest for 2021 tonight, rising at sunset and shining due south in Capricornus in the middle of the night. 

A composite of the Perseid meteors over Dinosaur Provincial Park on the night of August 12/13, 2017.

August 12 โ€” Perseid meteor shower peaks

The annual Perseid meteor shower peaks tonight with a waxing crescent Moon that sets early, to leave most of the night dark and ideal for watching meteors. Look for the crescent Moon 5ยฐ above Venus on August 10. 

August 18 โ€” Mars and Mercury only 0.06ยฐ apart!

Now this is a very close conjunction, with Mercury passing only 4 arc minutes from Mars (compared to the 6 arc minute separation of the Great Conjunction of Jupiter and Saturn on December 21, 2020). But the planets will be very low in the west at dusk and tough to sight. This will be a conjunction for skilled observers blessed with clear skies and a low horizon.

August 20 โ€” Jupiter at opposition

Jupiter, now in Aquarius, reaches its closest and brightest for 2021 tonight, also rising at sunset and shining due south in the middle of the night. On the night of August 21/22, the Full Moon, also at opposition โ€” as all Full Moons are โ€” appears 4ยฐ below Jupiter, as shown above. 


September 

Itโ€™s Harvest Moon time, with this annual special Full Moon occurring close to the equinox this year for an ideal geometry, making the Moon rise due east. 

Zodiacal Light at dawn on September 24, 2009. Taken from home in Alberta, with a Canon 5D MkII and 15mm lens at f/4 and ISO 800 for 6 minutes, tracking the sky so the ground is blurred.

September 5 โ€” Zodiacal light โ€œseasonโ€ begins in the morning

With no Moon for the next two weeks, from sites away from light pollution look to the pre-dawn sky for a faint glow of light rising out of the east before twilight brightens the morning sky.

September 20 โ€” Full โ€œHarvestโ€ Moon

Occurring two days before the equinox, this Full Moon will rise nearly due east (a little to the south of east) at sunset and set nearly due west at sunrise at dawn on September 21, for some fine photo ops. 

September 22 โ€” Equinox at 3:21 p.m. EDT

Autumn officially begins for the northern hemisphere, spring for the southern, as the Sun crosses the celestial equator heading south. Today, the Sun rises due east and sets due west for photo ops.


October 

Mercury adorns the dawn while Venus shines bright but low at dusk. 

October 4 โ€” Zodiacal light โ€œseasonโ€ begins in the morning

With the Moon out of the way for the next two weeks, the zodiacal light will again be visible in the east in the pre-dawn hours. 

October 9 โ€” The Moon 2.5ยฐ from Venus

The crescent Moon passes close to Venus this evening, with the pair not far from the star Antares. The low altitude of the worlds lends itself to some fine photo ops. Look for a similar close conjunction on the evening of November 7. 

October 25 โ€” Mercury at its most favourable morning elongation

The high angle of the ecliptic โ€” the path of the planets โ€” on autumn dawns swings Mercury up as high as it can get in the morning sky, making this week the best for sighting Mercury as a โ€œmorning starโ€ in 2021 from northern latitudes. 

October 29 โ€” Venus at its greatest angle away from the Sun

While now farthest from the Sun in our sky, its low altitude at this time of year makes this an unfavourable evening appearance of Venus. 


November

The second lunar eclipse brings a mostly red Moon to the skies over North America. 

November 3 โ€” Moon and Mercury 2ยฐ apart, then a daylight occultation 

Before dawn, with Mercury still well-placed in the morning sky, the waning crescent Moon shines 2ยฐ above the planet, with Mars below and the star Spica nearby. Later in the day, about noon to early afternoon (the time varies with your location), the Moon will occult (pass in front of) Mercury. This will be a challenging observation even with a telescope, with the pale and thin Moon only 14ยฐ east of the Sun. A very clear sky will be essential! 

Total lunar eclipse November 8, 2003. Taken through Astro-Physics 5″ Apo refractor at f/6 with MaxView 40mm eyepiece projection into a Sony DSC-V1 5 megapixel digital camera, mounted afocally.

November 19 โ€” 97% Partial Eclipse of the Moon 

Though not a total eclipse, this is the next best thing: a 97% partial! And unlike the May 26 eclipse, all of North America gets to see this one. 

Mid-eclipse, when the Moon is most deeply embedded in Earthโ€™s umbral shadow, occurs at 4:04 a.m. EST (1:04 a.m. PST) on November 19. While not convenient timing, it ensures that all of the continent can see the entire 3.5-hour long eclipse. The partial umbral phase begins at 3:18 a.m EST (12:18 a.m. PST).

At mid-eclipse, the Moon will resemble Mars โ€” a red world with a bright south โ€œpolar capโ€ caused by the small 3% of the southern edge of the Moon outside the umbra. Its position near the Pleiades and Hyades clusters will make for a great wide-field image. 

Remember โ€” this occurs on the night of November 18/19! So donโ€™t miss it thinking the eclipse starts on the evening of November 19. Youโ€™ll be a day late! 

For details see Fred Espenakโ€™s EclipseWise site. As above, the dark region on this map does not see any of this eclipse.


December

The year ends with a chance to see four planets together at dusk. 

Nov. 23, 2003 total solar eclipse over Antarctica on Qantas/Croydon Travel charter flight out of Melbourne, Australia. Sony DSC-V1 camera. 1/3 sec, f/2.8, 7mm lens, max wide-angle.

December 4 โ€” Total Eclipse of the Sun

I include this for completeness, but this total solar eclipse (TSE) could not be more remote, as the path of totality lies over Antarctica. Only the most intrepid will be there, in expedition ships and in aircraft. (I took this image over Antarctica at the November 23, 2003 total eclipse one 18-year Saros cycle before this yearโ€™s TSE.) Even the partial phases are visible only from southernmost Australia and Africa.

December 6 โ€” Moon 2.5ยฐ below Venus

With Venus just past its official December 3 date of โ€œgreatest brilliancyโ€ (at magnitude -4.7), the waxing crescent Moon appears close below it, with Saturn and Jupiter further along the line of the ecliptic in the southwest. The Moon appears below Saturn on December 7 and below Jupiter on December 8. 

A single bright meteor from the Geminid meteor shower of December 2017, dropping toward the horizon in Ursa Major.

December 13 โ€” Geminid meteor shower peaks

The most prolific meteor shower of the year peaks with a waxing 10-day-old gibbous Moon lighting the sky, so not great conditions. But with luck it will still be possible to see and capture bright fireballs. 

December 21 โ€” Solstice at 10:59 a.m. EST

Winter officially begins for the northern hemisphere, summer for the southern, as the Sun reaches its most southerly position below the celestial equator. The Sun rises farthest to the southeast and sets farthest to the southwest, and the length of daylight is at its minimum.

December 31 โ€” Four planets in view 

As the year ends the same three planets that adorned the evening sky in early January are back, with the addition of Venus. So on New Yearโ€™s Eve we can see four of the naked eye planets (only Mars is missing) at once in the evening sky. 


Good luck, good viewing, and clear skies in 2021! 

For lots of tips and techniques for shooting the night sky, see my Nightscape and Timelapse ebook linked to above.

โ€” Alan, December 26, 2020 / ยฉ 2020 AmazingSky.com 

The Great Transit Expedition of 2019


Blog Title

On November 11, I traveled to the near-flung corners of my backyard to observe the rare transit of Mercury across the Sun.

History is replete with tales of astronomers traveling to the far corners of the Earth to watch dark objects pass in front of the Sun โ€” the Moon in eclipses, and Mercury and Venus in transits.

On November 11, to take in the last transit of Mercury until 2032, I had planned a trip to a location more likely to have clear skies in November than at home. A 3-day drive to southern Arizona was the plan.

But to attend to work and priorities at home I cancelled my plans. Instead, I decided to stay home and take my chances with the Alberta weather, perhaps making a run for it a day’s drive away if needed to chase into clear skies.

Transit of Mercury Selfie with Sun

As it turned out, none of that was necessary. The forecast for clear, if cold, skies held true and we could not have had a finer day for the transit. Even the -20ยฐ C temperatures were no problem, with no wind, and of course sunshine!

Plus being only steps from home and a warming coffee helped!

As it turned out, the site in Arizona I had booked to stay was clouded out for the entire event. So I was happy with my decision!

For my site in Alberta, as for all of western North America, the Sun rose with the transit in progress. But as soon as the Sun cleared the horizon there was Mercury, as a small, if fuzzy, black dot on the Sun.

Low Sun with Mercury in Transit

As the Sun rose the view became sharper, and was remarkable indeed โ€” of a jet black dot of a tiny planet silhouetted on the Sun.

The Transit of Mercury Across the Sun (10 am MST)

I shot through two telescopes, my 4-inch and 5-inch refractors, both equipped with solar filters of course. I viewed through two other telescopes, for white-light and hydrogen-alpha filtered views.

I was able to follow the transit for three hours, for a little more than half the transit, until Mercury exited the Sun just after 11 a.m. MST. The view below is from moments before Mercury’s exit, or “egress.”

The Transit of Mercury Across the Sun (11 am MST)

I shot still frames every 15 seconds with each of the two cameras and telescopes, for a time-lapse, plus I shot real-time videos.

Mercury at Mid-Transit (November 11, 2019)

At this transit Mercury passed closer to the centre of the Sun’s disk than it will for any other transit in the 21st century, making this event all the more remarkable. That point is recorded above, from a shot taken at 8:19 a.m. MST.

Stacking a selection of the time-lapse frames, ones taken 1-minute intervals, produced this composite of the transit, from just before mid-transit until Mercury’s egress.

Transit of Mercury Composite Across the Sun v2

I assembled all the best images and 4K videos together into a movie, which I narrated live at the telescope as the transit was happening. I hope this provides a sense of what it was like to view this rare event.

The Transit of Mercury from Alan Dyer on Vimeo.

We won’t see another until 2032, but not from North America. The next transit of Mercury viewable from here at home is not until 2049! This was likely my last transit, certainly for a while!

Transit of Mercury Trophy Shot

This was my trophy shot! Bagged the transit!

P.S.: For my video of the previous transit of Mercury in May 2016, see my blog post which includes a similar compilation video.

P.P.S.: And for tech details on the images and videos in this blog, please click through to Vimeo and the video description I have there of cameras, scopes, and settings.

Clear skies!

โ€” Alan, November 17, 2019 / ยฉ 2019 Alan Dyer / amazingsky.com

 

Chasing the Eclipse of the Cold Moon


Eclipsed Moon and Umbral Shadow

It took a chase but it was worth it to catch the January 20, 2019 total eclipse of the Moon in the winter sky.

While the internet and popular press fawned over the bogus moniker of “Super Blood Wolf” Moon, to me this was the “Cold Moon” eclipse. And I suspect that was true for many other observers and eclipse chasers last Sunday.

Total solar eclipses almost always involve a chase, usually to far flung places around the world to stand in the narrow shadow path. But total lunar eclipses (TLEs) come to you, with more than half the planet able to view the Moon pass through the Earth’s shadow and turn red for several minutes to over an hour.

The glitch is clouds. For several of the last TLEs I have had to chase, to find clear skies in my local area, creating pre-eclipse stress … and post-eclipse relief!

astrospheric map
A screen shot from Astrospheric

That was the case for the January 20, 2019 total lunar, as the weather predictions above, based on Environment Canada data, were showing east-central Alberta along the Saskatchewan border as the only clear hole within range and accessible.

The above is a screen shot from the wonderful app Astrospheric, a recommended and great aid to astronomers. In 2014, 2015, and 2018 the Environment Canada predictions led me to clear skies, allowing me to see an eclipse that others in my area missed.

So trusting the predictions, the day before the eclipse I drove the 5 hours and 500 km north and east to Lloydminster, a town where the provincial border runs right down the main street, Highway 17.

Theodolite_2019.01.20_11.35.06
A screen shot from Theodolite

The morning of the evening eclipse, I drove up and down that highway looking for a suitable site to setup. Scenery was not in abundance! It’s farm land and oil wells. I settled for a site shown above, an access road to a set of wells and tanks where I would likely not be disturbed, that had no lights, and had a clear view of the sky.

The image above is from the iOS app Theodolite, another fine app for planning and scouting sites, as it overlays where the camera was looking.

Scenery was not a priority as I was mostly after a telephoto view of the eclipsed Moon near the Beehive star cluster. Wide views would be a bonus if I could get them, for use in further ebook projects, as is the plan for the image below.

Looking at the Lunar Eclipse with Binoculars
This is a single untracked exposure of 25 seconds at f/2.8 and ISO 1600 with the Nikon D750 and Sigma 20mm Art lens, but with a shorter exposure of 1 second blended in for the Moon itself so it retains its color and appearance to the naked eye. Your eye can see the eclipsed Moon and Milky Way well but the camera cannot in a single exposure. The scene, taken just after the start of totality, just fit into the field of the 20mm lens. A little later in the night it did not.ย 

The site, which was east of the border in Saskatchewan, served me well, and the skies behaved just as I had hoped, with not a cloud nor haze to interfere with the view. It was a long and cold 5-hour night on the Prairies, with the temperature around -15ยฐ C.

It could have been worse, with -25ยฐ not uncommon at this time of year. And fortunately, the wind was negligible, with none of the problems with frost that can happen on still nights.

Nevertheless, I kept my photo ambitions in check, as in the cold much can go wrong and running two cameras was enough!

Eclipsed Moon Beside the Beehive
The Moon in mid-total eclipse, on January 20, 2019, with it shining beside the Beehive star cluster, Messier 44, in Cancer. This view tries to emulate the visual scene through binoculars, though the camera picks up more stars and makes the Moon more vivid than it appears to the eye. However, creating a view that looks even close to what the eye can see in this case takes a blend of exposures: a 1-minute exposure at ISO 800 and f/2.8 for the stars, which inevitably overexposes the Moon. So Iโ€™ve blended in three shorter exposures for the Moon, taken immediately after the long โ€œstarโ€ exposure. These were 8, 4 and 2 seconds at ISO 400 and f/4, and all with the Canon 200mm telephoto on a Fornax Lightrack II tracking mount to follow the stars.ย 

Above was the main image I was after, capturing the red Moon shining next to the Beehive star cluster, a sight we will not see again for another 18-year-long eclipse “saros,” in January 2037.

But I shot images every 10 minutes, to capture the progression of the Moon through the shadow of the Earth, for assembly into a composite. I’d pick the suitable images later and stack them to produce a view of the Moon and umbral shadow outline set amid the stars.

Eclipsed Moon and Umbral Shadow
The Moon in total eclipse, on January 20, 2019, in a multiple exposure composite showing the Moon moving from right to left (west to east) through the Earthโ€™s umbral shadow. The middle image is from just after mid-totality at about 10:21 pm MST, while the partial eclipse shadow ingress image set is from 9:15 pm and the partial eclipse shadow egress image set is from 11:15 pm. I added in two images at either end taken at the very start and end of the umbral eclipse to add a more complete sequence of the lunar motion. The central image of totality includes a 1-minute exposure at ISO 800 and f/2.8 for the stars, which inevitably overexposes the Moon. So Iโ€™ve blended in three shorter exposures for the Moon, taken immediately after the long โ€œstarโ€ exposure. These were 8, 4 and 2 seconds at ISO 400 and f/4, and all with the Canon 200mm telephoto. The two partial eclipse phases are stacks of 7 exposures each, from very short for the bright portion of the lunar disk, to long for the shadowed portion. They are blended with luminosity masks created with ADP Pro v3 panel for Photoshop, but modified with feathering to blend the images smoothly.ย 

Above is the final result, showing the outline of the circular umbral shadow of the Earth defined by the shadow edge on the partially eclipsed Moons. The umbra is about three times the size of the Moon. And at this eclipse the Moon moved across the northern half of the shadow.

So mission accomplished!

Success Selfie with Lunar Eclipse (Jan 20, 2019)
This is an untracked single exposure of 15 seconds at ISO 3200 and f/2.8 with the Sigma 20mm Art lens and Nikon D750. However, I blended in a shorter 1-second exposure for the red eclipsed Moon itself to prevent its disk from overexposing as it would in any exposure long enough to record the Milky Way.ย 

I usually try to take a “trophy” shot of the successful eclipse chaser having bagged his game. This is it, from mid-eclipse during totality, with the red Moon shining in the winter sky beside the Beehive.

With this eclipse I can now say I have seen every total lunar eclipse visible from my area of the world since May 2003. I’m not counting those TLEs that were visible from only the eastern hemisphere โ€” I’m not so avid as to chase those. And there were a couple of TLEs in that time that were visible from North America, but not from Alberta. So I’m not counting those.

And a couple of TLEs that were visible from here I did not see from here in Alberta โ€” I saw April 15, 2014 from Australia and April 4, 2015 from Utah.

With that tally I’ve seen all the locally visible TLEs over a full saros cycle, 18 years. The last local TLE I missed was January 20, 2000, exactly 19 years โ€” a Metonic cycle โ€” ago. It must have been cloudy!

may 21, 2021 eclipse

The next total eclipse of the Moon is May 26, 2021, visible from Alberta as the Moon sets at dawn. I’d like to be in Australia for that one (depicted above in a screen shot from StarryNightโ„ข), to see the eclipsed Moon beside the galactic centre as both rise in the east, a sight to remember. Being late austral autumn, that will be a “cool Moon.”

Happy eclipse chasing!

โ€” Alan, January 22, 2019 / ยฉ 2019 Alan Dyer / AmazingSky.comย 

 

Photographing the Total Eclipse of the Moon


Lunar Eclipse CompositeOn the evening of January 20 for North America, the Full Moon passes through the umbral shadow of the Earth, creating a total eclipse of the Moon.ย 

No, this isnโ€™t a โ€œblood,โ€ โ€œsuper,โ€ nor โ€œwolfโ€ Moon. All those terms are internet fabrications designed to bait clicks.

It is a ย  total ย  lunarย  eclipse ย โ€”ย an event that doesn’t need sensational adjectives to hype, because they are always wonderful sights! And yes, the Full Moon does turn red.

As such, on January 20 the evening and midnight event provides many opportunities for great photos of a reddened Moon in the winter sky.ย 

Hereโ€™s my survey of tips and techniques for capturing the eclipsed Moon.ย 


First โ€ฆ What is a Lunar Eclipse?

As the animation below shows (courtesy NASA/Goddard Space Flight Center), an eclipse of the Moon occurs when the Full Moon (and they can happen only when the Moon is exactly full) travels through the shadow of the Earth.ย 

The Moon does so at least two times each year, though often not as a total eclipse, one where the entire disk of the Moon enters the central umbral shadow. Many lunar eclipses are of the imperceptible penumbral variety, or are only partial eclipses.

Total eclipses of the Moon can often be years apart. The last two were just last year, on January 31 and July 27, 2018. However, the next is not until May 26, 2021.

For a short explanation of the geometry of lunar eclipses see the NASA/Goddard video at https://svs.gsfc.nasa.gov/11516ย 

At any lunar eclipse we see an obvious darkening of the lunar disk only when the Moon begins to enter the umbra. Thatโ€™s when the partial eclipse begins, and we see a dark bite appear on the left edge of the Moon.ย 

While it looks as if Earth’s shadow sweeps across the Moon, it is really the Moon moving into, then out of, our planetโ€™s umbra that causes the eclipse. We are seeing the Moonโ€™s revolution in its orbit around Earth.ย 

At this eclipse the partial phases last 67 minutes before and after totality.ย 

Telescope CU-Stages
This shows the length of the eclipse phases relative to the start of the partial eclipse as the Moon begins to enter the umbra at right. The Moon’s orbital motion takes it through the umbra from right to left (west to east) relative to the background stars. The visible eclipse ends 196 minutes (3 hours and 16 minutes) after it began. Click or tap on the charts to download a high-res version.

Once the Moon is completely immersed in the umbra, totality begins and lasts 62 minutes at this eclipse, a generous length.ย 

The Moon will appear darkest and reddest at mid-eclipse. During totality the lunar disk is illuminated only by red sunlight filtering through Earthโ€™s atmosphere. It is the light of all the sunsets and sunrises going on around our planet.ย 

Andย yes, it is perfectlyย safe to look atย the eclipsed Moon with whatever optics you wish. Binoculars often provide the best view. Do have a pair handy!

Total Lunar Eclipse (December 20/21, 2010)
Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400 for 4 seconds, single exposure, shortly after totality began.

At this eclipse because the Moon passes across the north half of the umbra, the top edge of the Moon will always remain bright, as it did above in 2010, looking like a polar cap on the reddened Moon.

Near the bright edge of the umbra look for subtle green and blue tints the eye can see and that the camera can capture.


Where is the Eclipse?

As the chart below shows, all of the Americas can see the entire eclipse, with the Moon high in the evening or late-night sky. For the record, the Moon will be overhead at mid-eclipse at local midnight from Cuba!

LE2019Jan21T
All of the Americas can see this eclipse. The eclipse gets underway as the Moon sets at dawn over Europe. Diagram courtesy EclipseWise.com

For more details on times see www.EclipseWise.com and the event page at http://www.eclipsewise.com/lunar/LEprime/2001-2100/LE2019Jan21Tprime.htmlย 

I live in Alberta, Canada, at a latitude of 50 degrees North. And so, the sky charts I provide here are for my area, where the Moon enters the umbral shadow at 8:35 p.m. MST with the Moon high in the east. By the end of totality at 10:44 p.m. MST the Moon shines high in the southeast.ย This sample chart is for mid-eclipse at my site.

Framing TL-Mid-Eclipse
The sky at mid-eclipse from my Alberta site. Created with the planetarium software Starry Night, from Simulation Curriculum.

I offer them as examples of the kinds of planning you can do to ensure great photos. I canโ€™t provide charts good for all the continent because exactly where the Moon will be during totality, and the path it will take across your sky will vary with your location.ย 

In general, the farther east and south you live in North America the higher the Moon will appear. But from all sites in North America the Moon will always appear high and generally to the south.ย 

To plan your local shoot, I suggest using planetarium software such as the freeย Stellarium or Starry Night (the software I used to prepare the sky charts in this post), and photo planning apps such as The Photographerโ€™s Ephemeris or PhotoPills.ย 

The latter two apps present the sightlines toward the Moon overlaid on a map of your location, to help you plan where to be to shoot the eclipsed Moon above a suitable foreground, if thatโ€™s your photographic goal.ย 


When is the Eclipse?

While where the Moon is in your sky depends on your site, the various eclipse events happen at the same time for everyone, with differences in hour due only to the time zone you are in.ย 

While all of North America can see the entirety of the partial and total phases of this eclipse (lasting 3 hours and 16 minutes from start to finish), the farther east you live the later the eclipse occurs, making for a long, late night for viewers on the east coast.ย 

Those in western North America can enjoy all of totality and be in bed at or before midnight.

Here are the times for the start and end of the partial and total phases. Because the penumbral phases produce an almost imperceptible darkening, I donโ€™t list the times below for the start and end of the penumbral eclipse.ย 

Eclipse Times Table

PM times are on the evening of January 20.

AM times are after midnight on January 21.

Note that while some sources list this eclipse as occurring on January 21, that is true for Universal Time (Greenwich Time) and for sites in Europe where the eclipse occurs at dawn near moonset.ย 

For North America, if you go out on the evening of January 21 expecting to see the eclipse youโ€™ll be a day late and disappointed!ย 


Pickingย a Photo Technique

Lunar eclipses lend themselves to a wide range of techniques, from a simple camera on a tripod, to a telescope on a tracking mount following the sky.ย 

If this is your first lunar eclipse I suggest keeping it simple! Select just one technique, to focus your attention on only one camera on a cold and late winter night.ย 

Lunar Eclipse Closeup with Stars
The total eclipse of the Moon of September 27, 2015, through a telescope, at mid-totality with the Moon at its darkest and deepest into the umbral shadow, in a long exposure to bring out the stars surrounding the dark red moon. This is a single exposure taken through a 92mm refractor at f/5.5 for 500mm focal length using the Canon 60Da at ISO 400 for 8 seconds. The telescope was on a SkyWatcher HEQ5 equatorial mount tracking at the lunar rate.

Then during the hour of totality take the time to enjoy the view through binoculars and with the unaided eye. No photo quite captures the glowing quality of an eclipsed Moon. But hereโ€™s how to try it.


Option 1: Simple โ€” Camera-on-Tripod

The easiest method is to take single shots using a very wide-angle lens (assuming you also want to include the landscape below) with the camera on a fixed tripod. No fancy sky trackers are needed here.ย 

During totality, with the Moon now dimmed and in a dark sky, use a good DSLR or mirrorless camera in Manual (M) mode (not an automatic exposure mode) for settings of 2 to 20 seconds at f/2.8 to f/4 at ISO 400 to 1600.ย 

Thatโ€™s a wide range, to be sure, but it will vary a lot depending on how bright the sky is at your site. Shoot at lots of different settings, as blending multiple exposures later in processing is often the best way to reproduce the scene as your eyes saw it.ย 

Shoot at a high ISO if you must to prevent blurring from sky motion. However, lower ISOs, if you can use them by choosing a slower shutter speed or wider lens aperture, will yield less digital noise.

Focus carefully on a bright star, as per the advice below for telephoto lenses.ย Don’t just set the lens focus to infinity, as thatย might not produce the sharpest stars.

Total Lunar Eclipse (December 20/21, 2010)
Total eclipse of the Moon, December 20/21, 2010, with 15mm lens at f/3.2 and Canon 5D MkII at ISO 1600 for a 1-minute tracked exposure. Without a tracker, use shorter exposures (less than 20 seconds) and higher ISOs or wider apertures to avoid trailing,

One scene to go for at this eclipse is similar to the above photo, with the reddened Moon above a winter landscape and shining east of Orion and the winter Milky Way. But that will require shooting from a dark site away from urban lights. But when the Moon is totally eclipsed, the sky will be dark enough for the Milky Way to appear.ย 

Framing Eclipse Sky
Click or tap on any of the charts to download a high-resolution copy.

The high altitude of the Moon at mid-eclipse from North America (with it 40 to 70 degrees above the horizon) will also demand a lens as wide as 10mm to 24mm, depending whether you use portrait or landscape orientation, and if your camera uses a cropped frame or full frame sensor. The latter have the advantage in this category of wide-angle nightscape.ย 

Framing Winter Milky Way & Moon

Alternatively, using a longer 14mm to 35mm lens allows you to frame the Moon beside Orion and the winter Milky Way, as above, but without the landscape. Again, this will require a dark rural site.

If you take this type of image with a camera on a fixed tripod, use high ISOs to keep exposures below 10 to 20 seconds to avoid star trailing. You have an hour of totality to shoot lots of exposures to make sure some will work best.

Total Lunar Eclipse, Dec 20, 2010 24mm Wide-Angle
Total eclipse of the Moon, December 20/21, 2010, with Canon 5D MKII and 24mm lens at f2.8 for stack of four 2-minute exposures at ISO 800. Taken during totality using a motorized sky tracker. The eclipsed Moon is the red object above Orion, and the stars appear bloated due to high haze and fog rolling in.

If you have a sky tracker to follow the stars, as I did above, exposures can be much longer โ€” perhaps a minute to pick up the Milky Way really well โ€” and ISOs can be lower to avoid noise.ย 


Option 1 Variation โ€” Urban Eclipses

Unfortunately, point-and-shoot cameras and so-called โ€œbridgeโ€ cameras, ones with non-interchangeable lenses, likely wonโ€™t have lenses wide enough to capture the whole scene, landscape and all. Plus their sensors will be noisy when used at high ISOs. Those cameras might be best used to capture moderate telephoto closeups at bright urban sites.ย 

With any camera, at urban sites look for scenic opportunities to capture the eclipsed Moon above a skyline or behind a notable landmark. By looking up from below you might be able to frame the Moon beside a church spire, iconic building, or a famous statue using a normal or short telephoto lens, making this a good project for those without ultra-wide lenses.

Total Lunar Eclipse, Feb. 20, 2008
Lunar eclipse, Feb 20, 2008 with a 135mm telephoto and Canon 20Da camera showing the Moon’s size with such a lens and cropped-frame camera. This is a blend of 8-second and 3-second exposures to bring out stars and retain the Moon. Both at ISO200 and f/2.8. Saturn is at lower left and Regulus at upper right.

Whatever your lens or subject, at urban sites expose as best you can for the foreground, trying to avoid any bright and bare lights in the frame that will flood the image with lens flares in long exposures.ย 

Capturing such a scene during the deep partial phases might produce a brighter Moon that stands out better in an urban sky than will a photo taken at mid-totality when the Moon is darkest.ย 


TIP: Practice, Practice, Practice!

With any camera, especially beginner point-and-shoots, ensure success on eclipse night by practicing shooting the Moon before the eclipse, during the two weeks of the waxing Moon leading up to Full Moon night and the eclipse.

The crescent Moon with Earthshine on the dark side of the Moon is a good stand-in for the eclipsed Moon. Set aside the nights of January 8 to 11 to shoot the crescent Moon. Check for exposure and focus. Can you record the faint Earthshine? It’s similar in brightness to the shadowed side of the eclipsed Full Moon.

The next week, on the nights of January 18 and 19, the waxing gibbous Moon will be closer to its position for eclipse night and almost as bright as the uneclipsed Full Moon, allowing some rehearsals for shooting it near a landmark.


Option 2: Advanced โ€” Multiple Exposures

An advanced method is to compose the scene so the lens frames the entire path of the Moon for the 3 hours and 16 minutes from the start to the end of the partial eclipse.ย 

Framing TL-Start of Eclipse
This set of 3 charts shows the position of the Moon at the start, middle, and end of the eclipse, for planning lens choice and framing of the complete eclipse path. The location is Alberta, Canada.

Framing TL-Mid-Eclipse

Framing TL-End of Eclipse

As shown above, including the landscape will require at least a 20mm lens on a full frame camera, or 12mm lens on a cropped frame camera. However, these charts are for my site in western Canada. From sites to the east and south where the Moon is higher an even wider lens might be needed, making this a tough sequence to take.

With wide lenses, the Moon will appear quite small. The high altitude of the Moon and midnight timing wonโ€™t lend itself to this type of multiple image composite as well as it does for eclipses that happen near moonrise or moonset, as per the example below.ย 

Lunar Eclipse From Beginning to End, To True Scale
This is a multiple-exposure composite of the total lunar eclipse of Sunday, September 27, 2015, as shot from Writing-on-Stone Provincial Park, Alberta, Canada. For this still image composite of the eclipse from beginning to end, I selected just 40 frames taken at 5-minute intervals, out of 530 I shot in total, taken at 15- to 30-second intervals for the full time-lapse sequence included below.

A still-image composite with the lunar disks well separated will need shots only every 5 minutes, as I did above for the September 27, 2015 eclipse.ย 

Exposures for any lunar eclipse are tricky, whether you are shooting close-ups or wide-angles, because the Moon and sky change so much in brightness.ย 

As I did for the image below, for a still-image composite, you can expose just for the bright lunar disk and let the sky go dark.

Exposures for just the Moon will range from very short (about 1/500th second at f/8 and ISO 100) for the partials, to 1/2 to 2 seconds at f/2.8 to f/4 and ISO 400 for the totals, then shorter again (back to 1/500 at ISO 100) for the end shots when the Full Moon has returned to its normal brilliance.ย 

Thatโ€™ll take constant monitoring and adjusting throughout the shoot, stepping the shutter speed gradually longer thorough the initial partial phase, then shorter again during the post-totality partial phase.

Youโ€™d then composite and layer (using a Lighten blend mode) the well-exposed disks (surrounded by mostly black sky) into another background image exposed longer for 10 to 30 seconds at ISO 800 to 1600 for the sky and stars, shot at mid-totality.

To maintain the correct relative locations of the lunar disks and foreground, the camera cannot move.

Lunar Eclipse Sequence from Monument Valley
The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in western Monument Valley, Utah. I shot the totality images during the short 4 minutes of totality. The mid-totality image is a composite of 2 exposures: 30 seconds at f/2.8 and ISO 1600 for the sky and landscape, with the sky brightening blue from dawn twilight, and 1.5 seconds at f/5.6 and ISO 400 for the disk of the Moon itself. Also, layered in are 26 short exposures for the partial phases, most being 1/125th sec at f/8 and ISO 400, with ones closer to totality being longer, of varying durations.

That technique works best if itโ€™s just a still image you are after, such as above. This image is such a composite, of the April 4, 2015 total lunar eclipse from Monument Valley, Utah.

This type of composite takes good planning and proper exposures to pull off, but will be true to the scene, with the lunar disk and its motion shown to the correct scale and position as it was in the sky.ย It might be a composite, but it will be accurate.


My Rant!ย 

Thatโ€™s in stark contrast to the flurry of ugly โ€œfakedโ€ composites that will appear on the web by the end of the day on January 21, ones with huge telephoto Moons pasted willy-nilly onto a wide-angle sky.

Rather than look artistic, most such attempts look comically cut-and-pasted. They are amateurish. Donโ€™t do it! ย 


Option 3: Advanced โ€” Wide-Angle Time-Lapses

If itโ€™s a time-lapse movie you want (see the video below), take exposures every 10 to 30 seconds, to ensure a final movie with smooth motion.

Unlike shooting for a still-image composite, for a time lapse each frame will have to be exposed well enough to show the Moon, sky, and landscape.ย 

That will require exposures long enough to show the sky and foreground during the partial phases โ€” likely about 1 to 4 seconds at f/2.8 and ISO 400. In this case, the disk of the partially-eclipsed Moon will greatly overexpose, as it does toward the end of the above time-lapse from September 27, 2015..ย 

But the Moon will darken and become better exposed during the late stages of the partial eclipse and during totality when a long exposure โ€” perhaps now 10 to 20 seconds at f/2.8 and ISO 800 to 1600 โ€” will record the bright red Moon amid the stars and winter Milky Way.ย 

Maintaining a steady cadence during the entire sequence requires using an interval long enough throughout to accommodate the expected length of the longest exposure at mid-totality, with similar camera settings to what youโ€™ve used for other Milky Way nightscapes. If youโ€™ve never taken those before, then donโ€™t attempt this complex sequence.ย 

After totality, as the Moon and sky re-brighten, exposures will have to shorten again, andย  symmetrically in reverse fashion for the final partial phases.

Such a time-lapse requires consistently and incrementally adjusting the camera over the three or more hours of the eclipse on a cold winter night. The high altitude of the Moon and its small size on the required wide angle lenses will make any final time lapse less impressive than at eclipses that occur when the Moon is rising or setting.ย 

But … the darkening of the sky and โ€œturning onโ€ of the Milky Way during totality will make for an interesting time-lapse effect. The sky and scene will be going from a bright fully moonlit night to effectively a dark moonless night, then back to moonlit. Itโ€™s a form of โ€œholy grailโ€ time lapse, requiring advanced processing with LRTimelapse software.ย 

Again, do not move the camera. Choose your lens and frame your camera to include the entire path of the Moon for as long as you plan to shoot.ย 

Even if the final movie looks flawed, individual frames should still produce good still images, or a composite built from a subset of the frames.ย 


Option 4: Simple โ€” Telephoto Close-Ups

The first thought of many photographers is to shoot the eclipse with as long a telephoto lens as possible. That can work, but …

The harsh reality is that the Moon is surprisingly small (only 1/2-degree across) and needs a lot of focal length to do it justice, if you want a lunar close-up.

Telescope FOV-400 & 800mm

Youโ€™ll need a 300mm to 800mm lens. Unfortunately, the Moon and sky are moving and any exposures over 1/4 to 2 seconds (required during totality) will blur the Moon badly if its disk is large on the frame and all you are using is a fixed tripod.

If you donโ€™t have a tracking mount, one solution is to keep the Moonโ€™s disk small (using no more than a fast f/2 or f/2.8 135mm to 200mm lens) and exposures short by using a high ISO speed of 1600 to 3200.ย Frame the Moon beside the Beehive star cluster as I show below.

Take aย range of exposures. But … beย sure to focus!


TIP: Focus! And Focus Again!

Take care to focus precisely on a bright star using Live View. Thatโ€™s true of any lens but especially telephotos and telescopes.ย 

Focus not just at the start of the night, but also more than once again later at night. Falling temperatures on a winter night will cause long lenses and telescopes to shift focus. What was sharp at the start of the eclipse wonโ€™t be by mid totality.ย 

The catch is that if you are shooting for a time-lapse or composite you likely won’t be able to re-point the optics to re-focus on a star in mid-eclipse. In that case, be sure to set up the gear well before you want to start shooing to let it cool to ambient air temperature. Now focus on a star, then frame the scene. Then hope the lens doesn’t shift off focus. You might be able to focus on the bright limb of the Moon but it’s risky.

Fuzzy images, not bad exposures, are the ruin of most attempts to capture a lunar eclipse, especially with a telephoto lens. And the Moon itself, especially during totality, is not a good target to focus on. Use a bright star.ย The winter sky has lots!


Option 5: Advanced โ€” Tracked Telescopic Close-Upsย 

If you have a mount that can be polar aligned to track the sky, then many more options are open to you.ย 

Sigma on SAM on Stars

You can use a telescope mount or one of the compact and portable trackers, such as the Sky-Watcher Star Adventurer (I show the Mini model above) or iOptron Sky Tracker units. While these latter units work great, you are best to keep the payload weight down and your lens size well under 300mm.ย 

Framing Telephoto CU

Thatโ€™s just fine for this eclipse, as you really donโ€™t need a frame-filling Moon. The reason is that the Moon will appear about 6 degrees west of the bright star cluster called the Beehive, or Messier 44, in Cancer.

As shown above, a 135mm to 200mm lens will frame this unique pairing well. For me, that will be the signature photo of this eclipse. The pairing can happen only at lunar eclipses that occur in late January, and there wonโ€™t be any more of those until 2037!ย 

That’s the characteristic that makes this eclipse rare and unique, not that it’s a “super-duper, bloody, wolf Moon!” But it doesn’t make for a catchy headline.

Total Lunar Eclipse, Dec 20, 2010 Total HDR
A High Dynamic Range composite of 7 exposures of the Dec 20/21, 2010 total lunar eclipse, from 1/2 second to 30 seconds, to show the more normally exposed eclipsed Moon with the star cluster M35, at left, in Gemini, to show the scene as it appeared in binoculars. Each tracked photo taken with a 77mm Borg apo refractor at f/4.2 (300mm focal length) and Canon 5D MkII at ISO 1600.

Exposures to show the star cluster properly might have to be long enough (30 to 120 seconds) that the Moon overexposes, even at mid-totality. If so, take different exposures for the Moon and stars, then composite them later, as I did above for the December 20, 2010 eclipse near the Messier 35 star cluster in Gemini.ย 

If really you want to shoot with even more focal length for framing just the Moon, a monster telephoto lens will work, but a small telescope such as an 80mm aperture f/6 to f/7 refractor will provide enough focal length and image size at much lower cost and lighter weight, and be easier to attach to a telescope mount.ย 

But even with a 500mm to 800mm focal length telescope the Moon fills only a small portion of the frame, though cropped frame cameras have the advantage here. Use one if itโ€™s a big Moon youโ€™re after!ย 

No matter the camera, the lens or telescope should be mounted on a solid equatorial telescope mount that you must polar align earlier in the night to track the sky.ย 

Alternatively, a motorized Go To telescope on an alt-azimuth mount will work, but only for single shots. The rotation of the field with alt-az mounts will make a mess of any attempts to shoot multiple-exposure composites or time-lapses, described below.ย 

Whatever the mount, for the sharpest lunar disks during totality, use the Lunar tracking rate for the motor.ย 

Total Lunar Eclipse Exposure Series
This series shows the need to constantly shift exposure by lengthening the shutter speed as the eclipse progresses. Do the same to shorten the exposure after totality. The exposures shown here are typical.ย 

Assuming an f-ratio of f/6 to f/8, exposures will vary from as short as 1/250th second at ISO 100 to 200 for the barely eclipsed Moon, to 4 to 20 seconds at ISO 400 to 1600 for the Moon at mid-totality.ย 

Itโ€™s difficult to provide a precise exposure recommendation for totality because the brightness of the Moon within the umbra can vary by several stops from eclipse to eclipse, depending on how much red sunlight manages to make it through Earthโ€™s atmospheric filter to light the Moon.


TIP: Shoot for HDR

Total Lunar Eclipse, Dec 20, 2010 Partial HDR
Total eclipse of the Moon, December 20/21, 2010, with 5-inch refractor at f/6 (780mm focal length) and Canon 7D (cropped frame camera) at ISO 400. This is an HDR blend of 9 images from 1/125 second to 2 seconds, composited in Photoshop. Note ย the blue tint along the shadow edge.

As I did above, during the deep partial phases an option is to shoot both long, multi-second exposures for the red umbra and short, split-second exposures for the bright part of the Moon not yet in the umbra.

Take 5 to 7 shots in rapid succession, covering the range needed, perhaps at 1-stop increments. Merge those later with High Dynamic Range (HDR) techniques and software, or with luminosity masks.ย 

Even if youโ€™re not sure how to do HDR processing now, shoot all the required exposures anyway so youโ€™ll have them when your processing skills improve.ย 


Option 6: Advanced โ€” Close-Up Composites and Time-Lapses

With a tracking telescope on an equatorial mount you could fire shots every 10 to 30 seconds, and then assemble them into a time-lapse movie, as below.ย 

But as with wide-angle time-lapses, that will demand constant attention to gradually and smoothly shift exposures, ideally by 1/3rd-stop increments every few shots during the partial and total phases.ย Make lots of small adjustments, rather than fewerย large ones.

If you track at the lunar rate, as I did above, the Moon should stay more or less centred while it drifts though the stars, assuming your mount is accurately polar aligned, an absolutely essential prerequisite here. ย 

Lunar Eclipse Composite
Composite image digitally created in Photoshop of images taken during October 27, 2004 total lunar eclipse, from Alberta Canada. Images taken through 5-inch apo refractor at f/6 with Canon Digital Rebel 300D camera at ISO 200.

Conversely, track at the sidereal rate and the stars will stay more or less fixed while the Moon drifts through the frame from right to left (west to east) as I show above in a composite of the October 27, 2004 eclipse.

But such a sequence takes even more careful planning to position the Moon correctly at the start of the sequence so it remains โ€œin frameโ€ for the duration of the eclipse, and ends up where you want at the end.

In the chart below, north toward Polaris is at the top of the frame. Position the Moon at the start of the eclipse so it ends up just above the centre of the frame at mid-eclipse. Tricky!ย 

Telescope CU-Stages
Repeated from earlier, this chart shows the path of the Moon through the north half of the umbra, a path that will be the same for any site, as will be the timing. North is up here.

As I show above, for this type of โ€œMoon-thru-shadowโ€ sequence a focal length of about 400mm is ideal on a full frame camera, or 300mm on a cropped frame camera.

From such a time-lapse set you could also use several frames selected from key stages of the eclipse, as I did in 2004, to make up a multiple-image composite showing the Moon moving through the Earthโ€™s shadow.ย 

Again, planetarium software such as Starry Night I used above, which can be set to display the field of view of the camera and lens of your choice, is essential to plan the shoot.ย Don’t attempt it without the rightย software to plan the framing.ย 

I would consider the telescopic time-lapse method the most challenging of techniques. Considering the hour of the night and the likely cold temperatures, your best plan might be to keep it simple.ย 

Itโ€™s what I plan to do.

Iโ€™ll be happy to get a tracked telephoto close-up of the Moon and Beehive cluster as my prime goal, with a wide-angle scene of the eclipsed Moon beside Orion and the Milky Way as a bonus.ย A few telescope close-ups will be even more of a bonus.

Astrospheric
The Astrospheric website, with astronomy-oriented weather predictions. It’s also available as a great mobile app.

However, just finding clear skies might be the biggest challenge!

Try the Astrospheric app for astronomy-oriented weather predictions. The Environment Canada data it uses has led me to clear skies for several recent eclipses that other observers in my area missed.ย 

It’ll be worth the effort to chase!

The next total eclipse of the Moon anywhere on Earth doesnโ€™t occur until May 26, 2021 in an event visible at dawn from Western North America. The next total lunar eclipse visible from all of North America comes a lunar year later, on May 15, 2022.ย 

Total Lunar Eclipse from Alan Dyer on Vimeo.

I leave you with a music video of the lunar eclipse of September 27, 2015 that incorporates still and time-lapse sequences shot using all of the above methods.ย 

Good luck and clear skies on eclipse night!

โ€” Alan, January 1, 2019 / ยฉ 2019 Alan Dyer / amazingsky.comย 

 

Red Moon Over the Rockies


Red Moon over the Rockies

Prospects looked bleak for seeing the January 31 total eclipse of the Moon. A little planning, a chase, and a lot of luck made it possible.

A mid-winter eclipse doesn’t bode well. Especially one in the cold dawn hours. Skies could be cloudy. Or, if they are clear, temperatures could be -25ยฐ C.

I managed to pull this one off, not just seeing the eclipse of the Moon, but getting a few photos.

The secret was in planning, using some helpful apps …

Starry Night
Starry Nightโ„ข / Simulation Curriculum

Because this eclipse was occurring before dawn for western North America the eclipsed Moon was going to be in the west, setting.

To plan any shoot the first app I turn to is the desktop planetarium program Starry Nightโ„ข.

Shown above, the program simulates the eclipse with the correct timing, accurate appearance, and location in the sky at your site. You can set up indicators for the fields of various lenses, to help you pick a lens. The yellow box shows the field of view of a 50mm lens on my full-frame camera, essential information for framing the scene.

With that information in mind, the plan was to shoot the Moon over the Rocky Mountains, which lie along the western border of Alberta.

The original plan was a site in Banff on the Bow Valley Parkway looking west toward the peaks of the Divide.

But then the next critical information was the weather.

For that I turned to the website ClearDarkSky.com. It uses information from Environment Canada’s Astronomy forecasts and weather maps to predict the likelihood of clouds at your site. The day before the eclipse this is what it showed.

ClearDarkSky
ClearSkyChart

Not good! Home on the prairies was not an option. While Banff looked OK, the best prospects were from farther south in the Crowsnest Pass area of Alberta, as marked. So a chase was in order, involving a half-day drive south.

But what actual site was going to be useful? Where could I set up for the shot I wanted?

Time to break out another app, The Photographer’s Ephemeris. This is for desktop and mobile devices.

TPE
The Photographer’s Ephemeris

I needed a spot off a main highway but drivable to, and with no trees in the way. I did not know the area, but Allison Road looked like a possibility.

The TPE app shows the direction to the Sun and Moon to help plan images by day. And in its night mode it can show where the Milky Way is. Here, the thin blue line is showing the direction to the Moon during totality, showing it to the south of Mt. Tecumseh. I wanted the Moon over the mountains, but not behind a mountain!

With a possible site picked out, it was time to take a virtual drive with Google Earth.

Google Street View
Google Earth Street View

The background map TPE uses is from Google Earth. But the actual Google Earth app also offers the option of a Street View for many locations.

Above is its view from along Allison Road, on the nice summer day when the Google camera car made the drive. But at least this confirms there are no obstructions or ugly elements to spoil the scene, or trees to block the view.

But there’s nothing like being there to be sure. It looks a little different in winter!

vert_angle_deg=5.0 / horiz_angle_deg=1.2
Theodolite App

After driving down to the Crowsnest Pass the morning before, the first order of the day upon arrival was to go to the site before it got dark, to see if it was usable.

I used the mobile app Theodolite to take images (above) that superimpose the altitude and azimuth (direction) where the camera was aimed. It confirms the direction where the Moon will be is in open sky to the left of Tecumseh peak. And the on-site inspection shows I can park there!

All set?

There is one more new and very powerful app that provides another level of planning. From The Photographer’s Ephemeris, you can hand off your position to a companion mobile app (for iOS only) called TPE 3D

TPE 3D 50mm
TPE 3D with 50mm lens field

It provides elevation maps and places you on site, with the actual skyline around you drawn in. And with the Moon and stars in the sky at their correct positions.

While it doesn’t simulate the actual eclipse, it sure shows an accurate sky … and what you’ll frame with your lens with the actual skyline in place.

Compare the simulation, above, to the real thing, below:

Red Moon over the Rockies
This is a blend of a 15-second exposure for the sky and foreground, and a shorter 1-second exposure for the Moon to prevent its disk from being overexposed, despite it being dim and deep red in totality. Both were at f/2.8 with the 50mm Sigma lens on the Canon 6D MkII at ISO 1600.

Pretty amazing!

Zooming out with TPE 3D provides this preview of a panorama I hoped to take.

TPE 3D Panorama
TPE 3D zoomed out for 11mm lens simulation

It shows Cassiopeia (the W of stars at right) over the iconic Crowsnest Mountain, and the stars of Gemini setting to the right of Tecumseh.

Here’s the real thing, in an even wider 180ยฐ view sweeping from south to north. Again, just as predicted!

Red Moon over the Rockies Panorama
The panorama is from 8 segments, each with the 35mm lens at f/2.8 for 15 seconds at ISO 1600 with the Canon 6D MkII. Stitching was with Adobe Camera Raw. The Moon itself is blend of 4 exposures: 15 seconds, 4 seconds, 1 second, and 1/4 second to retain the red disk of the eclipsed Moon while bringing out the stars in the twilight sky.

Between the weather predictions โ€“ which proved spot on โ€“ and the geographical and astronomical planning apps โ€“ which were deadly accurate โ€“ we now have incredible tools to make it easier to plan the shot.

If only we could control the clouds! As it was, the Moon was in and out of clouds throughout the 70 minutes of totality. But I was happy to just get a look, let alone a photo.

Total Lunar Eclipse over the Continental Divide

The next total lunar eclipse is in six months, on July 27, 2018, but in an event visible only from the eastern hemisphere.

The next TLE for North America is a more convenient evening event on January 20, 2019. That will be another winter eclipse requiring careful planning!

Clear skies!

โ€” Alan, February 1, 2018 / ยฉ 2018 Alan Dyer / AmazingSky.com

How to Photograph the Lunar Eclipse


Total Lunar Eclipse, Dec 20, 2010 Partial HDR

The first total lunar eclipse in 2.5 years provides lots of opportunities for some great photos.

On the morning of January 31, before sunrise for North America, the Full Moon passes through the umbral shadow of the Earth, creating the first total eclipse of the Moon since September 27, 2015.

The pre-dawn event provides many photo opportunities. Hereโ€™s my summary of tips and techniques for capturing the eclipsed Moon.


But First โ€ฆ What is a Lunar Eclipse?

As the animation (courtesy NASA/Goddard Space Flight Center) shows, an eclipse of the Moon occurs when the Full Moon (and they can happen only when the Moon is exactly full) travels through the shadow of the Earth.

The Moon does so at least two times a year, though often not as a total eclipse, one where the entire disk of the Moon is engulfed by the umbra.

When the Moon is within only the outer penumbral shadow we see very little effect, with a barely perceptible darkening of the Moon, if that. I donโ€™t even list the times below for the start and end of the penumbral phases.

Earth Shadow Edge Colors (Oct 8, 2014)
An HDR stack of images to encompass the range of brightness from the bright portion of the lunar disk (at right here) still just in the penumbral shadow, to the dark portion of the disk at left deep in the umbral shadow. I shot this at the October 8, 2014 total lunar eclipse, from Writing-on-Stone Park in southern Alberta. Taken 7 to 5 minutes before totality began.

It’s only when the Moon begins to enter the central umbral shadow that we see an obvious effect. Thatโ€™s when the partial eclipse begins, and we see a dark bite appear on the left edge of the Moon. The shadow appears to creep across the Moon to darken more of its disk. While it looks like the shadow is moving across the Moon, it is really the Moon moving into, then out of, the umbral shadow that causes the eclipse.

At this eclipse the partial phases last about an hour before and after totality.

Once the Moon is completely immersed in the umbra, totality begins, and lasts 77 minutes at this eclipse, a generous length. However, in North America, only sites in the western half of the continent get to see all or most of totality.


Where is the Eclipse?

ec2018-Fig01
Courtesy Fred Espenak and Royal Astronomical Society of Canada (Observer’s Handbook)

As the chart above shows, the Pacific area including Hawaii, Australia, and eastern Asia can see the entire eclipse with the Moon high in the evening or midnight sky.

Most of North America (my tips are aimed at North American photographers) can see at least some part of this eclipse.

From the eastern half of the continent the Moon sets at sunrise during either totality (from the central areas of North America), or during the first partial phases (from eastern North America). Those in the east can take advantage of interesting photo opportunities by capturing the partially eclipsed Moon setting in the west in the dawn twilight.

Total Lunar Eclipse (Dec 10, 2011)
The total eclipse of the Moon on December 10, 2011, taken from the the Rothney Astrophysical Observatory, near Priddis, Alberta, and looking west to the Rockies. This is a 2 second exposure at ISO 800 with the Canon 5DMkII and Canon 200mm lens at f/4. This was taken toward the end of totality at 7:48 a.m. local time.

However, the most dramatic images of a deep red Moon in the western sky, such as above, will be possible only from the west. And even then, the further north and west you live, the better your view.

Even from the southwestern United States the Moon sets just after the end of totality, requiring a site with a low and clear horizon to the west in order to see the whole event.

I live in Alberta, Canada, and the diagrams I provide here are for my area, where the Moon sets during the final partial phase. I offer them as examples of the kinds of planning you can do to ensure great photos. But exactly where the Moon will be during totality, and where and when it will set on your horizon, will depend on your location.

To plan your local shoot, I suggest using planetarium software such as Stellarium or Starry Night (the software I used to prepare the charts below), and photo planning apps such as The Photographerโ€™s Ephemeris or PhotoPills.ย 

The latter two apps present the sightlines toward the Moon overlaid on a map of your location, to help you plan where to be to shoot the eclipsed Moon setting behind a suitable foreground.


When is the Eclipse?

While where the Moon is in your sky depends on your site, the various eclipse events happen at the same time for everyone, with differences in hour due only to the time zone you are in.

Here are the times for the start and end of the partial and total phases.

Note that all times are A.M., in the early morning, before sunrise, on January 31. Go out at 6 P.M. on the evening of January 31 and youโ€™ll be 12 hours too late. You missed it!

Eclipse Times Table

All times are A.M. on January 31. โ€œโ€”โ€œ means the event is not visible; the Moon has set.

The time of moonset at your site will vary with your location. Use planning apps to calculate your local moonset time.


Picking a Site

No matter where you are in North America you want a site with a good view to the west and northwest, preferably with a clear view of a relatively unobstructed but photogenic horizon.

While having an eclipse occur at dawn (or at dusk) does limit the amount of eclipse we can see, it has the benefit of providing many more photo opportunities of the eclipsed Moon above a scenic landscape or foreground element.

Eclipse Moonrise at Writing-on-Stone
The Full Moon rises in partial eclipse over the sandstone formations of Writing-on-Stone Provincial Park in southern Alberta, on the evening of September 27, 2015. Shot with the 200mm lens and 1.4x extender, on the Canon 5DMkII.

From eastern North America you will have to be content with images of the partially eclipsed Moon setting, similar to the image above of a rising partially-eclipsed Moon.

From the centre of the continent, where the Moon sets during totality, the dim, reddened Moon is likely to disappear into the brightening sky. Remember, when the Moon is full it sets just as the Sun rises. So shots of a red Moon right on the horizon arenโ€™t likely to be possible. The Moon will be too dim and the sky too bright.

From sites in the west, the Moon will set either just at the end of totality or shortly afterwards, making the Moon brighter and more obvious in the sunrise sky, as the foreground in the west lights up with red light from the Sun rising in the east.

It is that same red sunlight filtered by our atmosphere that continues on into our planetโ€™s shadow and lights the Moon red during totality.


Picking a Technique

Lunar eclipses lend themselves to a wide range of techniques, from a simple camera on a tripod, to a telescope on a tracking mount following the sky.

What you use depends not only on the gear you have on hand, but also on your site. It might not be practical to set up loads of gear at a scenic site you have to trek into โ€” especially when you have to set up in the wee hours of a cold winter morning.

You could set up earlier that night on January 30, but only if your site is safe enough to leave the gear unattended while you sleep.

Keep it simple!


Option 1: Simple Camera-on-Tripod

Eclipsed Moon over Writing on Stone
The Moon in totality in the deep twilight on September 27, 2015, with a 35mm lens on a full-frame camera. This is one frame from a time-lapse sequence. A 5-second exposure at f/2.8 and at ISO 800.

The easiest method is to take single shots with a moderate wide-angle or normal lens with the camera on a fixed tripod. No fancy trackers are needed here.

If the sky is bright with twilight, you might be able to meter the scene and use Auto exposure.

Jan 31 Eclipse-50mm Mid-Totality (Courtesy Starry Nightโ„ข/Simulation Curriculum)
Composing a single shot during mid-totality from southern Alberta, framed to include Castor and Pollux in Gemini.

But earlier in the night, with the Moon in a darker sky, as I show above, use Manual exposure and try settings of 1 to 10 seconds at f/2.8 to f/4 at ISO 400 to 1600. Thatโ€™s a wide range, to be sure, but it will vary a lot depending on when you shoot and where you are, factors that will affect how bright the sky is at your site. Just shoot, check, and adjust.


Option 2: Advanced Camera-on-Tripod

A more advanced method is to compose the scene so the lens frames the entire path of the Moon from the start of the partial eclipse until moonset.

Jan 31 Eclipse-35mm Lens Sequence
Framing a time-lapse sequence for southern Alberta. (Courtesy Starry Nightโ„ข/Simulation Curriculum)

As shown above, that will take at least a 35mm lens on a full frame camera, or 20mm lens on a cropped frame camera.

Take exposures every 15 to 30 seconds if you want to turn the set into a time-lapse movie. But a still-image composite with the lunar disks well separated will need shots only every 5 to 10 minutes.

Such a composite takes good planning and proper exposures to pull off, but will be true to the scene, with the lunar disk and its motion shown to the correct scale as it was in the sky. Thatโ€™s in stark contrast to the flurry of ugly โ€œfakedโ€ composites that will appear on the web by the end of February 1, ones with huge telephoto Moons pasted willy-nilly onto a wide-angle sky. Donโ€™t do it!

Exposures for any lunar eclipse are tricky, whether you are shooting closeups or wide-angles, because the Moon and sky change so much in brightness.

For wide-angle composites, you can expose just for the bright lunar disk and let the sky go dark. Exposures for just the Moon will range from very short (about 1/500th second at ISO 100) for the partials, to 1 to 2 seconds at ISO 400 for the totals, then shorter again (1/15 to 1/2 second at ISO 400) for the end shots in twilight when the Moon and sky may be similar in brightness. Thatโ€™ll take constant monitoring and adjusting throughout the shoot.

As I did below, youโ€™d then composite and layer the well-exposed disks into another background image exposed longer for the sky, likely shot in twilight. To maintain the correct relative locations of the lunar disks and foreground, the camera cannot move.

That technique works best if itโ€™s just a still image you are after, such as below.

Lunar Eclipse Sequence from Monument Valley
The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in Monument Valley, Utah. I shot the totality images at 6:01 a.m. MDT, during mid-totality during the very short 4 minutes of totality. The mid-totality image is a composite of 2 exposures: 30 seconds at f/2.8 and ISO 1600 for the sky and landscape, with the sky brightening blue from dawn twilight, and 1.5 seconds at f/5.6 and ISO 400 for the disk of the Moon itself. Also, layered in are 26 short exposures for the partial phases, most being 1/125th sec at f/8 and ISO 400, with ones closer to totality being longer, of varying durations. All are with a 24mm lens and Canon 6D on a static tripod, with the camera not moved through the entire sequence. The short duration of totality at this eclipse lent itself to a sequence with one total phase image flanked by partial phases.

The above image is a composite of the April 4, 2015 total lunar eclipse from Monument Valley, Utah. That eclipse occurred under similar circumstances as this monthโ€™s eclipse, with the eclipse underway as the Moon set in the west at sunrise.

Lunar Eclipse From Beginning to End, To True Scale
A multiple-exposure composite of the total lunar eclipse of Sunday, September 27, 2015, as shot from Writing-on-Stone Provincial Park, Alberta, Canada. NOTE: The size of the Moon and its path across the sky are accurate here, because all the images for this composite were taken with the same lens using a camera that did not move during the shoot.

By comparison, the composite here is made of a few selected frames out of hundreds I took at 15-second intervals, and with each frame exposed for the sky, for use in a time-lapse movie. In this case, the Moon became overexposed at the end as it emerged from the umbra.

Indeed, if itโ€™s a time-lapse movie you want (see the video linked to below), then each frame will have to be exposed well enough to show the sky and landscape.

While this method will overexpose the partially-eclipsed Moon, the Moon will darken and become better exposed throughout totality when the same long exposure for the reddened Moon might also work for the sky, to pick up stars. Exposures will have to shorten again as the sky brightens with twilight.

Again, constant baby-sitting and adjusting the camera will be needed. So if itโ€™s cold where you are prepare for a frigid multi-hour shoot. I doubt youโ€™ll be able to leave the camera on Auto exposure to run on its own, not until at least bright twilight begins.


Option 3: Telephoto Close-Ups

Jan 31 Eclipse-Telescope
Size of the Moon with a 600mm telephoto on a full-frame and cropped-frame camera. (Courtesy Starry Nightโ„ข/Simulation Curriculum)

The Moon is surprisingly small (only 1/2-degree across) and needs a lot of focal length to do it justice.

For an โ€œin-your-faceโ€ close-up of the eclipse youโ€™ll need a 300mm to 800mm (!) lens. Unfortunately, the Moon and sky are moving and any exposures over 1 to 2 seconds (required during totality) will blur the Moon badly if its disk is large on the frame.

If you donโ€™t have a tracking mount, one solution is to keep the Moonโ€™s disk small (using no more than a fast f/2.8 200mm lens) and exposures short by using a high ISO speed.

Total Lunar Eclipse (Dec 10, 2011)
The eclipse of December 10, 2011, with the Moon setting in deep partial eclipse at sunrise.

Or plan to shoot with a telephoto only when the Moon is low in the sky, as I did above, when you can include the horizon which you would want to be sharp anyway. Framing the Moon and horizon wonโ€™t need a super telephoto.

The sky will then also be brighter and require short exposures that donโ€™t need to be tracked. However, how bright and obvious the Moon will be will again depend on your location. This may or may not be a practical option, certainly not if the Moon is setting during mid-totality where you are.

Option 4: Tracked Telescopic Close-Upsย 

Jan 31 Eclipse-Telephoto Lenses
Framing the eclipsed Moon and the Beehive star cluster (Messier 44). (Courtesy Starry Nightโ„ข/Simulation Curriculum)

If you have a mount that can be polar aligned to track the sky, then more options are open to you.

You can use a telescope mount or one of the compact and portable trackers, such as the Sky-Watcher Star Adventurer or iOptron Sky Tracker units. While these latter units work great, you are best to keep the payload weight down and your lens size under 300mm.

Thatโ€™s just fine for this eclipse, as you really donโ€™t need a frame-filling Moon. The reason is that the Moon will appear about 4 degrees away from the bright star cluster called the Beehive, or Messier 44, in Cancer. As shown above, a 200mm to 300mm lens will frame this unique pairing well.

Even so, exposures to show the cluster properly might have to be long enough that the Moon overexposes, even at mid-totality. If so, take different exposures for the Moon and stars and composite them later, as I did below.

Total Lunar Eclipse, Dec 20, 2010 Total HDR
A High Dynamic Range composite of 7 exposures of the Dec 20/21, 2010 total lunar eclipse, from 1/2 second to 30 seconds, to show the more normally exposed eclipsed Moon with the star cluster M35 at left in Gemini, to show the scene more like it appeared in binoculars. Each photo taken with a 77mm aperture Borg apo refractor at f/4.2 (300mm focal length) and Canon 5D MkII camera at ISO 1600.

If you do want to shoot with more focal length, a monster telephoto lens will work, but a small telescope such as an 80mm aperture f/6 to f/7 refractor will provide enough focal length and image size at much lower cost. But either way, the lens or telescope should be mounted on a solid equatorial telescope mount, and polar aligned to track the sky.

For the sharpest lunar disks, use the Lunar tracking rate.

Exposures will vary from as short as 1/500th second at ISO 100 to 200 for the barely eclipsed Moon, to 4 to 16 seconds at f/6 to f/8 and at ISO 400 to 1600 for the Moon at mid-totality.

Total Lunar Eclipse, Dec 20, 2010 Partial HDR
Total eclipse of the Moon, December 20/21, 2010, taken with a 130mm AP apo refractor at f/6 and Canon 7D at ISO 400. An HDR composite of 9 images from 1/125 second to 2 seconds, composited in Photoshop.Taken at about 12:21 a.m. MST on Dec 21, about 20 minutes before totality began, during the partial phase.

As I did above, during the deep partial phases shoot both long exposures for the red umbra and short exposures for the bright part of the Moon not yet in the umbra. Merge those later with High Dynamic Range (HDR) techniques and software, or with luminosity masks.

Even if youโ€™re not sure how to do this now, shoot all the required exposures anyway so youโ€™ll have them when your processing skills improve.

Option 5: Time-Lapse Close-Upsย 

Total Lunar Eclipse (December 20/21, 2010)
Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400 for 4 seconds, single exposure, shortly after totality began.

With a tracking telescope you could fire shots every 30 seconds or so, and then assemble them into a time-lapse movie.

But as with wide-angle time-lapses, that will take constant attention to gradually and smoothly shift exposures, ideally by 1/3rd-stop increments every few shots during the partial and total phases.

If you track at the lunar rate, as I did in the still image below and in the music video linked to at bottom, the Moon will stay centred while it drifts though the stars.

Total Lunar Eclipse-August 28, 2007
Taken with 90mm Stowaway AP Refractor, with Borg .85x compressor/flattener for f/5.6. With Canon 20Da camera at ISO 400 for a 13 second exposure, on a Skywatcher HEQ5 mount tracking at Lunar rate. Exposure was long to bring out star background.

Track at the sidereal rate and the stars will stay more or less fixed while the Moon drifts through the frame from right to left (west to east). But that takes even more careful planning to position the Moon correctly at the start of the sequence so it remains โ€œin frameโ€ for the duration of the eclipse and ends up where you want at the end, which will occur with the Moon low in a bright sky.

Again, planetarium software such as Starry Night, which can be set to display a camera frame, is essential to plan the shoot.

Either way, do take care to accurately polar align your mount, or youโ€™ll be confronted with the monumental task of having to manually align hundreds of images later. Trust me, I know!

Watching the Lunar Eclipse
Me enjoying the September 27, 2015 total lunar eclipse while various cameras snapped away, but still requiring constant attention and adjustments.

I would consider the telescopic time-lapse method the most challenging of techniques.

Considering the hour of the night and the likely cold temperatures, your best plan might be to keep it simple. Itโ€™s what I plan to do. Iโ€™ll be happy to get a few good wide-angle still images, and perhaps a tracked telephoto close-up of the Moon and Beehive as a bonus.

While there is another total lunar eclipse (TLE) in six months on July 27/28, it is not visible at all from North America.

Our next TLE occurs 12 Full Moons, or one lunar year from now, on the night of January 20/21, 2019, when all of North America gets to watch totality at a more reasonable hour, though perhaps not at a more reasonable temperature.

I leave you with a music video of the last TLE, on September 27, 2015 that incorporates still and time-lapse sequences shot using all of the above methods.

Enjoy!

Selfie Success Shot at Lunar Eclipse
Success! A post-totality trophy shot.

Good luck and clear skies on eclipse morning!

โ€” Alan, January 6, 2018 / ยฉ 2018 Alan Dyer / amazingsky.com

 

Totality over the Tetons โ€” the Music Video


Totality over Tetons Title Image

I present the final cut of my eclipse music video, from the Teton Valley, Idaho.

I’ve edited my images and videos into a music video that I hope captures some of the awe and excitement of standing in the shadow of the Moon and gazing skyward at a total eclipse.

Totality over the Tetons from Alan Dyer on Vimeo.

The video can be viewed in up to 4K resolution. Music is by the Hollywood session group and movie soundtrack masters, Audiomachine. It is used under license.

Eclipse Triumph Selfie (Wide)
Me at the 2017 total solar eclipse celebrating post-eclipse with four of the camera systems I used, for close-up stills through a telescope, for 4K video through a telephoto lens, and two wide-angle time-lapse DSLRs. A fifth camera used to take this image shot an HD video selfie.
Never before have I been able to shoot a total eclipse with so many cameras to capture the scene from wide-angles to close-ups, in stills, time-lapses, and videos, including 4K. Details on the setup are in the caption for the video on Vimeo. Click through to Vimeo.

I scouted this site north of Driggs, Idaho two years earlier, in April 2015. It was perfect for me. I could easily set up lots of gear, it had a great sightline to the Grand Tetons, and a clear horizon for the twilight effects. And I had the site almost to myself. Observing with a crowd adds lots of energy and excitement, but also distraction and stress. I had five cameras to operate. It was an eclipse experience I’ll likely never duplicate.

If you missed this eclipse, you missed the event of a lifetime. Sorry. Plain and simple.

2017 Eclipse Time Sequence Composite
A composite of the 2017 eclipse with time running from left to right, depicting the onset of totality at left, then reappearance of the Sun at right. Taken with the 4-inch telescope shown above.
If you saw the eclipse, and want to see more, then over the next few years you will have to travel far and wide, mostly to the southern hemisphere between now and 2024.

But on April 8, 2024 the umbral shadow of the Moon once again sweeps across North America, bringing a generous four minutes of totality to a narrow path from Mexico, across the U.S., and up into eastern Canada.

It will be the Great North American Eclipse. Seven years to go!

โ€” Alan, September 2, 2017 / ยฉ 2017 Alan Dyer / www.amazingsky.com

 

The Great American Eclipse, from Idaho


2017 Total Solar Eclipse โ€“ย Contacts and Totality

What a day! What a sky! What an eclipse!ย 

Thank you Idaho for providing the finest sky we could have hoped for on eclipse day.

After several days of predictions that went from good, to bad, to not so good, prompting worries about having to escape west to clearer skies, August 21 turned out to be wonderfully clear, both cloudless and smoke free.

My site was the one I had planned from a scouting trip in April 2015, off the West 5000 Road north of Driggs, Idaho. It had a sightline to the Tetons, a great horizon, and I could drive to it with my carload of gear, a rare opportunity.

I had never driven to any total solar eclipse before, allowing me to shoot with all the telescope and camera gear I could muster and handle. And I had the site almost all to myself, a first for any total solar eclipse.

Eclipse Triumph Selfie (Wide)
Me at the 2017 total solar eclipse celebrating post eclipse with four of the camera systems I used, for close-up stills through a telescope, for 4K video through a telephoto lens, and two wide-angle time-lapse DSLRs. A fifth camera used to take this image shot an HD video selfie.

This was only the fourth eclipse out of the 16 I have been to that I shot though a telescope.

The lead image is a composite of second and third contact images with a blended exposure composite of totality, taken with the telescope shown here. However, this was the first time I’ve shot a total solar eclipse with an equatorial mount that was accurately polar aligned (at 5 a.m. that morning!) and tracking the Sun.

2017 Eclipse - Third Contact Composite
This is a composite of two images taken seconds apart: a 1/15th second exposure for the corona and a 1/1000 sec exposure for the prominences and chromosphere. Taken with the 106mm Astro-Physics apo refractor at f/5 and Canon 6D MkII camera at ISO 100. On the Mach One equatorial mount, polar aligned and tracking the sky.

This is a composite of a long exposure of totality with a short exposure of the third contact diamond ring just beginning to break out from behind the dark disk of the Moon, just before it overpowered the red prominences that lined the edge of the Sun that day. making for an amazing sight through binoculars or telescopes.

The Solar Corona at the 2017 Total Solar Eclipse
This is a composite of 7 images blended with luminosity masks applied using ADP Panel+ Pro extension for Photoshop. Adjustment layers of successively smaller High Pass filters were also added to bring out the coronal structure.

No single exposure can capture the huge range in brightness in the corona.

The image above is a blend of seven exposures, from 1/1000 second to 0.4 seconds, creating a view that better resembles what the eye saw โ€“ with the exception of the faint Earthshine on the Moon. It is so faint, I don’t think it is visible to the eye, but the camera picks it up.

Regulus is the star at left, with several other fainter stars in Leo also visible.

Eclipse over the Tetons - Totality Starts
This is from a 700-frame time-lapse and is of second contact just as the diamond ring is ending and the dark shadow of the Moon is approaching from the west at right, darkening the sky at right. With the Canon 6D and 14mm SP Rokinon lens at f/2.5 for 1/10 second at ISO 100.

While I had a telescope at the ready inches from my eyes for just visual looks, as it so often is, the naked eye scene was so compelling I forgot to look through the telescope until the last few seconds of totality.

The scene above captures the wide view, of the eclipsed Sun over the Grand Tetons, as seen from the Idaho side. The dark blue at right is the shadow of the Moon.

I shot the wide scene with two cameras and wide-angle lenses for time-lapse sequences. I’ve compiled them into a short video here.

Moonshadows: Eclipse Sky Time-Lapses from Alan Dyer on Vimeo.

A more extensive music video is in the works.

For tips and techniques on how to process eclipse images, see my eBook on How to Photograph the Solar Eclipse. While most of the content is now past history, the chapter on processing images is more valuable than ever. The eBook is now just $2.99, on Apple, as a PDF, and on Amazon. Sorry for the shameless plug!

Thanks! It can now be cloudy for the next few months. It was clear when it needed to be!

โ€” Alan, August 31, 2017 / ยฉ 2017 Alan Dyer / AmazingSky.com

 

Top 10 Tips for Practicing for the Eclipse


Total Eclipse from Chile

I present suggestions for how to ensure everything under your control will go well on eclipse day. The secret is: Practice, Practice, Practice!

The techniques I suggest practicing are outlined in my previous blog, Ten Tips for the Solar Eclipse. Itโ€™s prerequisite reading.

However, while you can read all about how to shoot the eclipse, nothing beats actually shooting to ensure success. But how do you do that, when thereโ€™s only one eclipse?

Here are my “Top 10” suggestions:

Total Eclipse of the Sun from the Atlantic (Nov 3, 2013)
Total eclipse of the Sun, November 3, 2013 as seen from the middle of the Atlantic Ocean, from the Star Flyer sailing ship. I took this with a Canon 5D MkII and 16-35mm lens at 19mm for 1/40s at f/2.8 and ISO 800 on a heavily rolling ship.

Wide-Angle Shots โ€“ย Shoot a Twilight Scene

The simplest way to shoot theย eclipse is to employ a camera with a wide lens running on auto exposure to capture the changing sky colors and scene brightness.

  1. Auto Exposure Check in Twilight

    If you intend to shoot wide-angle shots of the eclipse sky and scene below, with anything from a mobile phone to a DSLR, practice shooting a time-lapse sequence or a movie under twilight lighting. Does your camera expose properly when set to Auto Exposure? If you are using a phone camera, does it have any issues focusing on the sky? How big a file does a movie create?ย 

 


PRACTICE2-Voyager Alt-Az Mount

With Telephotos and Telescopes โ€“ Shoot the Filtered Sun

The toughest techniques involve using long lenses and telescopes to frame the eclipsed Sun up close. They need lots of practice.ย 

  1. Framing and Focusing

    Youโ€™ll need to have your safe and approved solar filter purchased (donโ€™t wait!) that you intend to use over your lens or telescope. With the filter in place, simply practice aiming your lens or telescope at the Sun at midday. Itโ€™s not as easy as you think! Then practice using Live View to manually focus on the edge of the Sun or on a sunspot. Can you get consistently sharp images?

 


Partial Solar Eclipse in Cloud #1 (Oct 23, 2014)
The partial eclipse of the Sun, October 23, 2014, shot through thin cloud, but that makes for a more interesting photo than one in a clear sky. Despite the cloud, this was still shot through a Mylar filter, on the front of telescope with 450mm focal length, using the Canon 60Da for 1/25 sec exposure at ISO 100.

  1. Exposure Times

Exposures of the filtered Sun will be the same as during the partial phases, barring cloud or haze, as above, that can lengthen exposure times. Otherwise, only during the thin crescent phases will shutter speeds need to be 2 to 3 stops (or EV steps) longer than for a normal Sun.

 


PRACTICE4-Kendrick and Seymour Filters
Solar filters that clamp around the front of lenses are easier to remove than ones that screw onto lenses. They will bind and get stuck!

  1. Filter Removal

With the camera aimed away from the Sun (very important!), perhaps at a distant landscape feature, practice removing the filter quickly. Can you do it without jarring the camera and bumping it off target? Perhaps try this on the Moon at night as well, as itโ€™s important to also test this with the camera and tripod aimed up high.

 


PRACTICE5-Nikon Screens on 80mm
Articulated LCD screens are a great aid for framing and viewing the eclipse in Live View when the camera is aimed up high, as it will be!

  1. Ease of Use

With the Sun up high at midday (as it will be during the eclipse from most sites), check that you can still look through, focus, and operate the camera easily. Can you read screens in the bright daylight? What about once it gets darker, as in twilight, which is how dark it will get during totality.

 


PRACTICE6-Sun Motion Composite
The east-to-west motion of the sky will carry the Sun its own diameter across the frame during totality, making consistent framing an issue with very long lenses and telescopes.

  1. Sun Motion

If you are using an untracked tripod, check how much the Sun moves across your camera frame during several minutes. For videos you might make use of that motion. For still shots, youโ€™ll want to ensure the Sun doesnโ€™t move too far off center.

 


PRACTICE7-HEQ5 with 80mm Mount N
An equatorial mount like this is great but needs to be at least roughly polar aligned to be useful.

  1. Aligning Tracking Mounts

If you plan to use a motorized equatorial mount capable of tracking the sky, “Plan A” might be to set it up the night before so it can be precisely polar aligned. But the reality is that you might need to move on eclipse morning. To prepare for that prospect, practice roughly polar aligning your mount during the day to see how accurate its tracking is over several minutes. Do that by leveling the mount, setting it to your siteโ€™s latitude, and aiming the polar axis as close as you can to due and true north. You donโ€™t need precise polar alignment to gain the benefits of a tracking mount โ€“ย it keeps the Sun centered โ€“ย for the few minutes of totality.

 


The March Mini-Moon
The Full Moon is the same brightness as the Sun’s inner corona.

Telephotos and Telescopes โ€“ย Shoot Full Moon Closeupsย 

  1. Exposure Check

Shoot the Full Moon around July 8 or August 7. If you intend to use Auto Exposure during totality, check how well it works on the Full Moon. Itโ€™s the same brightness as the inner corona of the Sun, though the Moon occupies a larger portion of the frame and covers more metering sensor points. This is another chance to check your focusing skill.

 


Impending Occultation of Beta Capricorni
The crescent Moon has a huge range in brightness and serves as a good test object. Remember, the Moon is the same size as the Sun. That’s why we get eclipses!

Telescopes and Telescopes โ€“ย Shoot Crescent Moon Closeups

  1. Exposure Check

Shoot the waxing crescent moon in the evening sky during the last week of June and again in the last week of July. Again, test Auto Exposure with your camera in still or movie mode (if you intend to shoot video) to see how well the camera behaves on a subject with a large range in brightness. Or step through a range of exposures manually, from short for the bright sunlit crescent, to long for the dark portion of the Moon lit by Earthshine. Itโ€™s important to run through your range of settings quickly, just as you would during the two minutes of totality. But not too quickly, as you might introduce vibration. So โ€ฆ

 


PRACTICE10-2006 Libya-Short
Good focus matters for recording the fine prominences and sharp edge of the Moon.

  1. Sharpness Check

In the resulting images, check for blurring from vibration (from you handling the camera), from wind, and from the skyโ€™s east-to-west motion moving the Moon across the frame, during typical exposures of 1 second or less.

 


By practicing, youโ€™ll be much better prepared for the surprises that eclipse day inevitably bring. Always have a less ambitious “Plan B” for shooting the eclipse simply and quickly should a last-minute move be needed.

However, may I recommend …

How to Photograph the Solar Eclipse
My 295-page ebook on photographing the August 21 total eclipse of the Sun is now available. See http://www.amazingsky.com/eclipsebook.html It covers all techniques, for both stills, time-lapses, and video, from basic to advanced, plus a chapter on image processing. And a chapter on What Can Go Wrong?! The web page has all the details on content, and links to order the book from Apple iBooks Store (for the best image quality and navigation) or as a PDF for all other devices and platforms.

For much more detailed advice on shooting options and techniques, and for step-by-step tutorials on processing eclipse images, see my 295-page eBook on the subject, available as an iBook for Apple devices and as a PDF for all computers and tablets.

Check it out at my website page.ย 

Thanks and clear skies on August 21!

โ€” Alan, June 24, 2017 / ยฉ 2017 Alan Dyer / amazingsky.com

 

Ten Tips for the Solar Eclipse


Total Eclipse from Libya 2006I present my Top 10 Tips for photographing the August 21 total eclipse of the Sun.

If the August total eclipse will be your first, then you could heed the advice of many and simply follow “Tip #0:” Just donโ€™t photograph it! Look up and around to take in the spectacle. Even then, you will not see it all.

However, you might see less if you are operating a camera.

But I know you want pictures! To help you be successful, here are my tips for taking great photos without sacrificing seeing the eclipse.


TIP1-iPhone on Siriu Tripod
An iPhone in a tripod bracket and on a small tabletop tripod.

TIP #1: Keep It Simple

During the brief minutes of totality, the easiest way to record the scene is to simply hold your phone camera up to the sky and shoot. Zoom in if you wish, but a wide shot may capture more of the twilight effects and sky colors, which are as much a part of the experience as seeing the Sunโ€™s gossamer corona around the dark disk of the Moon.

Better yet, use an adapter to clamp your phone to a tripod. Frame the scene as best you can (you might not be able to include both the ground and Sun) and shoot a time-lapse, or better yet, a video.

Start it 2 or 3 minutes before totality (if you can remember in the excitement!) and let the cameraโ€™s auto exposure take care of the rest. Itโ€™ll work fine.

That way youโ€™ll also record the audio of your excited voices. The audio may serve as a better souvenir than the photos. Lots of people will have photos, but nobody else will record your reactions!

Just make sure your phone has enough free storage space to save several minutes of HD video or, if your camera has that feature, 4K video.


TIP2-2006 Libya Wide-Angle
A wide shot of the 2006 eclipse in Libya with a high altitude Sun. 10mm lens on a cropped-frame Canon 20Da camera.

TIP #2: Shoot Wide With a DSLR

For better image quality, step up to this hands-off technique.

Use a tripod-mounted camera that accepts interchangeable lenses (a digital single lens reflex or a mirrorless camera) and use a lens wide enough to take in the ground below and Sun above.

Depending on where you are and the sensor size in your camera, thatโ€™ll likely mean a 10mm to 24mm lens.

By going wide you wonโ€™t record details in the corona of the Sun or its fiery red prominences. But you can record the changing sky colors and perhaps the dark shadow of the Moon sweeping from right to left (west to east) across the sky. You can also include you and your eclipse group silhouetted in the foreground. Remember, no one else will record you at the eclipse.


TIP3-2012 Eclipse Movie Clip
A sequence of shots of the 2012 eclipse from Australia, with a wide 15mm lens and camera on Auto Exposure showing the change of sky color.

Total Eclipse of the Sun, Mid-Eclipse (Wide-Angle)
The total eclipse of the Sun, November 14, 2012, from a site near Lakeland Downs, Queensland, Australia. Shot with the Canon 5D Mark II and 15mm lens for a wide-angle view showing the Moon’s conical shadow darkening the sky and the twilight glow on the horizon. Taken near mid-eclipse.

TIP #3: Shoot on Auto Exposure

For wide shots, thereโ€™s no need to attend to the camera during the eclipse. Set the camera on Auto Exposure โ€“ย Aperture Priority (Av), the camera ISO between 100 to 400, and your lens aperture to f/2.8 (fast) to f/5.6 (slow).

Use a higher ISO if you are using a slower lens such as a kit zoom. But shoot at ISO 100 and at f/2.8 if you have a wide lens that fast.

In Av mode the camera will decide what shutter speed to use as the lighting changes. Iโ€™ve used this technique at many eclipses and it works great.


TIP4-Pixel Intervalometer CU
An accessory intervalometer set for an interval of 1 second.

TIP #4: Let the Camera Do the Shooting

To make this wide-angle technique truly hands-off use an intervalometer (either built into your camera or a separate hardware unit) to fire the shutter automatically.

Once again, start the sequence going 3 to 5 minutes before totality, with the intervalometer set to fire the shutter once every second. Donโ€™t shoot at longer intervals, or youโ€™ll miss too much. Shutter speeds wonโ€™t likely exceed one second.

Again, be sure your cameraโ€™s memory card has enough free space for several hundred images. And donโ€™t worry about a solar filter on your lens. Itโ€™ll be fine for the several minutes youโ€™ll have it aimed up.

Out of the many images youโ€™ll get, pick the best ones, or turn the entire set into a time-lapse movie.


TIP5-Manual Focus Switches Nikon
A Nikon DSLR and lens set to Manual Focus.

TIP #5: Shoot on Manual Focus

Use Auto Exposure and an intervalometer. But โ€ฆ donโ€™t use Auto Focus.

Switch your lens to Manual Focus (MF) and focus on a distant scene element using Live View.

Or use Auto Focus to first focus on something in the distance, then switch to Manual and donโ€™t touch focus after that. If you leave your lens on Auto Focus the shutter might not fire if the camera decides it canโ€™t focus on the blank sky.


TIP6-Lightoom Wide-Angle
A comparison of a Raw image as it came from the camera (left) and after developing in Lightroom (right).

TIP #6: Shoot Raw

For demanding subjects like a solar eclipse always shoot your images in the Raw file format. Look in your cameraโ€™s menus under Image Quality.

Shoot JPGs, too, if you like, but only Raw files record the widest range of colors and brightness levels the camera sensor is capable of detecting.

Later in processing you can extract amazing details from Raw files, both in the dark shadows of the foreground, and in the bright highlights of the distant twilight glows and corona around the Sun. Software to do so came with your camera. Put it to use.


TIP7-200mm Lens on Tripod
A 200mm telephoto and 1.4x Extender, with the camera on a sturdy and finely adjustable tripod head.

TIP #7: OK, Use a Telephoto Lens! But โ€ฆ

If you really want to shoot close-ups, great! But donโ€™t go crazy with focal length. Yes, using a mere 135mm or 200mm lens will yield a rather small image of the eclipsed Sun. But you donโ€™t need a monster 600mm lens or a telescope, which typically have focal lengths starting at 600mm. With long focal lengths come headaches like:

โ€ขย Keeping the Sun centered. The Earth is turning! During the eclipse that motion will carry the Sun (and Moon) its own diameter across your frame from east to west during the roughly two minutes of totality. While a motorized tracking mount can compensate for this motion, they take more work to set up properly, and must be powered. And, if you are flying to the eclipse, they will be much more challenging to pack. Iโ€™m trying to keep things simple!

โ€ขย Blurring from vibration. This can be an issue with any lens, but the longer your lens, the more your chances of getting fuzzy images because of camera shake, especially if you are touching the camera to alter settings.

An ideal focal length is 300mm to 500mm. But โ€ฆ

When using any telephoto lens, always use a sturdy tripod with a head that is easy to adjust for precise aiming, and that can aim up high without any mechanical issues. The Sun will be halfway, or more, up the sky, not a position some tripod heads can reach.


Total Solar Eclipse (2012 from Australia)
A re-processed version of a still frame of the total solar eclipse of November 14, 2012 taken from our site at Lakeland Downs, Queensland, Australia. This is a still frame shot during the shooting of an HD video of the eclipse, using the cropped-frame Canon 60Da and Astro-Physics Traveler 4-inch apo refractor telescope at f/5.8 (580mm focal length). The image is 1/60th second at ISO 100. This is a full-sized still not a frame grab taken from the movie.

TIP8-Eclipse Movie Clip 2012
A sequence from a movie showing the camera adjusting the exposure automatically when going from a filtered view (left) to an unfiltered view of the diamond ring (right).

TIP #8: Use Auto Exposure, or โ€ฆ Shoot a Movie

During totality with your telephoto, you could manually step through a rehearsed set of exposures, from very short shutter speeds (as short as 1/4000 second) for the diamond rings at either end of totality, to as long as one or two seconds at mid-totality for the greatest extent of the coronaโ€™s outermost streamers.

But that takes a lot of time and attention away from looking. Yes, there are software programs for automating a camera, or techniques for auto bracketing. But if this is your first eclipse an easier option is to simply use Auto Exposure/Aperture Priority and let the camera set the shutter speed. Again, you could use an intervalometer to fire the shutter so you can just watch.

Donโ€™t use high ISO speeds. A low ISO of 100 to 400 is all you need and will produce less noise. The eclipsed Sun is still bright. You donโ€™t need ISO 800 to 3200.

Even on Auto Exposure, youโ€™ll get good shots, just not of the whole range of phenomena an eclipsed Sun displays.

Or, once again and better yet โ€“ย put your camera into video mode and shoot an HD or 4K movie. Auto Exposure will work just fine, allowing you to start the camera then forget it.

Place the Sun a solar diameter or two to the left of the frame and let the skyโ€™s motion drift it across the frame for added effect. Start the sequence running a minute or two before totality with your solar filter on. Then just let the camera run โ€ฆ except โ€ฆ


TIP9-66mm on Stellarvue
A small refractor telescope with a solar filter over the front aperture. That filter has to be removed for totality.

TIP #9: Remember to Remove the Filter!

You will need a safe solar filter over your lens or telescope to shoot the partial phases of the eclipse, and to frame and focus the Sun. This cannot be a photo neutral density or polarizing filter. It must be a filter designed for observing and shooting the Sun, made of metal-coated glass or Mylar plastic. Anything else is not safe and likely far too bright.

But you do NOT need the filter for totality.

Remove it โ€ฆ when?

The answer: a minute or so before totality if you want to capture the first diamond ring just before totality officially starts. Set a timer to remind you, as visually it is very difficult to judge the right moment with your unaided eye. The eclipse will start sooner than you expect.

If you have your camera on Auto Exposure, it will compensate just fine for the change in brightness, from the filtered to the unfiltered view.

But donโ€™t leave your unfiltered camera aimed at the Sun. Replace the filter no more than a minute or so after totality and the second diamond ring ends.


Partial Solar Eclipse and Sunspot #2
The partial eclipse of the Sun, October 23, 2014, shot through a mylar filter, on the front of the 66mm f/7 apo refractor shown above (450mm focal length), using a cropped-frame Canon 60Da camera for 1/8000 second exposure at ISO 100. Focus on the sharp tips of the crescent Sun or a sunspot if one is present.

TIP #10: Focus!

Everyone worries about getting the โ€œbest exposure.โ€ Donโ€™t! Youโ€™ll get great looking telephoto eclipse close-ups with any of a wide range of exposures.

What ruins most eclipse shots, other than filter forgetfulness, is fuzzy images, from either shaky tripods or poor focus.

Focus manually using Live View on the filtered partially eclipsed Sun. Zoom up on the edge of the Sun or sharp tip of the crescent. Re-focus a few minutes before totality, as the changing temperature can shift the focus of long lenses and telescopes.

But you neednโ€™t worry about re-focusing after you remove the filter. The focus will not change with the filter off.


Me at 2006 Eclipse
Me in Libya in 2006 with my eclipse setup: a small telescope on an alt-azimuth mount.

TIP #1 AGAIN: Keep It Simple!

Iโ€™ll remind you to keep things simple for a reason other than giving you time to enjoy the view, and thatโ€™s mobility.

You might have to move at the last minute to escape clouds. Complex photo gear can be just too much to take down and set up, often with minutes to spare, as many an eclipse chaser can attest is often necessary. Keep your gear light, easy to use, and mobile. Committing to an overly ambitious and inflexible photo plan and rig could be your undoing.

To help ensure success, check out my next blog entry,ย Top 10 Tips for Practicing for the Eclipse.

By following both my โ€œTen Tipsโ€ advice blogs you should be able to get great eclipse images to wow your friends and fans, all without missing the experience of actually seeing โ€ฆ and feeling โ€ฆ the eclipse.

However … may I recommend …


How to Photograph the Solar Eclipse
My 295-page ebook on photographing the August 21 total eclipse of the Sun is now available. See http://www.amazingsky.com/eclipsebook.html ย It covers all techniques, for both stills, time-lapses, and video, from basic to advanced, plus a chapter on image processing. And a chapter on What Can Go Wrong?! The web page has all the details on content, and links to order the book from Apple iBooks Store (for the best image quality and navigation) or as a PDF for all other devices and platforms. Thanks! Clear skies on eclipse day, August 21, 2017.

For much more detailed advice on shooting options and techniques, and for step-by-step tutorials on processing eclipse images, see my 295-page eBook on the subject, available as an iBook for Apple devices and as a PDF for all computers and tablets.

Check it out at my website page.ย 

Thanks and clear skies on August 21!

โ€” Alan, June 23, 2017 / ยฉ 2017 Alan Dyer / amazingsky.com

 

How to Shoot the Solar Eclipse


Total Eclipse of the Sun Composite (2006 Libya)

The most spectacular sight the universeย has to offer is coming to a sky near you this summer.ย 

On August 21 the Moon will eclipse the Sun, totally!, along a path that crosses the continental USA from coast to coast. All the details of where to go are at the excellent website GreatAmericanEclipse.com.ย 

If this will be your first total solar eclipse, you might want to just watch it. But many will want to photograph or video it. It can be easy to do, or it can be very complex, for those who are afterย ambitious composites and time-lapses.

To tell you how to shoot the eclipse, with all types of cameras, from cell phonesย to DSLRs, with all types of techniques, from simple to advanced, I’ve prepared a comprehensive ebook, How to Photograph the Solar Eclipse.

eclipseebookcover

It is 295 pages of sage advice, gathered over 38 years ofย shooting 15 total solar eclipses around the world.

The book is filled with illustrations designed specifically for the 2017 eclipse โ€“ where the Sun will be, how to frame the scene, what will be in the sky, how the shadow will move, where the diamond rings will be, what lenses to use, etc.


Here are a few sample pages:

eclipseebook-1

I cover shooting with everything from wide-angle cameras for the entire scene, to close-ups with long telephotos and telescopes, both on tripods and on tracking mounts.


eclipseebook-5

I cover all the details on exposures and camera settings, and on focusing and ensuring the sharpest images. Most bad eclipse pix are ruined not by poor exposure but poor focus and blurry images โ€“ the Sun is moving!


eclipseebook-6

A big chapter covers processing of eclipse images, again, from simple images to complex stacks and composites.


Total Solar Eclipse C3 Diamond Ring and Totality (2012 Australia

For example, I show how to produce a shot like this, from 2012, combining a short diamond ring image with a long-exposure image of the corona.


chapter-10

A final chapter covers “what can go wrong!” and how to avoid the common mistakes.


For details on the ebook content, see my webpage for the book atย http://www.amazingsky.com/eclipsebook.htmlย 

The ebook is available on the Apple iBooks Store for Mac and iOS devices. This version has the best interactivity (zoomable images), higher quality images (less compression), and easiest content navigation.

However, for non-Apple people and devices, the ebook can also be purchased directly from myย website as a downloadable PDF, which has embedded hyperlinks to external sites.

I think you’ll find the ebook to beย the most comprehensive guide to shooting solar eclipses you’ll find. It is up to date (as of last week!) and covers all the techniques for the digital age.

Many thanks, and clear skies on August 21, wherever you may be in the shadow of the Moon!

โ€” Alan, February 28, 2017 / ยฉ 2017 Alan Dyer / amazingsky.com

 

The Beauty of Solar Eclipses


Beauty of Solar Eclipses Title

This is a video 37 years in the making, compiling images and videos I’ve shot of total solar eclipses since my first in 1979.

Though I’ve “sat out” on the last couple of total eclipses of the Sun in 2015 and 2016, I’m looking forward to once again standing in the shadow of the Moon in 2017 โ€“ on August 21.

If you have not yet seen a total eclipse of the Sun, and you live in North America, next year is your chance to. It is the most spectacular and awe-inspiring event you can witness in nature.

I hope myย video montage relays some of the excitement of being there, as the Moon eclipses the Sun.

As always, click HD and enlarge to full screen.

My montage features images and movies shot in:

โ€ขย Manitoba (1979)

โ€ขย Chile (1994)

โ€ขย Curaรงao (1998)

โ€ขย Turkey (1999)

โ€ข Zimbabwe (2001)

โ€ข Australia (2002)

โ€ขย Over Antarctica (2003)

โ€ขย South Pacific near Pitcairn Island (2005)

โ€ขย Libya (2006)

โ€ขย Over Arctic Canada (2008)

โ€ข South Pacific near the Cook Islands (2009)

โ€ขย Australia (2012)

โ€ขย Mid-Atlantic Ocean (2013)

Out of the 15 total solar eclipses I have been to, only the 1991 and 2010 eclipses that I did go to are not represented in the video, due to cloud. Though we did see much of the 1991 eclipse from Baja, clouds intervened part way through, thwarting my photo efforts.

And I only just missed the 2010 eclipse from Hikueru Atoll in the South Pacific as clouds came in moments before totality. Of course, it was clear following totality.

Cameras varied a lot over those years, from Kodachrome film with my old Nikon F, to digital SLRs; from 640×480 video with a Sony point-and-shoot camera, to HD with a DSLR.

I shot images through telescopes to capture the corona and prominences, and with wide-angle lenses to capture the landscape and lunar shadow. I rarely shot two eclipses the same way or with the same gear.

I hope you enjoy the video and will be inspired to see the August 21, 2017 eclipse. For more information about that eclipse, visit:

GreatAmericanEclipse.com

EclipseWise.com

eclipse2017.org

In addition, meteorologist and eclipse chaser Jay Anderson has the first and last words on eclipse weather prospects at:

eclipseophile.com

Clear skies in 2017!

โ€” Alan, May 25, 2016 / ยฉ 2016 Alan Dyer / www.amazingsky.com

 

 

Transit of Mercury


Transit of Mercury near Sunrise

On May 9, a last-minute chase into clear skies netted me a view of the rare transit of Mercury across the Sun.

Theย forecast calledย forย typical transit weather โ€“ clear the day before, and clear the day after. But the day of the transit of Mercury? Hopeless at home in Alberta, unless I chanced the prospects of some clearing forecast for central Alberta.

As the satellite image below, for 8:30 a.m. MDT on May 9, shows, that clearing did materialize. But I headed west, as far west as I needed to go to be assured of clear skies โ€“ to central BC. Kamloops in fact.

IMG_8031

I stayed at the Alpine Motel, got a great room as the end, and set up in the parking lot away from traffic. Not the most photogenic of observingย sites, but I was happy! I had my clear skies!

IMG_8037

I set up two telescopes, above: a 130mm refractorย to shoot through, and an 80mm refractorย to look through. Both with dense solar filters!

Bothย worked great. However, low cloud prevented me seeing the Sun as soon as it cleared the eastern hills. So this was my first good look, below, at the transit as the Sun rose above the clouds.

Transit of Mercury near Sunrise
The May 9, 2016 transit of Mercury taken about half an hour after sunrise, as the Sun emerged from low horizon cloud. Taken from Kamloops, British Columbia, where the transit was well underway at sunrise. Mercury appears as the circular dot at lower left, with a sunpot group above centre. I shot this with the 130mm Astro-Physics refractor at f/6 prime focus with the Canon 60Da camera at ISO 100. Shot through a Kendrick white light solar filter. The low atltitude added much of the yellow colouration.

There it was โ€“ the fabled “little black spot on the Sun today.” Mercury is the dot at lower left, with a sunspot group at upper right. This was the first transit of Mercury since November 8, 2006. We see only about 13 Mercury transits a century, so in a lifetime of stargazing (the Sun is a star!) even the most avid amateur astronomer might see only a handful. This was only my third transit of Mercury.

Transit of Mercury in Clouds
The May 9, 2016 transit of Mercury taken about 45 minutes after sunrise, as the Sun emerged from low horizon cloud. I shot this with the 130mm Astro-Physics refractor at f/6 prime focus with the Canon 60Da camera at ISO 100. Shot through a Kendrick white light solar filter.

This was the view, above, a little later, as the Sun entered more assuredly clear skies. From about 7 a.m. PDT on, the Sun was in the clear most of the morning, with just occasional puffy clouds intervening now and then.

I shot still images every 30 seconds, to eventually turn into a time-lapse movie (after a ton of work hand registering hundreds of frames!).

But for now, I’ll be content with this composite of 40 frames, below, taken at 7-minute intervals. It shows the progress of Mercury across the Sun over the last 4.5 hours or so of the event, until egress at 11:38 a.m. PDT.

This motion is due to Mercury’s movementย around the Sun. A transit is one of the fewย times you can easily see a planet actually orbiting the Sun.

Transit of Mercury (May 9, 2016) Composite with Arrow
For all images I used the 130mm f/6 Astro-Physics refractor with a 2X Barlow for an effective focal length of 1560mm and the Canon 60Da camera (at ISO 100) to yield an image size with the Sun just filling the frame. Exposures were 1/250th second through a Kendrick white light Mylar filter. Yellow colouration of the solar disk added in processing.

In this composite, the disks of Mercury are not all perfect dots. The wobbly seeing conditions distorted the images from frame to frame. But I used the actual images taken at that moment, rather than cloneย some perfect image across the disk to simulate the path.

To wrap up, here’s Mercury Transit: The Movie! I shot several HD and zoomed-in “crop mode” movies at the beginning of the transit and again at the final egress. Commentary is from me talking live into the camera mic as I was shooting the clips. Background noise is courtesy Pacific Drive and the Trans-Canada Highway!

Enjoy, and do enlarge to HD and full-screen for the best look.

 

The next transit of Mercury is November 11, 2019. If you are hoping for a transit of Venus, good luck. The next is not until December 10, 2117!

โ€“ Alan, May 15, 2016 / ยฉ 2016 Alan Dyer / www.amazingsky.com

 

The Lunar Eclipse, to True Scale


This is a multiple-exposure composite of the total lunar eclipse of Sunday, September 27, 2015, as shot from Writing-on-Stone Provincial Park, Alberta, Canada. From this location the Moon rose in the east at lower left already in partial eclipse. As it rose it moved into Earthโ€™s shadow and became more red and the sky darkened from twilight to night, bringing out the stars. Then, as the Moon continued to rise higher it emerged from the shadow, at upper right, and returned to being a brilliant Moon again, here overexposed and now illuminating the landscape with moonlight. The disks of the Moon become overexposed here as the sky darkened because I was setting exposures to show the sky and landscape well, not just the Moon itself. Thatโ€™s because I shot the frames used to assemble this multiple-exposure still image primarily for use as a time-lapse movie where I wanted the entire scene well exposed in each frame. Indeed, for this still image composite of the eclipse from beginning to end, I selected just 40 frames taken at 5-minute intervals, out of 530 I shot in total, taken at 15- to 30-second intervals for the full time-lapse sequence. All were taken with a fixed camera, a Canon 6D, with a 35mm lens, to nicely frame the entire path of the Moon, from moonrise at left, until it left the frame at top right, as the partial eclipse was ending. The ground comes from a blend of 3 frames taken at the beginning, middle and end of the sequence, so is partly lit by twilight, moonlight and starlight. Lights at lower left are from the Parkโ€™s campground. The sky comes from a blend of 2 exposures: one from the middle of the eclipse when the sky was darkest and one from the end of the eclipse when the sky was now deep blue. The stars come from the mid-eclipse frame, a 30-second exposure. PLEASE NOTE: The size of the Moon and its path across the sky are accurate here, because all the images for this composite were taken with the same lens using a camera that did not m

Myย multiple-exposure composite showsย the complete September 27, 2015 total lunar eclipse to trueย scale, with the Moon accurately depicted in size and position in the sky.

From myย location at Writing-on-Stone Provincial Park in southern Alberta, Canada, the Moon rose in the east at lower left already in partial eclipse.

As it rose it moved into Earthโ€™s shadow and became more red, while the sky darkened from twilight to night, bringing out the stars.

Then, as the Moon continued to rise higher it emerged from Earth’sย shadow, at upper right, and returned to a brilliant Full Moon again, here overexposed and now illuminating the landscape with moonlight.


TECHNICAL

The disks of the Moon become overexposed in my compositeย as the sky darkened because I was setting exposures to show the sky and landscape well, not just the Moon itself. Thatโ€™s because I shot these frames โ€“ and many more! โ€“ primarily for use as a time-lapse movie where I wanted the entire scene well exposed in each frame.

Indeed, for this still-image composite of the eclipse from beginning to end, I used just 40 frames taken at 5-minute intervals, selected from 530 I shot, taken at 15- to 30-second intervals for the full time-lapse sequence.

All were taken with a fixed camera, a Canon 6D, with a 35mm lens, to nicely frame the entire path of the Moon, from moonrise at lower left, until it exitedย the frame at top right, as the partial eclipse was ending.

In the interest of full disclosure, the ground comes from a blend of three frames taken at the beginning, middle, and end of the sequence, and so is partly lit by twilight and moonlight, to reveal the ground detail better than in the single starlit frame from mid-eclipse.ย Lights at lower left are from the Parkโ€™s campground.

The background sky comes from a blend of two exposures: one from the middle of the eclipse when the sky was darkest, and one from the end of the eclipse when the sky was now lit deep blue. The stars come from the mid-eclipse frame, a 30-second exposure.


MY RANT FOR REALITY

So, yes, this is certainly a composite assembled in Photoshop โ€“ a contrast to the old days of film where one might attempt such an image just by exposing the same piece of film multiple times, usually with little success.

However …ย the difference between this image and most you’ve seen on the web of this and other eclipses, is that the size of the Moon and its path across the sky are accurate, because all the images for this composite were taken with the same lens using a camera that did not move during the 3-hour eclipse.

This is how big the Moon actually appeared in the sky in relation to the ground and how it moved across the sky during the eclipse, in what is essentially a straight line, not a giant curving arc as in many viral eclipse images.

And, sorry if the size of the Moon seems disappointingly small, but it is small! This is what a lunar eclipse really looks like to correct scale.

By comparison, many lunar eclipse composites you’ve seen are made of giant moons shot with a telephoto lens that the photographer then pasted into a wide-angle sky scene, often badly,ย andย pasted in locations on the frame that usually bear no resemblance to where the Moon actually was in the sky, but are just placed whereย the photographer thought would look the nicest.

You would never, ever do that for any other form of landscape photography, at least not without having your reputation tarnished. But with the Moon it seems anything is permitted, even amongst professional landscape photographers.

No, you cannot just place a Moon anywhere you like in your image, eclipse or no eclipse,ย then pass it off as a real image. Fantasy art perhaps. Fine. But not a photograph of nature.

Sorry for the rant, but I prefer accuracy over fantasy in such lunar eclipse scenes, which means NOT having monster-sized red Moons looming out of proportion and in the wrong place over a landscape. Use Photoshop to inform, not deceive.

โ€“ Alan, October 4, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.comย 

A Super Eclipse of the Moon


The Full Moon rises in partial eclipse over the sandstone formations of Writing-on-Stone Provincial Park in southern Alberta, on the evening of September 27, 2015. This was the night of a total lunar eclipse, which was in progress in its initial partial phase as the Moon rose this night. The blue band on the horizon containing the Moon is the shadow of Earth on our atmosphere, while the dark bite taken out of the lunar disk is the shadow of Earth on the Moon. The pink band above is the Belt of Venus. This is a two-image panorama stitched to extend the scene vertically to take in more sky and ground than one frame could accommodate. Both shot with the 200mm lens and 1.4x extender, on the Canon 5DMkII.

I could not have asked for a more perfectย night for a lunar eclipse. It doesn’t get any better!

On Sunday, September 27, the Moon was eclipsed for the fourth time in two years, the last in a “tetrad” of total lunar eclipses that we’ve enjoyed at six-month intervals since April 2014. This was the best one by far.

The Full Moon rising in partial eclipse on the night of September 27, 2015, night of a total eclipse that began with the partial phase in progress at moonrise from my location. The pink Belt of Venus colours the sky at top. The Moon sits in the blue shadow of the Earth, which also partly obscures the disk of the Moon. I shot this from Writing-on-Stone Provincial Park, Alberta. This is through the TMB 92mm refractor for a focal length of 550mm using the Canon 60Da at ISO 400 for 1/250 second.
This is through the TMB 92mm refractor for a focal length of 500mm using the Canon 60Da at ISO 400 for 1/250 second.

The timing was perfect for me in Alberta, with the Moon rising in partial eclipse (above), itself a fine photogenic site.

In the top image you can see the rising Moon embedded in the blue band of Earth’s shadow on our atmosphere, and also entering Earth’s shadow on its lunar disk. This was a perfect alignment, as lunar eclipses must be.

For my earthly location I drove south to near the Montana border, to a favourite location, Writing-on-Stone Provincial Park, to view the eclipse over the sandstone formations of the Milk River.

The image below shows a screen shot of myย site plan and viewing angles using The Photographer’s Ephemeris app.

IMG_2515

More importantly, weather forecasts for the area called for perfectly clear skies, a relief from the clouds forecast โ€“ and which did materialize โ€“ at home to the north, and would have been a frustration to say the least. Better to drive 3 hours!

This was the second lunar eclipse I viewed from Writing-on-Stone, having chased clear skies to here in the middle of the night for the October 8, 2014 eclipse.

Me, in a selfie, observing a total eclipse of the Moon with binoculars on September 27, 2015, from Writing-on-Stone Provincial Park, Alberta. I had three cameras set up to shoot the eclipse and a fourth to shoot the scene like this. The night was perfect for the eclipse. The Moon is in totality here, with the stars and Moon trailed slightly from the long exposure.

I shot with three cameras: one doing a time-lapse through the telescope, one doing a wide-angle time-lapse of the Moon rising, and the third for long-exposure tracked shots during totality, of the Moon and Milky Way.

The Moon in total eclipse on September 27, 2015 โ€“ the โ€œsupermoonโ€ eclipse โ€“ shining red over the Milk River and sandstone formations at Writing-on-Stone Provincial Park in southern Alberta, with the Milky Way in full view in the sky darkened by the lunar eclipse. The Sweetgrass Hills of Montana are to the south. The centre of the Milky Way is at far right. The Andromeda Galaxy is at upper left. The Moon was in Pisces below the Square of Pegasus. It was a perfectly clear night, ideal conditions for shooting the eclipse and stars. This is a stack of 5 x 2-minute tracked exposures for the sky and 5 x 4-minute untracked exposures for the ground to smooth noise. The Moon itself comes from a short 30-second exposure to avoid overexposing the lunar disk. Illumination of the ground is from starlight. All exposures with the 15mm lens at f/2.8 and Canon 5D MkII at ISO 1600. The camera was on the iOptron Sky-Tracker.
This is a stack of 5 x 2-minute tracked exposures for the sky and 5 x 4-minute untracked exposures for the ground to smooth noise. The Moon itself comes from a short 30-second exposure to avoid overexposing the lunar disk. Illumination of the ground is from starlight. All exposures with the 15mm lens at f/2.8 and Canon 5D MkII at ISO 1600. The camera was on the iOptron Sky-Tracker.

That image is above. It shows the eclipsed Moon at left, with the Milky Way at right, over the Milk River valley and with the Sweetgrass Hills in the distance.

The sky was dark only during the time of totality. As the Moon emerged from Earth’s shadow the sky and landscape lit up again, a wonderful feature of lunar eclipses.

While in the above shot I didย layer in a short exposure of the eclipsed Moon into the long exposure of the sky, it is still to accurate scale, unlike many dubious eclipse images I see where giant moons have been pasted into photos, sometimes at least in the right place, but often not.

Lunar eclipses bring out the worst in Photoshop techniques.

The total eclipse of the Moon of September 27, 2015, in closeup through a telescope, at mid-totality with the Moon at its darkest and deepest into the umbral shadow, in a long exposure to bring out the stars surrounding the dark red moon. This was also the Harvest Moon for 2015 and was the perigee Full Moon, the closest Full Moon of 2015. This is a single exposure taken through the TMB 92mm refractor at f/5.5 for 500 mm focal length using the Canon 60Da at ISO 400 for 8 seconds, the longest I shot during totality. The telescope was on the SkyWatcher HEQ5 mount tracking at the lunar rate.
This is a single exposure taken through the TMB 92mm refractor at f/5.5 for 500 mm focal length using the Canon 60Da at ISO 400 for 8 seconds, the longest I shot during totality. The telescope was on the SkyWatcher HEQ5 mount tracking at the lunar rate.

Above is a single closeup image taken through the telescope at mid-totality. I exposed for 8 seconds to bring out the colours of the shadow and the background stars, as faint as they were with the Moon in star-poor Pisces.

I shot a couple of thousand frames and processing of those into time-lapses will take a while longer, in particular registering and aligning the 700 I shot at 15-second intervals through the telescope. They show the Moon entering, passing through, then exiting the umbra, while it moves against the background stars.

Me celebrating a successful total eclipse of the Moon during the final partial phases, observed and shot from Writing-on-Stone Provincial Park, Alberta, on September 27, 2015. I shot with 3 cameras, with a 4th to record the scene. Two of the cameras at centre are still shooting time-lapses of final partial phases. The camera at right was used to take long tracked exposures of the Milky Way during totality. The telescope at left was used just to look!

So I was a happy eclipse chaser! I managed to see all four of the lunar eclipses in the current tetrad, two from Alberta, one from Australia, and one from Monument Valley.

With the latestย success,ย I’ve had my fill of lunar eclipses for a while. Good thing, as the next one is not until January 31, 2018, before dawn in the dead of winter.

With the mild night, great setting, and crystal clear skies, this “supermoon” eclipse could not have been better. It was a super eclipse.

โ€“ Alan, September 29, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

Red Moon over the Red Rocks of Monument Valley


Lunar Eclipse Sequence from Monument Valley

What a great site to watch the Moon turn red in a total eclipse.

I can’t recall a more scenic total eclipse of the Moon. I planned this site as best I could from Google maps and other apps, andย the location proved ideal.

As the Moon went into the Earth’s shadow it set into the notchย between the two peaks of this mesa at Monument Valley, Utah. It was a stunning celestial sight seen from one of the most dramatic scenic sites on the planet.

This was the total lunar eclipse on the morning of April 4, 2015, an eclipse that was barely total with just 4 minutes of totality with the Moon within Earth’s umbral shadow. The top of the Moon, grazing the edge of our planet’s shadow, always appeared bright white, as expected.

The lead image is a composite of many exposures: short ones for the partial phases that flank a longer exposure for the single image of totality and and even longer exposure for the sky and landscape, all taken over the course of 2.5 hours with a fixed camera โ€“ don’t bump the tripod!

Lunar Eclipse over Monument Valley Mesa

I shot this image with the second camera riding on a tracking platform. It is a bend of three exposures: two long ones for the sky and ground and a short exposure to retain the Moon and avoid it turning into a white overexposed blob.

The long skyย exposure was taken with the tracker on, to keep the stars as pinpoints, while for theย ground exposure I turned the tracker motor off to keep the ground sharp. I layered and maskedย theseย with Photoshop.

Lunar Eclipse at Dawn from Monument Valley

The last image is a single image only, just one exposure, taken a few minutes after the end of totality as the sky was quickly brightening with the blue of dawn. It captures the naked-eye scene.

I shot all these from my B&B for the weekend, the Tear Drop Arch B&B, named for the arch on the mesa at left in these images. I chose the spot to provide a scenic foreground to the western-sky eclipse without having to drive miles in the pre-dawn hours. I was moments away from bed as the sun rose and the eclipsed Moon set.

Next lunar eclipse: September 27, 2015, in the evening for North America.

โ€“ Alan, April 4, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

Heads Up! โ€“ The Easter Eclipse of the Moon


Total Eclipse of the Hunter's Moon

On the morning of April 4 (for North America) the Moon turns bright red in the third of four lunar eclipses in a row.

We’ve been enjoying a spate of total lunar eclipses over the last year. We had one a year ago on April 15 and again on October 8, 2014. This weekend, we can enjoy the third lunar eclipse in a year.

This Saturday, the Moon undergoes a total eclipse lastingย justย 4 minutes, making this the shortest total lunar eclipse since the year 1529. Typically, lunar eclipsesย last 30 to 60 minutes for the total phase, when the Full Moon is completely within Earth’s shadow.

But this eclipse is barely total, with the Moon grazing across the northern edge of the umbral shadow, as this diagram courtesy of SkyNews magazine illustrates. (Click on the image to enlarge it.)

Lunar Eclipse Diagram

โ€ข The partial eclipse begins at 4:15 a.m. Mountain Daylight Time on the morning of Saturday, April 4 for North America.

โ€ข Totality (when the Moon is reddest and darkest) is from 5:58 to 6:02 a.m. MDT.

โ€ข The partial eclipse ends at 7:44 a.m. MDT.

Add one hour for Central time, and subtract one hour for Pacific time.

LE2015Apr04T

This lunar eclipse is best from western North America where totality can be seen. From eastern North America, in the grey zones here, the Moon sets while in the initial partial phase and before totality begins. Those in Australia and New Zealand can also see the eclipse, but late on the night of April 4 into April 5. Europe and Africa miss out.

Total Lunar Eclipse (Dec 10, 2011)

Even from western North America, the Moon will be eclipsed while it is setting into the west, and the sky is brightening with dawn twilight, presenting a view such as in the above photo, which I took in December 2011.

This eclipse occurs over the Easter and Passover weekend โ€“ and actually on Easter for some time zones. The last time we had a total lunar eclipse on Easter Sunday was March 23, 1913. The next to occur on Easter won’t be until April 14, 2340.

If you miss this eclipse, you have one more chance this year. On Sunday, September 27, conveniently timed for the evening in North America, we have the last in a “tetrad” series of four total lunar eclipses. After that, we wait until January 31, 2018.

For more details, see the April/May issue of SkyNews magazine.

Clear skies!

โ€“ Alan, March 30, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

A Stellar Occultation by the Moon


Impending Occultation of Beta Capricorni

The double star Beta Capricorni disappears in a wink behind the Earthlit edge of the Moon.

The evening of Wednesday, November 26 provided a bonus celestial event, the eclipse of a double star by the Moon.

The star is Beta Capricorni, also known as Dabih. I had a ringside seat Wednesday night as the waxing Moon hid the star in whatโ€™s called an occultation.

Dabih is a wide double star, composed of a bright magnitude 3 main star, Beta1 Capricorni, and a fainter magnitude 6 companion, Beta 2 Capricorni. You can see both in the still image view at top. Their wide separation makes them easy to split in binoculars.

In reality, they are separated in space by an enormous gap of 21,000 times the distance from the Earth to the Sun. By comparison, distant Pluto lies an average of just 40 times the Earth-Sun distance.

With such a wide separation Beta1 and Beta2 take an estimated 700,000 years to orbit each other.

Beta1 is a giant orange star 600 times more luminous than our own Sun and 35 times bigger. Beta2 is a blue subgiant 40 times more luminous that the Sun.

Adding to the complexity of the system, Beta2 is also a close double, while Beta1 is a tight triple star, making for a quintuple star system.

The movie below records each occultation, first of the fainter blue Beta2 star, then of the brighter Beta1 star.

Each occultation happens in an instant to the eye. However, stepping through the video shows that the brighter star took 4 video frames to dim, about 1/10th of a second. Whether this is real, due to the starโ€™s giant size, or just an effect of the twinkling of the atmosphere, is questionable.

Technical notes:

The still photo is a โ€œhigh dynamic rangeโ€ stack of 12 exposures from 4 seconds to 1/500th second, taken with the Canon 60Da camera at ISO 400, to capture the huge range in brightness, from the dark side of the Moon and stars, to the bright sunlit crescent. I used Photoshopโ€™s HDR Pro module to stack the images and Adobe Camera Raw in 32-bit mode to do the tone-mapping, the process that compresses the brightness range into a final image.

I shot the video with the 60Da camera as well, setting it to ISO 6400, and using its video mode to record real-time video clips, both in HD 1920×1080 for the wide-field โ€œestablishing shots,โ€ and in its unique 640×480 Movie Crop mode for the close-ups of the actual occultations. Those two clips appear as inset movies. I edited and processed the clips, plus added the titles, using Photoshop and its video capabilities.

All were shot from New Mexico with the TMB 92mm refractor at f/5.5.

โ€“ Alan, November 28, 2014 / ยฉ 2014 Alan Dyer

Red Moon over Writing-on-Stone


Red Moon over Writing-on-Stone

The red eclipsed Moon shines over the Milk River, with Orion over the Sweetgrass Hills.

This was the scene at 4:45 this morning, October 8, from my observing site for the lunar eclipse, Writing-on-Stone Provincial Park in southern Alberta.

The eclipsed red Moon shines at far right over the Milk River and sandstone formations of Writing-on-Stone Park, home to ancient petroglyphs, and a sacred site to First Nations people.

At left are the Sweetgrass Hills across the border in Montana. Above shine the stars of Orion, withย his Dog Star Sirius below. Aboveย is Taurus, with Aldebaran and the Pleiades cluster.

The night was fairly clear for the hourย of totality, though with high haze fuzzing the stars and Moon. But considering the cloud I had driven 3 hours to escape I was happy.

Self-Portrait at Oct 8, 2014 Total Lunar Eclipse

Here I am in a 5:30 a.m. selfie by starlight and moonlight, with the clouds I had escaped now rolling in to cover the Moon as it began to emerge from Earth’s shadow.

No matter. I had capturedย what I had come for: the nightscape above (with a 14mm lens), and close-ups shot through this telescope gear, one of which I featured in myย previous post.

โ€“ Alan, October 8, 2014 / ยฉ 2014 Alan Dyer

 

Eclipse of the Hunter’s Moon


Total Eclipse of the Hunter's Moon

The Hunter’s Moon of 2014 turned deep red during a total lunar eclipse.

It wouldn’t be an eclipse without a chase!

To see and shoot this total eclipse of the Hunter’s Moon I had to chase clear skies, seeking out the only clear area for hundreds of miles around, requiring a 3-hour drive to the south of me in Alberta, to near the Canada-US border, at Writing-on-Stone Provincial Park.

It was worth the midnight trek, though I arrived on site and got set up with just 10 minutes to go before the start of totality.

But I was very pleased to see the skyย remain mostly clear for all of totality, with only some light haze adding the glow around the eclipsed Moon. Remarkably, the clouds closed in and hid the Moon just after totality ended.

This is a single 15-second exposure at ISO 400 with a Canon 60Da, shooting through an 80mm apo refractor at f/6 and on an equatorial mount tracking the sky at the lunar rate. I shot this shortly after mid-totality. It shows how the Moon’s northern limb, closest to the edge of the umbral shadow, remained bright throughout totality.

It shows lots of stars, with the brightest being greenish Uranus at the 8 o’clock position left of the Moon, itself shining in opposition and at a remarkably close conjunction with the Moon at eclipse time.

More images are to come! But this is the result of fast processing after a dawnย drive back home and an all-nighter chasing and shooting an eclipse.

โ€“ Alan, October 8, 2014 / ยฉ 2014 Alan Dyer

 

The Rising of a Pre-Eclipse Moon


Rising Pre-Eclipse Moon #4 (Oct 6, 2014)

‘Twas the night before the night before … an eclipse of the Moon.

This was the beautiful moonrise tonight, on Monday, October 6, two days โ€“ by calendar date โ€“ before the total lunar eclipse on October 8.

However, as theย eclipse occurs at pre-dawn on October 8, it’s really just a day and half to go before the Moon turns red as it passes through Earth’s shadow.

I shot these as the gibbous Moon, waxing toward Full, rose over the harvested field to the east of home. The setting Sun nicely lit the clouds which partly hide the Moon.

Rising Pre-Eclipse Moon #1 (Oct 6, 2014)

Earlier in the evening, I grabbed this shot as the Moon appeared and two white-tailed deer ran through the yard and out into the field below the rising Moon. Moon deer!

TLE2014Oct08-MDT

This is the sequence that will happen early on October 8, in a diagram courtesy Fred Espenak at EclipseWise.com. The times are for Mountain Daylight, my local time zone. The eclipse will be total from 4:25 to 5:24 a.m. MDT (6:25 to 7:24 a.m. EDT) when the Moon will be immersed in the umbral shadow and will appear deep red.

Use binoculars for the best view of the colours. An eclipsed Moon looks wonderful, like a glowing red globe lit from within, but it’s really lit by the red sunlight from all the sunsets and sunrises going on around the world at once.

The next total lunar eclipses are April 4, 2015 (again pre-dawn) and September 27, 2015 (at convenient early evening hours), both visible from North America.

Clear skies and happy eclipsing!

โ€“ Alan, October 6, 2014 / ยฉ 2014 Alan Dyer

 

Lunar Eclipse from Oz


Total Lunar Eclipse (April 15, 2014) #1

The eclipsed red Moon rises over the waters of Lake Macquarie on the east coast of Australia.

I was still in Australia for this eclipse and managed to see and shoot it, but only just!

Total Lunar Eclipse (April 15, 2014) #2

I was on the Central Coast of New South Wales, where clouds and rain have been prevalent all week, in part caused by departing remnants of Cyclone Ita. The prospects for seeing this eclipse from the coast looked bleak indeed.

Total Lunar Eclipse (April 15, 2014) #3

From eastern Australia, the Moon rose at sunset in mid-eclipse on our evening of April 15. I was with family in Australia and so we made an evening picnic of the event, joining a few others in the lakeside park who were there to also see the eclipsed Moon over Lake Macquarie, Australia’s largest salt water lake. I wanted to catch this eclipse over water, to see the effect above โ€” the “glitter path” from the Moon but one turned red by the eclipsed Moon.

Total Lunar Eclipse (April 15, 2014) #4

As we were about to give up, I caught sight of the Moonย as it rose into breaks in the cloud, revealing the red Moon near Spica and Mars. We saw the last of totality and the early stages of the final partial eclipse. But later in the evening clouds rolled in again and the rain poured down. Indeed, I took myย last images of the eclipse with light rain falling and the cameras getting wet. This isn’t the first eclipse I’ve watched in the rain!

I shot with fixed cameras with 50mm and 135mm lenses. The top image is a 135mm telephoto shot, the other three are with the 50mm lens.

โ€” Alan, April 16, 2014 / ยฉ 2014 Alan Dyer

 

 

 

The Eclipse in Time-Lapse


Total Solar Eclipse - 2nd Contact Diamond Ring (Nov 3 2013)

Here’s the Atlantic Crossing eclipse in time-lapse from the deck of the spv Star Flyer.

The above image is a still frame from the time-lapse movie I took on November 3, 2013 of the 44-second-long total eclipse of the Sun from the mid-Atlantic Ocean. It shows the first diamond ring (second contact) as totality began.

Below is the full time-lapse.

The movie is from 385 frames shot from before totality until well after. It shows just how lucky were were at seeing this eclipse, with the Sun coming out into a deep blue sky moments before totality and going back into thin cloud just as the total eclipse ends.

You’ll also appreciate the rolling of the ship, sped up here in the time-lapse, with frames taken one second apart.

Below is a still frame of the final diamond ring (third contact).ย Notice the difference in the brightness of the distant clouds in this image versus the one above. In the main image at top the clouds below the Sun had not yet entered the Moon’s umbral shadow.

But in the image below, the clouds are immersed in the lunar shadow and are about to be lit up again as the shadow races away from us in the direction toward the Sun.

Total Solar Eclipse - 3rd Contact Diamond Ring (Nov 3 2013)

In the time-lapse you can see the shadow enter the scene at top, then depart at the bottom of the frame below the Sun. As it shoots away from us, the shadow darkens the horizon far in the distance further down the path, bringing totality to those on the path to the east.

โ€“ Alan, November 11, 2013 / ยฉ 2013 Alan Dyer

Red Sky at Night … Sailor’s Delight


Sunset over the Atlantic (Nov 8, 2013) #2

We saw many wonderful sunsets on our sail across the Atlantic, but this was one of the finest.

This was the sky two nights ago, on the evening of November 8, as the Sun, now below the horizon, lit up the clouds to the west. You can see a few people out in the netting of the bow sprit taking in the view.

Sunset and Sails (Nov 8, 2013)

Here was the view looking up into the square rigged sails on the foremast. “The sky is on fire” was the comment I heard from folks on deck.

Red Rainbow over the Atlantic (Nov 8, 2013)

Contributing to our theme of a rainbow eclipse trip, a red rainbow appeared to the east, lit by the light of the setting Sun. What a wonderful sky this was!

Indeed, one of the other astronomers on board tallied up the number of naked eye sky sights he had seen on the voyage. It was an impressive list, equalling what had previously taken him over 30 years of sky gazing to accumulate.

I’m writing this post from back on land, now in Barbados at a latitude of 13ยฐ north. However, now that I have high-speed connectivity I can get caught up with posts from the sea voyage, with a couple of more to come from at sea.

โ€“ Alan, November 10, 2013 / ยฉ 2013 Alan Dyer

The Post-Eclipse Moon over the Atlantic


Moon & Venus Post Eclipse (Nov 6, 2013) #1

Following any total solar eclipse it’s traditional to look for the crescent Moon as it returns to the evening sky.

This was the view on November 6, three days after Sunday’s total solar eclipse when the waxing Moon was near Venus, with both high in our tropical sky as we finish our sail across the Atlantic. As I write this, we have just sighted the lights of Barbados off the port side as we round the north end of the island. It’s our first sighting of any other sign of civilization in two weeks, since we left the Canary Islands.

Moon & Venus Post Eclipse (Nov 7, 2013) #2

This view is from the next night, November 7, with the Moon higher and well above Venus, set amid the square rigged sails of the Star Flyer clipper ship.

It’s been a fabulous voyage across the Atlantic, with largely calm seas and beautiful weather on most days.

Tomorrow I start a week stay in Barbados.

– Alan, November 9, 2013 / ยฉ 2013 Alan Dyer

 

 

 

 

Eclipse on the Atlantic – Success!


Total Eclipse of the Sun from the Atlantic (Nov 3, 2013)With minutes to go until totality it was unclear – literally! – if we were going to see the eclipse.

We have a happy ship of 150 eclipse chasers. On Sunday, November 3 a morning of gloomy faces gave way to smiles and exclamations of joy as the captain of spv Star Flyer piloted our ship into a clear hole in the clouds. We enjoyed a stunningly clear view of totality โ€“ all 49 seconds of it โ€“ with the eclipsed Sun set in a deep blue sky.

My image above captures some aspects of the scene as it appeared off the port bow of the ship.

But it fails to show just how colourful this eclipse was. Because it was a short eclipse, with the Moonโ€™s disk barely large enough to cover the Sun, the hallmark of this eclipse was the brilliant pink chromosphere that was visible all around the Sun during the entire eclipse, with bits of prominences sticking out.

The pink ring was set amid the silvery-white and symmetrical corona, which in turn was set in a dark blue sky, above the yellow twilit horizon. The naked eye view and the view through binoculars was stunning. It was the most colourful eclipse I can recall, and this was total eclipse #15 for me.

This was also the first eclipse where we had the ability to adjust its time to suit our schedule. We should have been in the -3h GMT time zone at our longitude in the mid-Atlantic. But in a pre-eclipse planning meeting we decided to keep the shipโ€™s clocks on -1 GMT until after the eclipse. This put totality at 10:30 a.m. our time, making it convenient for everyone to have breakfast before the eclipse and not interfere with lunch! Thatโ€™s the luxury of being on a small ship dedicated to seeing the eclipse. The captain and crew have been fantastic.

The second contact diamond ring was prolonged, with the last bits of the Sun breaking up into beads of light as the Sun disappeared behind valleys and craters on the Moon. The third contact diamond ring appeared as a sharp, tiny but brilliant point of light exploding off the top edge of the Moon. It happened all too soon.

In the days leading up to the eclipse we worked with Captain Yuriy Slastenin to choose a new intercept point 160 nautical miles east of our original site, one that would give us another 6 seconds of totality but still allow us to maintain our schedule of reaching Barbados on Sunday, November 10.

Our new site was 17ยฐ 0โ€™ 0โ€ North and 37ยฐ 11โ€™ 56โ€ West, smack on the centreline. The captain got us to that precise spot about an hour before sunrise, exactly when planned.

But after a week of beautifully clear skies on the sail down from the Canary Islands, the sky on eclipse morning was filled with cloud and unsettled weather. We had rain showers and rainbows Sunday morning, but with tantalizing clear holes coming and going all morning and dappling the ocean with spots of sunlight in the distance.

Partial Eclipse Through Filter (Nov 3, 2013)

I shot this view during one of the clear breaks leading to totality when the Sun and spirits brightened, only to be dashed again as clouds rolled in. The weather took us on an emotional roller coaster all morning.

In the minutes leading up to totality the captain was at the helm and propelled us under full engine power into a clear hole that opened up just before totality. We ended up 1.7 nautical miles east of our choice position and slightly south of the centre line, but with the same 49 seconds of totality.

Eclipse Site Map

The image above shows our shipโ€™s track during the eclipse, from the intended site, first drifting around the intercept point, then heading southeast toward clear skies. The track then heads straight west, as we set sail again toward Barbados soon after totality while the champagne was being served.

Our success speaks to the maneuvering advantage of a ship in tropical climates. Iโ€™ve now seen three total eclipses from ships at sea at tropical latitudes, and weโ€™ve always had to move at the last minute to get into clear holes.

Of course, the worst weather weโ€™ve encountered so far on the voyage was on eclipse day and the day after, yesterday. As I write this, on Tuesday, November 5, the day is hot and sunny, and the ocean as calm as weโ€™ve seen it. (Iโ€™ve not been able to post anything until now as our shipโ€™s connection to the internet via the Inmarsat satellite has been off-line for the last few days.)

As totality ended the Sun went into thin cloud again. From then on that morning we saw the Sun only briefly during the final partial phases.

But no one cared. We saw what we had sailed across the Atlantic to see. It is a happy ship of shadow chasers.

The trip was organized by Betchart Expeditions who chartered the Star Flyer, a 4-masted sailing ship, one of three sailing ships in the Star Clipper line. Iโ€™m serving as one of the guest speakers on a program packed with speakers and great talks. After all, we are at sea for two full weeks, crossing the Atlantic from the Canaries to Barbados, with nothing but a limitless horizon in view for all that time. And the eclipse!

โ€“ Alan, November 5, 2013 / ยฉ 2013 Alan Dyer

Sailing to the Sun


Cloud Shadows Near Sunset over the Atlantic

As we continue our sail across the Atlantic, our heading takes us southwest, directly toward the setting Sun.

This was the scene last night, a day out from the Canary Islands, as we set our course toward the eclipse intercept point. Our heading of roughly 245ยฐ takes us into the setting Sun each evening.

Weโ€™re now often under sail alone, with engines off. As Columbus and all trans-Atlantic explorers did, weโ€™re letting the northeast trade winds blow us across the ocean. Under their steady force, weโ€™re making a good 8 to 9 knots, sufficient to get us to the eclipse path on the appointed day and time on November 3.

Moon Amid the Rigging

On that day the Moon, seen here as a waning crescent in yesterday morningโ€™s sky amid our square-rigged sails on the 4-masted Star Flyer, will cover the Sun for 44 seconds.

Tonight, October 28, was a magical night. Many of the eclipse tour folks gathered on the aft deck with all the lights off to lie back on deck chairs and gaze up at the Milky Way, with us now hundreds of kilometres away from any other lights.

We had the Milky Way above, while below, the ocean in our wake was exploding with flashes of bioluminescence. The night was warm and of course windless because we’re travelling with the wind. It was an amazing experience.

โ€” Alan, October 28, 2013 / ยฉ 2013 Alan Dyer

Sailing in the Wake of Columbus


Constellation Ceiling in Columbus Museum

Columbus set out from the Canary Islands, following the stars, in his voyages across the Atlantic Ocean.

Todayย we visited the Casa de Colon, the Columbus Museum, in the capital city of Las Palmas in the Canary Islands. It was here, in what was then the Governorโ€™s house, that Columbus is believed to have stayed before embarking on many of his voyages across the Atlantic.

Above is the painted ceiling in one of the galleries, depicting the northern constellations and stars he would have followed to guide him across the Atlantic. You can recognize all the modern constellations and the Milky Way.

Columbus Ship Model

Tonight, we set sail ourselves across the Atlantic, in a two week voyage away from land. Our ship, the Star Flyer, chartered by Betchart Expeditions, has a mix of square and staysails that weโ€™ll use, as Columbus did, to catch the trade winds that will blow us south and west toward the eclipse intercept point and eventually to Barbados.

16th Century Astrolabe

This is an authentic astrolabe from 1500, one of the tools Columbus would have used to navigate the high seas. Today we have GPS.

Columbus Church

Columbus Street Sign

This is the church Columbus prayed at before embarking on his voyages. It was closed the day we visited. We hope we wonโ€™t be needing its services!

โ€“ Alan, October 26, 2013 / ยฉ 2013 Alan Dyer

 

The Subtle Shading of a Penumbral Lunar Eclipse


Penumbral Eclipse of the Moon (Oct 18, 2013)

This is about as subtle as an eclipse can be โ€“ a partial penumbral eclipse of the Moon.

I was perfectly positioned to see this eclipse, such as it was. At mid-eclipse when I took this image, the Moon was due south and as high in the sky as it was going to get for the night.

My location was the hotel poolside bar and rooftop patio 10 floors up overlooking the harbour in Malaga, Spain.

Can you see the effect of the eclipse? Barely, perhaps. The Full Moon travelled through the top of the Earth’s penumbral shadow, creating a slight darkening of the lower portion of the Moon. I’ve boosted contrast a lot in processing yet the effect is still barely perceptible.

No matter. With luck, in two weeks time we’ll experience just the opposite โ€“ the most spectacular eclipse the sky has to offer, a total eclipse of the Sun.

We set sail tomorrow.

โ€“ Alan, October 19, 2013 / ยฉ 2013 Alan Dyer

 

The Great Australian Eclipse โ€“ The Closeup Movie


This is the “director’s cut” movie of the November 14 total eclipse of the Sun in Australia, unabridged and unedited.

I shot this movie of the eclipse through a telescope to provide a frame-filling closeup view of totality. This is the entire eclipse, from just before totality until well after. So it includes both diamond rings: at the onset of totality and as totality ends.

A few seconds into the movie I remove the solar filter which produces a flash of light until the camera readjusts to the new exposure. Then you really see the eclipsed Sun!

We got 1m28s of totality from our viewing site near Lakeland Downs, Queensland. But the movie times out at slightly less, because at several points where you hear a shutter click, I took a still frame which interrupts the movie. You can see some of those still images in earlier blog posts.

My timing was a little off, as I opened up the exposure to reveal more of the outer corona only moments before the end of totality, so the first moment of the final diamond ring is a little overexposed. During totality I was looking with binoculars, and made the mistake of going over and checking on my other wide-angle time-lapse camera. That wasted time needlessly. I should have spent more time attending to the movie camera and taking more stills at various exposures. No eclipse every goes quite as planned. Losing 30 seconds of totality in order to seek out clearer skies did cost me some images and enjoyment time in the umbra. But our experience was far less stressful than those who dodged clouds (or failed to miss the clouds, in some cases) at sites closer to or at the coast.

The original of this movie is in full 1920 x 1080 HD, shot with the Canon 60Da through the 105mm f/5.8 Astro-Physics apo refractor, on an equatorial mount tracking the Sun. I rarely have the luxury of shooting an eclipse through such extravagant gear, as I would never haul that type of hefty gear now on an aircraft to remote sites. But this equipment emigrated to Australia in 2002 for the total eclipse in South Australia and has been here down under ever since. So this is its second Australian eclipse. Mine, too!

โ€“ Alan, November 21, 2012 / ยฉ 2012 Alan Dyer

 

The Great Australian Eclipse โ€“ Stars & Planets in the Darkened Sky


During last week’s total eclipse, Venus was obvious above the Sun well before the shadow descended and the sky darkened. But during totality other stars and planets appeared.

But I suspect few noticed! During an eclipse your eyes are transfixed on the Sun and its corona. And on the other phenomena of light and shadow happening around you. However, I inspected my wide-angle frames and found faint images of Saturn and the stars Spica, Alpha and Beta Centauri, and three stars of the Southern Cross. I’ve labeled them here but you might not be able to pick them out on screen in the reduced resolution that appears in the blog. Similarly, I doubt anyone saw them visually. If you did you were wasting your time looking at the wrong stuff!

โ€“ Alan, November 18, 2012 / ยฉ 2012 Alan Dyer

 

Endeavour’s Site at Cooktown, Queensland


I began my journey to Australia with a visit to the replica of James Cook’s ship Endeavour in Sydney. I’m ending this part of my trip with a visit to where Cook beached the HMBย Endeavour for repairs at what is now Cooktown in far north Queensland. This is where Cook spent the most time in Australia, though not by intention.

In 1770 Cook was sailing north along the Queensland coast, after visiting Tahiti the year before to see the transit of Venus. He inadvertently discovered the Great Barrier Reef. Endeavour ran aground on what is now called Endeavour Reef. The crew was able to repair the ship well enough and save themselves by getting Endeavour to this harbour at what is now Cooktown where the Cook River meets the Coral Sea. There, with the ship beached, they were able to effect more permanent repairs to its damaged hull.

The site is just below this viewpoint at an idyllic harbour. They stayed there for two months in July and August 1770, effecting repairs and sighting, among other curiosities, kangaroos for the first time.

I visited Cooktown yesterday as part of a 4WD trek up the Bloomfield Track north of Cape Tribulation and through the Daintree Rain Forest. At Cooktown its museum, converted from an old convent, contains the original main anchor and one of the large canons from Endeavour, recovered from where the crew tossed them overboard to lighten the ship’s load and gain draft to sail off the reef. They are some of the few pieces of Endeavour that still remain.

โ€“ Alan, November 17, 2012 / ยฉ 2012 Alan Dyer

The Great Australian Eclipse – The Shadow Movie


This is 6 minutes of pre- and post-eclipse โ€“ and the all too short eclipse itself โ€“ compressed into 30 seconds. You can see the dark blue shadow of the Moon sweeping across the sky.

The long oval shadow comes in from behind us from the west and comes down to meet the Sun which is rising in the east. That moment when the shadow edge meets the Sun is second contact when totality begins in a diamond ring effect, and the Sun is entirely hidden behind the Moon.

The shadow then moves off to the right. As its left edge hits the Sun, the Sun emerges in another diamond ring and the eclipse is over. All too soon. Even at mid-eclipse the Sun is not centred in the oval shadow because we were not centred in the path of the shadow but instead drive well north of the centreline, to avoid cloud farther south. We saw 1m28s of totality, 30 seconds less than people at the centreline or on the coast. But we had no annoying clouds to worry about.

Also note Venus at upper left. And the hugs and kisses at the end!

โ€“ Alan, November 15, 2012 / ยฉ Alan Dyer 2012

 

The Great Australian Eclipse – Our Happy Group!


OK, one last eclipse post! Here’s our happy band of Canadian chasers, post-eclipse.

Some were seeing their first eclipse. A few others, myself included, were chalking up eclipse #14. Eclipse virgin or veteran, the experience is always breathtaking and unbelievable. Moments after the eclipse ends you cannot believe you saw what you did โ€“ the sight is so unearthly. And you want to see another. The next total eclipse of the Sun is November 3, 2013, in the mid-Atlantic and over central Africa.

โ€“ Alan, November 14, 2012 / ยฉ 2012 Alan Dyer

 

The Great Australian Eclipse – Second Diamond Ring


This is the sight eclipse chasers hate to see, yet celebrate the most! It is the diamond ring that ends totality.

This was the “third contact” diamond ring when the Sun returned in an explosion of light from behind the edge of the Moon.

Compare this view to my earlier blog, and you’ll see that the second diamond ring at the end of totality did not happen opposite the first diamond ring. That’s because we were well off the centreline of the Moon’s shadow, so from our perspective the Moon travelled across the Sun’s disk slightly off-centre.

From where we ended up in our chase for clear skies, we experienced 1m28s of totality, well under the 2 minutes maximum that others saw near the centreline. But we felt 1m28s of clear skies was better than 2 minutes under partly cloudy skies. Indeed, some on the coast saw the Sun only briefly during totality, or not at all.

Instead, while the last minute move was stressing, once we were set up, we had relaxed assurance we were going to see the whole show!

โ€“ Alan, November 14, 2012 / ยฉ 2012 Alan Dyer

The Great Australian Eclipse – Outer Corona


For this shot I overexposed the inner corona on purpose to reveal more of the extent of the streamers in the Sun’s outer corona.

The pink at left is the chromosphere layer shining from behind the Moon just before the Moon uncovered the blindingly bright photosphere with a burst of light, the diamond ring.

It takes a lot of specialized processing, far beyond what I’ve done here, and stacking of multiple exposures to reveal the delicacy of structures that you can see with your aided eyes during a total eclipse. There is nothing more astonishing in the sky for its complexity and yet subtleness than the Sun’s corona. It is the main attraction at any total solar eclipse. You have not lived astronomically until you have seen the corona of the Sun with your own eyes.

โ€“ Alan, November 14, 2012 / ยฉ 2012 Alan Dyer

 

The Great Australian Eclipse – Inner Corona


Taken shortly into totality, this shot shows some of the complex structure of the Sun’s corona, and a cluster of red prominences peaking out from behind the bottom edge of the Moon.

For the November 14, 2012 eclipse I shot two cameras. One, with a wide-angle lens, was automatically taking a frame every second. Three of those frames are in a previous blog. For this shot I used a second camera looking through a 4-inch refractor telescope I keep stored in Australia. It worked great! I seldom get to shoot an eclipse through a telescope, as so many eclipses are in remote locations where carting a telescope and mount are impractical. But for an Oz eclipse (I’ve seen two from Australia now, in 2002 and now in 2012) I get to use my Oz gear.

Because the Sun is nearing solar maximum its corona appeared evenly distributed around the Sun, with streamers reaching out in all directions. At solar minima eclipses the corona extends just east-west with little over the poles.

This image, like the other closeups I’m posting, are still frames shot while the camera was taking an HD movie. Firing the shutter while the movie is recording interrupts the movie but records a full-resolution still frame, a very nice way to get two forms of media with one camera.

โ€“ Alan, November 14, 2012 / ยฉ 2012 Alan Dyer

 

The Great Australian Eclipse – Diamond Ring #1


The last bit of the Sun shines from behind the ragged edge of the Moon as the total eclipse begins in Australia.

This is “second contact,” and the first diamond ring effect that heralds the start of totality. The Moon (the dark disk) is just about to completely cover the Sun. You can see the pink chromosphere layer of the Sun’s surface and a flame-like prominence at 4 o’clock position. The Sun’s atmosphere, the corona, is just beginning to show.

I took this November 14, 2012 from a site near Lakeland Downs, Queensland, Australia. While we did look through some thin cirrus clouds, they didn’t hamper viewing at all, and were not the concern that the thicker clouds were at other sites, especially at the beaches.

โ€“ Alan, November 14, 2012 / ยฉ 2012 Alan Dyer

The Great Australian Eclipse – Success!


It wouldn’t be an eclipse without a chase. But in the end we had a nearly perfect and cloudless view of the entire eclipse โ€” the Great Australian Eclipse. We were ecstatic!

This collage of wide-angle shots shows the motion of the Moon’s conical shadow. At top, you can see the bottom edge of the shadow just touching the Sun. This was second contact and the diamond ring that begins totality. The middle frame was taken near mid-eclipse and shows the bright horizon beyond the Moon’s shadow. However, the Sun is not centred on the shadow because we ended up well north of the centreline, sacrificing as much as 30+ seconds of totality to get assured clear skies. The bottom frame was taken at the end of totality as the first bit of sunlight bursts out from behind the Moon at third contact and the final diamond ring. Notice the Sun sitting at the well-defined left edge of the Moon’s shadow. The shadow moved off to the right.

Why did we end up off-centre? Clouds! The day before, at our 11 am weather briefing meeting, we decided not to stay on the beach but to move inland to one of the sites we selected from the previous day’s reconnaissance. The forecast was not even accurately “predicting” the current conditions at the time, saying the sky should then have been clear. It was raining. We did not trust the predictions that skies would clear by eclipse time on Wednesday morning.

We drove inland on Tuesday afternoon, getting to our choice site at the James Earl Lookout on the Development Road about 4 pm, to avoid driving in the dark and to get there before the parking area filled up. It was a good plan. We arrived to find a few people there but with room for all our cars filled with 20+ Canadians. We staked our ground with tripods, did a little stargazing after dark, then settled in to spend the night in our cars.

At dawn we got everything ready to go, only to see puffs of orographic clouds forming over the hills in the direction of the Sun. I did not like it. So with an hour to go before totality we packed up and moved down onto the plains away from the hills to a site near Lakeland Downs, the site you see here. Apart from some high cirrus clouds, skies were superb.

As it turned out, folks a few miles away at the Lookout did see it, but by the skin of their teeth. Clouds obscured the Sun just before and just after totality. That’s too nerve-wracking for me. And from the beaches, some people were clouded out, others saw all of totality, others saw just a portion of the main event. It was hit and miss. From home at Oak Beach we might have seen it but only just. We were very happy with our decisions to move and flexibility to be able to do so.

I’ll post some close-up shots of the eclipse shortly.

Tonight, we party!

โ€“ Alan, November 14, 2012 / ยฉ 2012 Alan Dyer

 

Our Eclipse Group at Work


Nothing could be farther from an astrophoto than this, but this is what it takes to get a great shot โ€“ planning!

Here is our little group of Canadian eclipse chasers sitting around the patio table planning alternate viewing sites that we had inspected earlier that day on the Monday, two days before the eclipse. Maps, photos and weather forecasts all go into the mix to make a decision where best to be for the total eclipse of the Sun.

We found some good inland sites but getting to those would require leaving the comforts of home the afternoon before the eclipse to be in place for dawn on Wednesday and avoid driving the roo and cattle infested outback roads at night. We would prefer to stay on the beach, and weather prospects are improving. But if the eclipse had been this morning we would not have seen it from this location.

โ€“ Alan, November 13, 2012 / ยฉ 2012 Alan Dyer

 

Sign on the Centreline


I’m in eclipse country here, as the sign proclaims, just about on the centreline of the coming Moon’s shadow.

Today we drove 3 to 4 hours out onto what is called the Development Road or the Mulligan Highway, inland from the beaches where we are staying. This is the road that goes up to Cooktown (where Captain James Cook beached the Endeavour in 1770) from Port Douglas, but via the inland route. As you can see it is dry! That’s a good thing. While the coast was cloudy and rainy today, Monday, the inland sites we inspected were sunny, with word from the locals that the morning at eclipse time was perfectly clear. As it always is they promised us!

So we have some Plan B sites selected, and checked out with the local Queensland Police to make sure we’re OK to use them. However, weather forecasts for Wednesday morning at eclipse time are promising clear skies on the coast where we would prefer to stay in convenient comfort.

Not far from here, near the Palmer River Roadhouse, some 8,000 people have gathered in the dusty Outback for a festival of music and “new age healing.” We’re seeing lots of the participants on the road (often driving beat-up vans) looking like they’ve been transported by time machine from the 1960s and Woodstock. Eclipses attract many people of all interests to the track of the Moon’s shadow. Good luck to them … and us, two days from now.

โ€“ Alan, November 12, 2012 / ยฉ 2012 Alan Dyer

 

Two Days to Go Until the Eclipse


This was the sky at eclipse time, two days prior to the total eclipse of the Sun.

Had the eclipse been today we likely would have missed it. The Sun broke through briefly but minutes later the rain seen here off shore was over us. But a few minutes later it was clear and sunny again. It will be a game of chance to be sure.

Today, we travel inland to scout out viewing sites 3 hours away over the Dividing Range on the Development Road as a Plan B.

โ€“ Alan, November 12, 2012 / ยฉ 2012 Alan Dyer

 

Three Days to Go Until the Eclipse


Skies and spirits brightened this morning as we were greeted to a wonderfully clear sunrise.

I took this moments ago on the morning of Sunday, November 11, three days before the total eclipse. If the eclipse had been this morning we would have seen it in grand style.

Nevertheless, we will continue our scouting of inland locations over the Dividing Range, at sites some 2 to 3 hours drive away. If the weather forecast looks gloomy the day before we will make a run for it inland but will have to make that call the afternoon before the eclipse to avoid driving in the dark with roos on the road. The eclipse happens an hour after sunrise on Wednesday, with the Sun a little higher than its position here. Ideally, we watch the eclipse from where I took this photo! But one must always have a Plan B and C in pocket.

โ€“ Alan, November 11, 2012 / ยฉ 2012 Alan Dyer

 

Four Days to Go Until the Eclipse


 

This is sunrise, four days before the November 14 total eclipse of the Sun, from our preferred viewing site on the coast of Queensland, Australia.

In four days, the Moon, which you can see as a waning crescent at upper left, will pass across the face of the Sun.

We’re here at our Beach House at Oak Beach, just south of Port Douglas, right on the eclipse centreline. The site is fantastic and we may have the beach pretty much to ourselves, or at least just for the residents of the beach houses long Oak Beach Road. However, the clouds are worrying. A system moving through is blanketing the area in cloud but promises to move off by eclipse morning. The total eclipse occurs about an hour after sunrise. So this is the view we’ll have, though we have a kilometre of beach to pick from.

However, we just spent one of several days scouting out alternative Plan B sites along the coast and inland. Mobility is often the key to success when chasing eclipses. It is a chase after all, and being able to see an eclipse right from your front yard (or in our case, front beach) is always the ideal plan. But plans often change.

There are lots of eclipse chasers here — about 40,000 have converged on Port Douglas area, which even at peak tourist season (which it is not now) handles only 10,000 people at a given time.

โ€“ Alan, November 10, 2012 / ยฉ @ 2012 Alan Dyer

 

Crossing the Tropic of Capricorn


Today on my drive north to the path of the November 14 total eclipse in Australia, I crossed the Tropic of Capricorn and am now officially in the tropics.

This is one of the many monuments that the demarcates this important line around the world, all located at 23.5ยฐ south latitude (or thereabouts). This one is in Rockhampton, Queensland. It’s actually at 23ยฐ 23′ 59″ S but that’s close enough for tourists. For photos of other Tropic of Capricorn monuments see Wikipedia’s page.

The Tropic of Capricorn is one of the world’s four main lines of latitude defined by the tilt of the Earth: The Arctic and Antarctic Circles at 66.5ยฐ N and S, and the Tropics of Cancer and Capricorn, at 23.5ยฐ N and S. The names for the Tropic lines come from the two constellations where the Sun used to be located millennia ago on the June and December solstices: Cancer and Capricornus. The precession motion of the Earth’s axis has since moved the Sun into Gemini and Sagittarius on those key annual dates.

The Tropic of Capricorn is the southernmost latitude on our planet where the Sun can appear directly overhead at the zenith, and then only on one day, the December solstice. I was here close to that date a few years ago and can attest to the lack of shadows at “high noon” at solstice on a Tropic line.

The zone on Earth between the two Tropic lines, between 23.5ยฐ N and 23.5ยฐ S, is of course called the Tropics. While the Sun may not always be overhead in the tropics it certainly is always high at mid-day. And hot!

Next stop: Magnetic Island, named by James Cook in 1770 as he thought the island was affecting his compass in strange ways.

โ€“ Alan, November 6, 2012 / ยฉ 2012 Alan Dyer

Endeavour in Dock


Its modern day namesake ship, the Space Shuttle Endeavour, made the news of late, on its last voyage to its museum home. But this is the Endeavour that the Shuttle is named for and a ship that also made scientific history.

This is the modern but authentically crafted replica of HMB Endeavour, the ship Lt. James Cook commanded on his first round the world expedition. The principle goal was to observe the June 1769 transit of Venus from Tahiti. But Cook sailed on to map the then unknown coastline of New Zealand and the east coast of New Holland, now Australia. It was an astronomical expedition that changed the world.

The replica Endeavour just completed a circumnavigation of Australia, something the original ship never did, and now is moored at the National Maritime Museum in Darling Harbour, Sydney. I visited it October 30 as part of my homage to Cook and my own astronomical expedition to see the total eclipse of the Sun. In a couple of weeks I’ll be in Cooktown near the top end of Queensland where, in 1770, the original Endeavour ran aground on the Barrier Reef. An anchor from the original ship is still there.

โ€“ Alan, November 1, 2012 / ยฉ 2012 Alan Dyer

Eclipse Site Bound


This isn’t a photo I’ve taken. Instead it’s where I plan to be in three weeks taking photos.

The blue line is the centreline of the November 14 total eclipse of the Sun. The scene is on the Cook Highway coastal road just south of Port Douglas in northern Queensland, Australia.

Three of the beach houses on Oak Beach Road on the Queensland coast is where several of us Canadian eclipse chasers will gather to view the total eclipse, weather permitting! The eclipsed Sun will be to the east, over the ocean shortly after sunrise. We’ve had the houses rented since late 2009.

Eclipse chasing usually takes long term planning. Very few people can say years in advance where they will be on a date like November 14, 2012. But we can!

Eclipses govern a good part of our lives. And we love it!

โ€“ Alan, October 21, 2012

 

 

Venus Disappears


 

On the afternoon of Monday, August 13 the waning crescent Moon slid in front of Venus in broad daylight. This sequence captures the disappearance.

It was touch and go getting this as high cloud kept moving through. A few minutes earlier the Moon and Venus were in clear blue sky, but at the time of the occultation, haze whitened the sky and cut down the ย contrast on an event that takes a telescope to see well. When the sky was clear it was easy to sight the Moon with unaided eyes and therefore focus your eyes on infinity. Venus next to the Moon popped into view, even naked eye. It was a rare chance to easily sight Venus in the daytime. But as it got close to the Moon Venus became harder to see naked eye, and the haze then made it impossible. But through a telescope it was just the opposite โ€” Venus’s bright disk stood out even when the Moon was washed out and invisible.

For southern Alberta the occultation took place at 2:11 pm MDT. I missed seeing it emerge from behind the Moon. I was already inside processing this image.

It has been quite a year for Venus. It’s not over yet, as Venus continues its morning show and has close encounters with the Moon and the star Regulus this autumn.

โ€” Alan, August 14, 2012 / ยฉ 2012 Alan Dyer

Venus: 6 Degrees of Separation


This was my first look at Venus following Tuesday’s transit. Here, it’s just six degrees west of the Sun as a thin crescent in the afternoon sky. It was a beautiful sight in the eyepiece, far enough away from the Sun to not be in its glare but close enough to still appear as a razor-thin backlit crescent.

Each day now Venus is widening the gap between it and the Sun, shortly to become a brilliant morning star in the eastern sky before dawn through the rest of June, July and August.

I shot these images in broad daylight through a 130mm f/6 refractor. The big image is a full-frame shot with the Canon 60Da and a 2X Barlow lens, for an effective focal length of about 1500mm. The inset is a single frame grabbed from a 30-frame-per-second movie shot with the Canon in its Movie Crop mode, which yields a high-magnification view suitable for planet shooting, but only 640 x 480 pixels. But this mode is certainly ideal for capturing planets, though none ever appear as large as Venus is here. This is an uncommon instance of Venus as close and as large as any planet gets.

โ€” Alan, June 9, 2012 / ยฉ 2012 Alan Dyer

 

Transit of Venus: From One Cloudy Planet to Another


The day looked hopeless with not a chance of clear skies. But a small hole opened, revealing Venus on the Sun.

I had seen this sight before, in 2004 from Egypt. But my first reaction upon seeing it again, albeit briefly, was [Expletive Deleted]!!! No photos really provide the visual impression of just how enormous Venus appears on the Sun. We’re used to sunspots (and there were lots today) and some quite large. But nothing we ever see on the Sun matches the size of Venus. The eyepiece impression is of something much larger than the photos show. It’s like Moon illusion at work on the Sun.

It had been hopelessly cloudy all day in Calgary. Interpretive obligations over at the science centre (where we showed the NASA webcast from Hawaii), I hit the highway in search of a clear hole … and found one northeast of the city, one at first that seemed to be wide and stable. I stopped, looked with the filtered naked eye, then drove on seeking slightly less cloud, getting greedy! I should have stopped sooner. By the time I did stop ย and hurriedly set up the little 80mm refractor telescope, I had about 30 seconds for a great clean view, then switched to the camera. By the time I got it set, clouds were coming out of nowhere and thickening fast. I couldn’t shoot through the solar filter. This is a filterless shot, at 1/8000th second! Clouds provided the natural filtration. Fine! At least I got the camera focused, for a crisp view of Venus next to the clusters of sunspots, something no one alive has seen โ€” in 2004 the Sun was virtually spotless.

So, not a view or photo under the best of conditions, but an experience I am happy to settle for. Now, I just want clear skies in Australia for November’s total solar eclipse. Please!!

โ€” Alan, June 5, 2012 / ยฉ 2012 Alan Dyer

 

A Prairie Partial Eclipse


This was the kind of eclipse chasing I like โ€” just to the end of my driveway … to shoot the partial eclipse of the Moon before dawn on June 4.

While the car is all packed with gear for a possible flight or cross-country chase to clear skies to catch the Venus transit tomorrow, the lunar eclipse required no travel at all. Not that I was going to make too much effort at 4 am!

While some clouds got in the way, a clear hole opened up at the right time, with the remaining clouds adding a photogenic touch. I’m hoping to be as lucky for the transit!

This was just a partial lunar eclipse, with only 37 percent of the Moon immersed in the Earth’s umbral shadow at mid-eclipse, shortly after this image was taken. Even so, some of the reddening of the shadowed portion of the Moon’s disk does show up here.

I shot this from southern Alberta with a Canon 60Da and an 18-200mm lens at 115mm to frame the Moon and prairie landscape.

โ€” Alan, June 4, 2012 / ยฉ 2012 Alan Dyer

Venus Descending


A wonderful sight tonight, as I caught Venus in its last days before the transit, shining as a glistening crescent low in the evening twilight.

Venus was visible to the unaided eye after sunset, but not for long. It set soon after the Sun. But for a short while it put on a beautiful show as a large crescent (large for a planet that is), easily resolvable in binoculars and stunning in a small telescope. One could almost make out, for brief moments, the sight of the backlit atmosphere going all the way around the disk. But I suspect it was more imagination at work than reality shining through.

The inset blows up the boxed area, to reveal the crescent-phased disk of Venus, despite this shot being taken with no more than a 200mm telephoto lens. I usedย a Canon 60Da camera at ISO 100.ย A plane is flying just below Venus.

So this was May 30, 6 days before the June 5 transit, with Venus 9.5ยฐ east of the Sun. How far up to the Sun can we catch it, before it crosses the Sun on Tuesday?

โ€” Alan, May 30, 2012 / ยฉ 2012 Alan Dyer

Venus Sinks Sunward


Here’s a last look at Venus before its historic transit across the face of the Sun on June 5.

I took this Monday evening, May 28, with the Sun still up and Venus about 13 degrees east of the Sun but low in my evening sky. Venus appears as a razor-thin crescent, like a tiny “new Moon.” Most of the daylight side of Venus now faces away from us; on the side of Venus turned toward us now all but a sliver of a crescent is dark โ€” we’re looking at the night side of Venus. On June 5, all we will see is this dark side of Venus, appearing in silhouette in front of the Sun’s brilliant disk as Venus moves across the Sun in a transit not to be repeated for another 105 years.

This is a single still-frame grab from a movie shot I shot with the Canon 60Da camera, set in Movie Crop Mode, for a movie 640 x 480 pixels wide. This mode magnified Venus considerably on the frame. I shot this through a small 80mm apo refractor at its f/6 prime focus, so with only 480mm of focal length. But Venus is now so large it doesn’t take a lot of extra magnification to show its disk and phase.

The view through the eyepiece was stunning. The rippling image and sparkling colours, though from distortion in our atmosphere, added to the beauty of Venus, fitting for the goddess of love.

โ€“ Alan, May 28, 2012 / ยฉ 2012 Alan Dyer

Eclipse โ€” A Parking Lot Partial


This was the view Sunday evening as the Sun descended into the northwest sky, accompanied by the Moon covering part of its disk.

I shot this near mid-eclipse with a handheld camera and filter dimming what would have otherwise been a vastly overexposed Sun. A liberal use of Photoshop’s Highlight recovery and Shadow details tools compressed the dynamic range even more, to bring out details in the sky and clouds and in the dark filtered image. But this is a single image, not a composite.

As you can see, even at its best the Sun shone through light cloud, which added somewhat to the scenery of the sky and the weird quality of the light at mid-eclipse. But all told, I’d rather do without clouds at any eclipse. They make for anxious moments I could live without.

I took this shot from the TELUS Spark science centre, where we set up sidewalk telescopes for viewing the eclipse, looking over the parking lot and hill to the west of us. It’s where the Sun will also be for the transit.

โ€” Alan, May 21, 2012 / ยฉ 2012 Alan Dyer

 

Partial Solar Eclipse โ€” from Calgary


This was the first significant solar eclipse in many years that I did not travel to. For the May 20, 2012 eclipse I was content to stay at home on the sidelines and take in the partial eclipse of the Sun.

From Calgary, the Moon covered about 62% of the Sunย at mid-eclipse, which this shot captures, taken at maximum eclipse for us. Here, a big sunspot group is just being uncovered by the passing Moon. Having lots of spots on the Sun this day made the partial eclipse all the more interesting, though still no comparison to the annular eclipse visible over the spectacular landscapes of the southwestern U.S.

I would have been there, in the Moon’s ant-umbral shadow, had it not been for the fact that at home I am very much involved in the opening of a new planetarium and digital dome theatre at the science centre, TELUS Spark, where I work. This is a milestone event in one’s life, one I’ve had the privilege of experiencing twice before, in 1984 in Edmonton with the opening of its new science centre and planetarium, and in 1996 when we converted the old Calgary Centennial Planetarium into a then state-of-the-art tilt-dome theatre. Oddly coincidental, I missed seeing the May 15, 1984 annular eclipse in the SE United States due to the imminent opening of the Edmonton theatre. History repeats itself โ€” a Saros cycle of science centres perhaps?

For this eclipse we conducted a public viewing session and managed to grab excellent views once clouds cleared away before mid-eclipse. Eclipse anxiety was running high leading up to and through the initial minutes of the eclipse as it looked like clouds were going to skunk us. But wonder of wonders, the sky cleared and the eclipsed Sun was revealed, to my great relief. Missing the annular eclipse is bad enough; I didn’t want to miss the partial eclipse, too!

Now, we just need clear skies on June 5 for the transit of Venus.

โ€” Alan, May 20, 2012 / ยฉ 2012 Alan Dyer

Total Eclipse of the Moon (December 10, 2011) #3


This is my favourite shot from the December 10 dawn eclipse. It’s the one I was after, with the red Moon in a blue sky over the snow-covered Rockies.

Lunar eclipses don’t have the dramatic and sudden effects of a total eclipse of the Sun. But neither do they have the anxiety and sometimes sheer panic! Lunar eclipses are more stately affairs as they play out in a relaxed manner over 2 to 3 hours. But they are beautiful nonetheless, especially when the Moon is low in the sky and set above a scenic landscape at moonrise or, as it was with this eclipse, at moonset.

The red colouration of the Moon makes the scene, as the Moon, embedded in Earth’s shadow, becomes lit by the light of all the sunsets and sunrises going on around the world at once. If Earth had no atmosphere the Moon would go completely black during a total eclipse. But besides making life on Earth possible (no small thing!), our atmosphere also provides us the wonderful sight of a red Moon during a total eclipse. Take a deep breath and enjoy!

โ€” Alan, December 10, 2011 / Image ย ยฉ 2011 Alan Dyer

 

 

Total Eclipse of the Moon (December 10, 2011) #2


This was the view well into totality as the eclipsed Moon set into the morning twilight sky. On December 10 we got a fantastic view of the total lunar eclipse at dawn, with the red Moon over the Rockies.

I shot this from the grounds of the Rothney Observatory in the foothills southwest of Calgary. The Moon is completely in Earth’s shadow here but with its southern or bottom edge brighter than the top, so it overexposes here. This view captures the scene as the eye saw it, at about 7:30 a.m. local time, an hour before sunrise and moonset.

A full house of 100 people showed up at the Observatory for a public event and breakfast. I dare say they got the best view of this eclipse of anyone in Canada.

โ€” Alan, December 10, 2011 / Image ยฉ 2011 Alan Dyer

 

Total Eclipse of the Moon (December 10, 2011) #1


It has been a long time between Blog posts, with no new astrophotos from me for a while. But the drought ends due to thankfully fine conditions for the total eclipse of the Moon, on Saturday morning, December 10.

Skies were wonderful and the conditions actually pleasant for a winter morning at 6 a.m. For us in southern Alberta, the Moon went into eclipse as it descended into the western sky in the pre-dawn hours. The timing wasn’t convenient, but the view more than made up for the effort of getting up at 3 a.m. to drive west out of cloud to the Rothney Observatory. Their location in the foothills proved clear and perfect for looking west, to see the Moon over the Rockies.

This is one of my earlier shots in the 3-hour event, taken just before totality began, when the Moon was still in a dark sky. The camera was on a tracking platform to keep the stars from trailing during the 30 second exposure, causing the ground to trail instead.

You can see the Pleiades cluster at right, and Betelgeuse in Orion at left.

This was the last total eclipse of the Moon anywhere in the world until April 14, 2014.

โ€” Alan, December 10, 2011 / Image ยฉ Alan Dyer 2011

 

An Accurate Lunar Eclipse, At Last!


For years we astrophotographers have been thwarted by our recording media’s inability to capture a wide range of brightness in one exposure. A classic example is a lunar eclipse. The range in brightness between the non-eclipsed Full Moon and the part of the lunar disk in the Earth’s shadow is so great no one exposure can grab it all. You are left with either an over-exposed crescent or a dark under-exposed eclipsed Moon โ€” nothing that looks anything like the eye can see.

At last, modern image processing comes to the rescue! This is a stack of 9 exposures, from 1/125th to 2 seconds, all at f/6 with a 130mm apo refractor and Canon 7D camera. The images were stacked and merged into one “high dynamic range” image using Photoshop CS5, whose new HDR mode is wonderful! A little tweaking of settings in the Tone Mapping dialog box, and voilรก! An image of the partially eclipsed Moon that really looks like what the eye saw. I’m impressed.

— Alan, December 2010 / Image ยฉ 2010 Alan Dyer

Eclipse in the Winter Milky Way


The December 20, 2010 total lunar eclipse promised to be a photogenic one. With the Moon smack dab in the middle of the winter Milky Way, it was going to be a great sight, as the Milky Way appeared during totality. The event did not disappoint. Though some haze intervened, I wasn’t complaining, as the weather has been so poor of late, we were lucky to get a clear night at all, despite having to endure -20ยฐ C temperatures to take in the event. This shot captures the scene from my backyard during totality, with the over-exposed eclipsed Moon sitting in the Milky Way above Orion. The naked and binocular view was truly stunning.

I got back from Australia in time to see this event from home, squeezed in between Oz and a Xmas trip to the rainy west Coast. The plan worked! I managed to catch the eclipse, against the odds, which defeated many across Canada. Alberta was one of the few clear places for this event. I had considered a hasty trip to Arizona for it, but decided against it — a good thing, as I think they had cloud. The winter of 2010/11 is proving to be an awful one for many.

— Alan, December 2010 / Image ยฉ 2010 Alan Dyer