The Great Transit Expedition of 2019


Blog Title

On November 11, I traveled to the near-flung corners of my backyard to observe the rare transit of Mercury across the Sun.

History is replete with tales of astronomers traveling to the far corners of the Earth to watch dark objects pass in front of the Sun — the Moon in eclipses, and Mercury and Venus in transits.

On November 11, to take in the last transit of Mercury until 2032, I had planned a trip to a location more likely to have clear skies in November than at home. A 3-day drive to southern Arizona was the plan.

But to attend to work and priorities at home I cancelled my plans. Instead, I decided to stay home and take my chances with the Alberta weather, perhaps making a run for it a day’s drive away if needed to chase into clear skies.

Transit of Mercury Selfie with Sun

As it turned out, none of that was necessary. The forecast for clear, if cold, skies held true and we could not have had a finer day for the transit. Even the -20° C temperatures were no problem, with no wind, and of course sunshine!

Plus being only steps from home and a warming coffee helped!

As it turned out, the site in Arizona I had booked to stay was clouded out for the entire event. So I was happy with my decision!

For my site in Alberta, as for all of western North America, the Sun rose with the transit in progress. But as soon as the Sun cleared the horizon there was Mercury, as a small, if fuzzy, black dot on the Sun.

Low Sun with Mercury in Transit

As the Sun rose the view became sharper, and was remarkable indeed — of a jet black dot of a tiny planet silhouetted on the Sun.

The Transit of Mercury Across the Sun (10 am MST)

I shot through two telescopes, my 4-inch and 5-inch refractors, both equipped with solar filters of course. I viewed through two other telescopes, for white-light and hydrogen-alpha filtered views.

I was able to follow the transit for three hours, for a little more than half the transit, until Mercury exited the Sun just after 11 a.m. MST. The view below is from moments before Mercury’s exit, or “egress.”

The Transit of Mercury Across the Sun (11 am MST)

I shot still frames every 15 seconds with each of the two cameras and telescopes, for a time-lapse, plus I shot real-time videos.

Mercury at Mid-Transit (November 11, 2019)

At this transit Mercury passed closer to the centre of the Sun’s disk than it will for any other transit in the 21st century, making this event all the more remarkable. That point is recorded above, from a shot taken at 8:19 a.m. MST.

Stacking a selection of the time-lapse frames, ones taken 1-minute intervals, produced this composite of the transit, from just before mid-transit until Mercury’s egress.

Transit of Mercury Composite Across the Sun v2

I assembled all the best images and 4K videos together into a movie, which I narrated live at the telescope as the transit was happening. I hope this provides a sense of what it was like to view this rare event.

The Transit of Mercury from Alan Dyer on Vimeo.

We won’t see another until 2032, but not from North America. The next transit of Mercury viewable from here at home is not until 2049! This was likely my last transit, certainly for a while!

Transit of Mercury Trophy Shot

This was my trophy shot! Bagged the transit!

P.S.: For my video of the previous transit of Mercury in May 2016, see my blog post which includes a similar compilation video.

P.P.S.: And for tech details on the images and videos in this blog, please click through to Vimeo and the video description I have there of cameras, scopes, and settings.

Clear skies!

Alan, November 17, 2019 / © 2019 Alan Dyer / amazingsky.com

 

Shooting Moonstrikes at Dinosaur Park


Moonlight at Dino Park Title

It was a magical night as the rising Moon lit the Badlands with a golden glow.

When doing nightscape photography it’s often best not to fight the Moon, but to embrace it and use it as your light source.

I did this on a fine night, Easter Sunday, at one of my favourite nightscape spots, Dinosaur Provincial Park.

I set up two cameras to frame different views of the hoodoos as they lit up with the light of the rising waning Moon.

The night started out as a dark moonless evening as twilight ended. Then about 90 minutes after the arrival of darkness, the sky began to brighten again as the Moon rose to illuminate the eroded formations of the Park.

Moonrise Light at Dinosaur Park - West
The formations of Dinosaur Provincial Park, Alberta, lit by the rising gibbous Moon, off camera at left, on April 21/22, 2019. This is looking west, with the stars of the winter sky setting. Procyon is at right. Aphard in Hydra is above the hill. This is a stack of 8 exposures, mean combined to smooth noise, for the ground, and a single exposure for the sky, all with the 24mm Sigma Art lens at f/5.6 and Nikon D750 at ISO 6400, each for 25 seconds. The images were from the end of a sequence shot for a time-lapse using the TimeLapse+ View intervaolometer. 

This was a fine example of “bronze hour” illumination, as some have aptly called it.

Photographers know about the “golden hour,” the time just before sunset or just after sunrise when the low Sun lights the landscape with a golden glow.

The Moon does the same thing, with a similar tone, though greatly reduced in intensity.

The low Moon, especially just after Full, casts a yellow or golden tint over the scene. This is caused by our atmosphere absorbing the “cold” blue wavelengths of moonlight, and letting through the “warm” red and yellow tones.

Making use of the rising (or setting) Moon to light a scene is one way to capture a nightscape lit naturally, and not with artificial lights, which are increasingly being frowned upon, if not banned at popular nightscape destinations.

StarryNightImage
A screen shot from the desktop app Starry Night (by Simulation Curriculum) showing the waning gibbous Moon rising in the SE on April 21. Such “planetarium” apps are useful for simulating the sky of a planned shoot.

“Bronze hour” lighting is great in still-image nightscapes. But in time-lapses the effect is more striking — indeed, in time-lapse lingo it is called a “moonstrike” scene.

The dark landscape suddenly lights up as if it were dawn, yet stars remain in the sky.

IMG_4579
A screen shot of a planning app that is a favourite of mine, The Photographer’s Ephemeris, set up to show the scene for moonrise on April 21 from the Park.

The best nights for such a moonstrike are ones with a waning gibbous or last quarter Moon. At these phases the Moon rises after sunset, to re-light a scene after evening twilight has faded.

On April 21 I made use of such a circumstance to shoot moonstrike stills and movies, not only for their own sake, but for use as illustrations in the next edition of my Nightscapes and Time-lapse eBook (at top here).

TimeLapse+View-Day Interval

One camera, the Nikon D750, I coupled with a device called a bramping intervalometer, in this case the TimeLapse+ View, shown above. It works great to automatically shift the shutter and ISO speeds as the sky darkens then brightens again.

Yes, in bright situations the camera’s own Auto Exposure and Auto ISO modes might accomplish this.

But … once the sky gets dark the Auto circuits fail and you’re left with hugely underexposed images.

The TimeLapse+ View, with its more sensitive built-in light meter, can track right through into full darkness, making it possible to shoot so-called “holy grail” time-lapses that go from daylight to darkness, from sunset to the Milky Way, all shot unattended.

Moonrise Light at Dinosaur Park - North
The eroding formations of Dinosaur Provincial Park, Alberta, lit by the rising gibbous Moon, off camera at right, on April 21/22, 2019. This is looking north, with Polaris at upper centre, Capella setting at left, Vega rising at right, and the W of Cassiopeia at lower centre. This is a stack of 8 exposures, mean combined to smooth noise, for the ground, and one exposure from that set for the sky. All with the 15mm Laowa lens at f/2.8 and Sony a7III at ISO 3200, each for 30 seconds.  

For the other camera, the Sony a7III (with the Laowa 15mm lens I just reviewed) I set the camera manually, then shifted the ISO and shutter speed a couple of times to accommodate the darkening, then brightening of the scene.

Processing the resulting RAW files in the highly-recommended program LRTimelapse smoothed out all the jumps in brightness to make a seamless transition.

I also used the new intervalometer function that Sony has just added to the a7III with its latest firmware update. Hurray! I complained about the lack of an intervalometer in my original review of the Sony a7III. But that’s been fixed.

Moonrise Star Trails at Dinosaur Park
This is looking north, with the stars of the northern sky pivoting around Polaris. This is a stack of 8 exposures, mean combined to smooth noise, for the ground, and 250 exposures for the sky, blended with Lighten mode to create the stails. However, I used the Advanced Stacker Plus actions in Photoshop to do the stacking, creating the tapering effect in the process. All exposures with the 15mm Laowa lens at f/2.8 and Sony a7III at ISO 3200, each for 30 seconds. 

I shot 425 frames with the Sony, which I not only turned into a movie but, as one can with time-lapse frames, I also stacked into a star trail still image, in this case looking north to the circumpolar stars.

To do the stacking I used the Advanced Stacker Plus actions for Photoshop, developed and sold by StarCircleAcademy.

I prefer this action set over dedicated programs such as StarStaX, because it works directly with the developed Raw files. There’s no need to create a set of JPGs to stack, compromising image quality, and departing from the non-destructive workflow I prefer to maintain.

While the still images are very nice, the intended final result was this movie above, a short time-lapse vignette using clips from both cameras. Do watch in HD.

I rendered out the frames from the Sony both as a “normal” time-lapse, and as one with accumulating star trails, again using the Advanced Stacker Plus actions to create the intermediate frames for assembling into the movie.

All these techniques, gear, and apps are explained in tutorials in my eBook, above. However, it’s always great to get a night perfect for putting the methods to work on a real scene.

— Alan, April 27, 2019 / © 2019 Alan Dyer / AmazingSky.com

 

Chasing the Eclipse of the Cold Moon


Eclipsed Moon and Umbral Shadow

It took a chase but it was worth it to catch the January 20, 2019 total eclipse of the Moon in the winter sky.

While the internet and popular press fawned over the bogus moniker of “Super Blood Wolf” Moon, to me this was the “Cold Moon” eclipse. And I suspect that was true for many other observers and eclipse chasers last Sunday.

Total solar eclipses almost always involve a chase, usually to far flung places around the world to stand in the narrow shadow path. But total lunar eclipses (TLEs) come to you, with more than half the planet able to view the Moon pass through the Earth’s shadow and turn red for several minutes to over an hour.

The glitch is clouds. For several of the last TLEs I have had to chase, to find clear skies in my local area, creating pre-eclipse stress … and post-eclipse relief!

astrospheric map
A screen shot from Astrospheric

That was the case for the January 20, 2019 total lunar, as the weather predictions above, based on Environment Canada data, were showing east-central Alberta along the Saskatchewan border as the only clear hole within range and accessible.

The above is a screen shot from the wonderful app Astrospheric, a recommended and great aid to astronomers. In 2014, 2015, and 2018 the Environment Canada predictions led me to clear skies, allowing me to see an eclipse that others in my area missed.

So trusting the predictions, the day before the eclipse I drove the 5 hours and 500 km north and east to Lloydminster, a town where the provincial border runs right down the main street, Highway 17.

Theodolite_2019.01.20_11.35.06
A screen shot from Theodolite

The morning of the evening eclipse, I drove up and down that highway looking for a suitable site to setup. Scenery was not in abundance! It’s farm land and oil wells. I settled for a site shown above, an access road to a set of wells and tanks where I would likely not be disturbed, that had no lights, and had a clear view of the sky.

The image above is from the iOS app Theodolite, another fine app for planning and scouting sites, as it overlays where the camera was looking.

Scenery was not a priority as I was mostly after a telephoto view of the eclipsed Moon near the Beehive star cluster. Wide views would be a bonus if I could get them, for use in further ebook projects, as is the plan for the image below.

Looking at the Lunar Eclipse with Binoculars
This is a single untracked exposure of 25 seconds at f/2.8 and ISO 1600 with the Nikon D750 and Sigma 20mm Art lens, but with a shorter exposure of 1 second blended in for the Moon itself so it retains its color and appearance to the naked eye. Your eye can see the eclipsed Moon and Milky Way well but the camera cannot in a single exposure. The scene, taken just after the start of totality, just fit into the field of the 20mm lens. A little later in the night it did not. 

The site, which was east of the border in Saskatchewan, served me well, and the skies behaved just as I had hoped, with not a cloud nor haze to interfere with the view. It was a long and cold 5-hour night on the Prairies, with the temperature around -15° C.

It could have been worse, with -25° not uncommon at this time of year. And fortunately, the wind was negligible, with none of the problems with frost that can happen on still nights.

Nevertheless, I kept my photo ambitions in check, as in the cold much can go wrong and running two cameras was enough!

Eclipsed Moon Beside the Beehive
The Moon in mid-total eclipse, on January 20, 2019, with it shining beside the Beehive star cluster, Messier 44, in Cancer. This view tries to emulate the visual scene through binoculars, though the camera picks up more stars and makes the Moon more vivid than it appears to the eye. However, creating a view that looks even close to what the eye can see in this case takes a blend of exposures: a 1-minute exposure at ISO 800 and f/2.8 for the stars, which inevitably overexposes the Moon. So I’ve blended in three shorter exposures for the Moon, taken immediately after the long “star” exposure. These were 8, 4 and 2 seconds at ISO 400 and f/4, and all with the Canon 200mm telephoto on a Fornax Lightrack II tracking mount to follow the stars. 

Above was the main image I was after, capturing the red Moon shining next to the Beehive star cluster, a sight we will not see again for another 18-year-long eclipse “saros,” in January 2037.

But I shot images every 10 minutes, to capture the progression of the Moon through the shadow of the Earth, for assembly into a composite. I’d pick the suitable images later and stack them to produce a view of the Moon and umbral shadow outline set amid the stars.

Eclipsed Moon and Umbral Shadow
The Moon in total eclipse, on January 20, 2019, in a multiple exposure composite showing the Moon moving from right to left (west to east) through the Earth’s umbral shadow. The middle image is from just after mid-totality at about 10:21 pm MST, while the partial eclipse shadow ingress image set is from 9:15 pm and the partial eclipse shadow egress image set is from 11:15 pm. I added in two images at either end taken at the very start and end of the umbral eclipse to add a more complete sequence of the lunar motion. The central image of totality includes a 1-minute exposure at ISO 800 and f/2.8 for the stars, which inevitably overexposes the Moon. So I’ve blended in three shorter exposures for the Moon, taken immediately after the long “star” exposure. These were 8, 4 and 2 seconds at ISO 400 and f/4, and all with the Canon 200mm telephoto. The two partial eclipse phases are stacks of 7 exposures each, from very short for the bright portion of the lunar disk, to long for the shadowed portion. They are blended with luminosity masks created with ADP Pro v3 panel for Photoshop, but modified with feathering to blend the images smoothly. 

Above is the final result, showing the outline of the circular umbral shadow of the Earth defined by the shadow edge on the partially eclipsed Moons. The umbra is about three times the size of the Moon. And at this eclipse the Moon moved across the northern half of the shadow.

So mission accomplished!

Success Selfie with Lunar Eclipse (Jan 20, 2019)
This is an untracked single exposure of 15 seconds at ISO 3200 and f/2.8 with the Sigma 20mm Art lens and Nikon D750. However, I blended in a shorter 1-second exposure for the red eclipsed Moon itself to prevent its disk from overexposing as it would in any exposure long enough to record the Milky Way. 

I usually try to take a “trophy” shot of the successful eclipse chaser having bagged his game. This is it, from mid-eclipse during totality, with the red Moon shining in the winter sky beside the Beehive.

With this eclipse I can now say I have seen every total lunar eclipse visible from my area of the world since May 2003. I’m not counting those TLEs that were visible from only the eastern hemisphere — I’m not so avid as to chase those. And there were a couple of TLEs in that time that were visible from North America, but not from Alberta. So I’m not counting those.

And a couple of TLEs that were visible from here I did not see from here in Alberta — I saw April 15, 2014 from Australia and April 4, 2015 from Utah.

With that tally I’ve seen all the locally visible TLEs over a full saros cycle, 18 years. The last local TLE I missed was January 20, 2000, exactly 19 years — a Metonic cycle — ago. It must have been cloudy!

may 21, 2021 eclipse

The next total eclipse of the Moon is May 26, 2021, visible from Alberta as the Moon sets at dawn. I’d like to be in Australia for that one (depicted above in a screen shot from StarryNight™), to see the eclipsed Moon beside the galactic centre as both rise in the east, a sight to remember. Being late austral autumn, that will be a “cool Moon.”

Happy eclipse chasing!

— Alan, January 22, 2019 / © 2019 Alan Dyer / AmazingSky.com 

 

Happy Holidays to All!


Happy Holidays with a Rising Solstice Full Moon

Here’s a celestial greeting card to wish everyone Happy Holidays and clear skies for 2019!

It was a very clear night on December 22, with the Moon bright and yellow as it rose over the distant horizon of my backyard prairie landscape.

This was the Full Moon that fell on the day after the solstice (winter for the northern hemisphere).

Rising of the Solstice Full Moon
This is a close up with the 105mm refractor, the Astro-Physics Traveler, at f/5.8 for a focal length of 609mm, and with the Canon 6D MkII at ISO 200, with the camera on auto exposure and taken as part of a 950-frame time-lapse sequence. Click to zoom up to full screen.

Note that the Moon’s disk is rimmed with green at the top and red at the bottom, an effect due to atmospheric refraction. But it adds Christmas colours to the lunar orb, like an ornament in the sky.

Below is the time-lapse of the moonrise, shot through a telescope with a focal length of 600mm, so equivalent to a very long telephoto lens. The movie is in 4K. Enjoy! And …

… All the best for 2019!

And don’t forget, you can get my free 2019 Amazing Sky Calendar at my website at http://www.amazingsky.com/aboutalan.html

Scroll down for the free PDF you can print out locally as you like.

2019 Amazing Sky Calendar Cover

Cheers and Happy Holidays!

— Alan, December 22, 2018 / AmazingSky.com 

 

 

Banff by Night


Milky Way Reflections at Bow Lake

Three perfect nights in July provided opportunities to capture the night sky at popular sites in Banff National Park.

When the weather forecast in mid-July looked so promising I made an impromptu trip to Banff to shoot nightscapes and time-lapses under unusually clear skies. Clouds are often the norm in the mountains or, increasingly these days, forest fire smoke in late summer.

But from July 15 to 17 the skies could not have been clearer, except for the clouds that rolled in late on my last night, when I was happy to pack up and get some sleep.

Conjunction over the Continental Divide with Train

My first priority was to shoot the marvellous close conjunction of the Moon and Venus on July 15. I did so from the Storm Mountain viewpoint on the Bow Valley Parkway, with a cooperative train also coming through the scene at the right time.

The Milky Way and Mars over Storm Mountain

This was the view later with the Milky Way and Mars over Bow Valley and Storm Mountain.

Bow Lake by Night Panorama

The next night, July 16, was one of the most perfect I had ever seen in the Rockies. Crystal clear skies, calm winds, and great lake reflections made for a picture-perfect night at Bow Lake on the Icefields Parkway. Above is a 360° panorama shot toward the end of the night when the galactic centre of the Milky Way was over Bow Glacier.

Streaks of green airglow arc across the south, while to the north the sky is purple from a faint display of aurora.

Earlier that night the usual auroral arc known as Steve put in an unexpected appearance. It was just a grey band to the eye, but the camera picked up Steve’s usual pink colours. Another photographer from the U.S. who showed up had no idea there was an aurora happening until I pointed it out.

Mars and the Milky Way at Herbert Lake

My last night was at Herbert Lake, a small pond great for capturing reflections of the mountains around Lake Louise, and the Milky Way. Here, brilliant Mars, so photogenic this summer, also reflects in the still waters.

At each site I shot time-lapses, and used those frames to have some fun with star trail stacking, showing the stars turning from east to west and reflected in the lake waters, and with a single still image taken at the end of the sequence layered in to show the untrailed sky and Milky Way.

But I also turned those frames into time-lapse movies, and incorporated them into a new music video, along with some favourite older clips reprocessed for this new video.

Banff by Night (4K) from Alan Dyer on Vimeo.

Enjoy! And do enlarge to full screen. The video is also in 4K resolution.

Clear skies!

— Alan, August 2, 2018 / © 2018 Alan Dyer / AmazingSky.com

 

On Solstice Pond


Selfie at Solstice Pond

Solstice nights have been filled with twilights, planets, and noctilucent clouds.

Astronomers tend to curse the short nights and late sunsets of summer solstice. But the bright nights do offer unique sights.

Over the last few nights I’ve set up at what I call “Solstice Pond,” a prairie slough near home ideal for shooting the aurora to the north and, at this time of year, the glow of twilight and noctilucent clouds.

Below is the view on the night before solstice, looking north toward the glow of “perpetual twilight” that lights the northern horizon at solstice time from my latitude of 50° north.

Solstice Twilight Panorama over Prairie Pond
A 120° panorama of the summer solstice twilight (at 12:30 am local time) looking north over the prairie pond near home in southern Alberta, taken June 19/20, 2018. Some very faint noctilucent clouds are at left but fading, while some very faint rays of auroral curtains are also visible in the photo but were invisible to the eye. The bright star Capella is at centre and reflected in the calm waters. Perseus is at right of centre. The red lights at right are from the wind turbines at the Wintering Hills Wind Farm. This is a stitch of 6 segments, with the 35mm lens at f/2.5 for 20 seconds each with the Canon 6DMkII at ISO 400.

From farther north the twilight would be more prominent, while above the Arctic Circle at 66° N latitude, the twilight turns to full daylight as the Sun never sets.

The view looking south this night, with the Moon just off frame at right, includes the Milky Way at centre, with Saturn embedded, flanked by bright Jupiter at right and reddish Mars at left, both casting shimmering “glitter paths” on the still waters.

Planet Panorama at a Prairie Pond
A 160° panorama looking south near summer solstice time in June 2018, with the bright planets Mars (left) and Jupiter (right) and their glitter paths on the water flanking the Milky Way and Saturn in Sagittarius above the pinkish Lagoon Nebula. The waxing Moon is setting off frame at right brightening the sky and lighting the landscape. The sky is also blue from the solstice twilight. The stars of Scorpius shine between Jupiter and the Milky Way. Some faint bands of red and green airglow are visible at left, despite the bright sky. This is a stitch of 8 segments, all for 25 seconds with the 35mm lens at f/2.2 and Canon 6D MkII at ISO 800.

A few nights later (below), on June 24, the star of the solstice sky put in an appearance. Bright noctilucent clouds (NLCs) shone to the north, reflected in the pond.

These are water vapour clouds 80 kilometres high at the edge of the atmosphere – in the mesosphere – almost in space. They form over the Arctic in summer, and are high enough to remain sunlit even in the middle of the night as they catch the Sun shining over the pole.

Southern Western Canada – the Prairies where I live – is well-placed to see them, as we are far enough north to see them in our sky, but not so far north that our sky is too bright.

Noctilucent Clouds over Prairie Pond (June 24, 2018)
A fine display of noctilucent clouds (NLCs) or polar mesospheric clouds, reflected in a local prairie pond near home in southern Alberta. The display started with wisps much higher in the north but they faded as the Sun dropped lower, with the display at this extent by the time I reached my spot and took this panorama. Leo and Regulus are setting at far left in the west, as is Venus just above the horizon at left. Capella and Auriga are at centre, and circumpolar, while the stars of Perseus at right, rising. This is a panorama of 9 segments, at 15° spacings, with the 35mm lens at f/2.8 for 13 second exposures with the Canon 6D MkII at ISO 400. Stitched with Adobe Camera Raw.

An even better display appeared two nights later, on June 26, brighter and with more structure.

The curving arc of the top of the display defines the most southerly edge where sunlight is able to reach. That edge drops lower through the first part of the night, as the Sun itself drops lower below the horizon. This causes less of the NLC display to be sunlit.

Panorama of Noctilucent Clouds (June 26, 2018)
A panorama of a fine display of noctilucent clouds across the northern horizon over an angle of about 60°. This was on June 26, 2018 at about 11:45 pm. Capella is just left of centre. The display faded as the solar illumination dropped and the clouds darkened from the top down. This was from the small pond near home in southern Alberta. This is a stitch of 7 segments, each 2 seconds at f/2.8 with the 85mm Rokinon lens and Canon 6D MkII at ISO 400. Stitched with ACR.

You can see this effect of the changing illumination of the clouds in this time-lapse compilation from June 26 (below).

Also notice the waving motion of the clouds. It is as if the NLC material is flowing over standing waves in the atmosphere – and it is! The waves are called “gravity waves,” and are bumps in the high atmosphere created by disturbances far below in the normal layers of the atmosphere, the stratosphere and troposphere.

The video includes two clips shot simultaneously: from a camera with a 24mm wide-angle lens, and from a camera with an 85mm moderate telephoto. Expand to view full screen in HD.

The motion, here over an hour or more, is hypnotic. The NLCs move right to left (east to west), while the dark normal weather clouds on the horizon are blowing left to right (west to east). The stars are also turning left to right. The water ripples in the wind, while ducks swim by.

It was a magical night at Solstice Pond.

– Alan, June 27, 2018 / © 2018 Alan Dyer / AmazingSky.com 

 

STEVE Puts on a Show


Steve Auroral Arc over House #2 (May 6, 2018)

The strange aurora named Steve put on a show on Sunday, May 6. 

The past weekend was a good one for Northern Lights here in Alberta and across western Canada.

Aurora and Milky Way over Red Deer River

A decent display lit the northern sky on Saturday, May 5, on a warm spring evening. I took in that show from a favorite spot along the Red Deer River.

The next night, Sunday, May 6, we were hoping for a better show, but the main aurora never amounted to much across the north.

Instead, we got a fine showing of Steve, an unusual isolated arc of light across the sky, that was widely observed across western Canada and the northern U.S.  I caught his performance from my backyard.

Popularized by the Alberta Aurora Chasers Facebook group, Steve is the fanciful name applied to what still remains a partly unexplained phenomenon. It might not even be a true aurora (and it is NOT a “proton arc!”) from electrons streaming down, but a stream of hot gas flowing east to west and always well south of the main aurora.

Thus Steve is “backronymed” as Strong Thermal Emission Velocity Enhancement.

To the eye he appears as a grey arc, not doing much, but fading in, slowly shifting, then fading away after 30 to 60 minutes. He doesn’t stick around long.

The camera reveals his true colours.

Steve Auroral Arc over House #1 (May 6, 2018)

This is Steve to the west, displaying his characteristic pink and white tints.

Fish-Eye Steve #1 (May 6, 2018)

But overhead, in a fish-eye lens view, he displayed ever so briefly another of his talents – slowly moving fingers of green, called a picket fence aurora.

It was appropriate for Steve to appear on cue, as NASA scientists and local researchers who are working on Steve research were gathered in Calgary to discuss future aurora space missions. Some of the researchers had not yet seen Steve in person, but all got a good look Sunday night as they, too, chased Steve!

I shot a time-lapse and real-time videos of Steve, the latter using the new Sony a7III camera which can shoot 4K videos of night sky scenes very well.

The final video is here on Vimeo.

Steve Aurora – May 6, 2018 (4K) from Alan Dyer on Vimeo.

It is in 4K, if you choose to stream it at full resolution.

With summer approaching, the nights are getting shorter and brighter, but we here in western Canada can still see auroras, while aurora destinations farther north are too bright and lack any night skies.

Plus our latitude south of the main auroral oval makes western Canada Steve country!

— Alan, May 9, 2018 / © 2018 / AmazingSky.com