The Great Transit Expedition of 2019


Blog Title

On November 11, I traveled to the near-flung corners of my backyard to observe the rare transit of Mercury across the Sun.

History is replete with tales of astronomers traveling to the far corners of the Earth to watch dark objects pass in front of the Sun — the Moon in eclipses, and Mercury and Venus in transits.

On November 11, to take in the last transit of Mercury until 2032, I had planned a trip to a location more likely to have clear skies in November than at home. A 3-day drive to southern Arizona was the plan.

But to attend to work and priorities at home I cancelled my plans. Instead, I decided to stay home and take my chances with the Alberta weather, perhaps making a run for it a day’s drive away if needed to chase into clear skies.

Transit of Mercury Selfie with Sun

As it turned out, none of that was necessary. The forecast for clear, if cold, skies held true and we could not have had a finer day for the transit. Even the -20° C temperatures were no problem, with no wind, and of course sunshine!

Plus being only steps from home and a warming coffee helped!

As it turned out, the site in Arizona I had booked to stay was clouded out for the entire event. So I was happy with my decision!

For my site in Alberta, as for all of western North America, the Sun rose with the transit in progress. But as soon as the Sun cleared the horizon there was Mercury, as a small, if fuzzy, black dot on the Sun.

Low Sun with Mercury in Transit

As the Sun rose the view became sharper, and was remarkable indeed — of a jet black dot of a tiny planet silhouetted on the Sun.

The Transit of Mercury Across the Sun (10 am MST)

I shot through two telescopes, my 4-inch and 5-inch refractors, both equipped with solar filters of course. I viewed through two other telescopes, for white-light and hydrogen-alpha filtered views.

I was able to follow the transit for three hours, for a little more than half the transit, until Mercury exited the Sun just after 11 a.m. MST. The view below is from moments before Mercury’s exit, or “egress.”

The Transit of Mercury Across the Sun (11 am MST)

I shot still frames every 15 seconds with each of the two cameras and telescopes, for a time-lapse, plus I shot real-time videos.

Mercury at Mid-Transit (November 11, 2019)

At this transit Mercury passed closer to the centre of the Sun’s disk than it will for any other transit in the 21st century, making this event all the more remarkable. That point is recorded above, from a shot taken at 8:19 a.m. MST.

Stacking a selection of the time-lapse frames, ones taken 1-minute intervals, produced this composite of the transit, from just before mid-transit until Mercury’s egress.

Transit of Mercury Composite Across the Sun v2

I assembled all the best images and 4K videos together into a movie, which I narrated live at the telescope as the transit was happening. I hope this provides a sense of what it was like to view this rare event.

The Transit of Mercury from Alan Dyer on Vimeo.

We won’t see another until 2032, but not from North America. The next transit of Mercury viewable from here at home is not until 2049! This was likely my last transit, certainly for a while!

Transit of Mercury Trophy Shot

This was my trophy shot! Bagged the transit!

P.S.: For my video of the previous transit of Mercury in May 2016, see my blog post which includes a similar compilation video.

P.P.S.: And for tech details on the images and videos in this blog, please click through to Vimeo and the video description I have there of cameras, scopes, and settings.

Clear skies!

Alan, November 17, 2019 / © 2019 Alan Dyer / amazingsky.com

 

The Northern Lights of Yellowknife


Aurora over Prince of Wales Museum, YellowknifeIt was a fabulous week of clear skies and dancing auroras in and around Yellowknife in Canada’s North.

For the second year in a row I traveled due north from home in Alberta to visit Yellowknife, capitol of Canada’s Northwest Territories. At a latitude of 62° North, Yellowknife lies directly under the auroral oval and so enjoys views of the Northern Lights on almost every clear night.

During my 8-night stay from September 3 to 10 almost every night was clear and filled with auroras.

Somba K’e Park

The Lights can be seen even from within the downtown core, as the opening image shows, taken from the urban Sombe K’e Park looking over Frame Lake and the Prince of Wales Museum.

The Museum is lit with rippling bands of coloured light that emulate the aurora borealis.

Pilot’s Monument

A favourite urban site for viewing the Lights is the Pilot’s Monument lookout in the middle of Yellowknife’s Oldtown district. This panorama sweeps from northeast at left to west at far right, looking mostly south over the downtown core.

This night even the urban lights were not enough to wash out the Lights as they brightened during a brief substorm.

Panorama of the Aurora Dancing over Yellowknife
This is a 300° panorama of the Northern Lights over Yellowknife, NWT on the night of Sept 6-7, 2019, during a sub-storm outbreak at 12:45 a.m. when the sky went wild with aurora. This is a 9-segment panorama with the 15mm Laowa lens at f/2 and Sony a7III at ISO 800, for 10 seconds each.

Rotary Park

Another good urban site that gets you away from immediate lights is the open spaces of Rotary Park overlooking the houseboats anchored in Yellowknife Bay. This panorama again sweeps from east to west, looking toward to the waxing Moon low in the south.

Again, despite the urban lights and moonlight, the Lights were spectacular.

Aurora Panorama from Rotary Park, Yellowknife
A 240° panorama of the Northern Lights from the Boardwalk in the urban Rotary Park in Yellowknife, NWT, on Sept 10, 2019. A waxing gibbous Moon is bright to the south and lights the sky and landscape. This is a 7-segment panorama, each segment 8 seconds at f/2 with the Venus Optics 15mm lens and Sony a7III at ISO 1600. Stitched with Adobe Camera Raw.

Prosperous Lake

The main viewing sites for the Northern Lights are down Highway 4, the Ingraham Trail east of the city away from urban lights.. One of the closest stops is a parking lot on the shore of a backwater bay of Prosperous Lake. It’s where many tourist buses stop and unload their passengers, mostly to get their selfies under the Lights.

But with patience you can get your own photos unencumbered by other lights and people, as I show below.

Aurora Tourists at Prosperous Lake (Sept 5-6, 2019)
A group of aurora tourists take their aurora selfies at Prosperous Lake, near Yellowknife, NWT, a popular spot on the Ingraham Trail for aurora watching. This was about 1:15 a.m. MDT. This is a single 5-second exposure with the 20mm Sigma Art lens at f/2 and Nikon D750 at ISO800.
Aurora over Prosperous Lake, Yellowknife (Sept 5-6, 2019)
The Northern Lights over the end of Prosperous Lake, on the Ingraham Trail near Yellowknife, NWT, a popular spot for aurora watching in the area. This is a single 8-second exposure with the Sigma 20mm lens at f/2 and Nikon D750 at ISO 800.

On one of my nights I stopped at Prosperous on the way to sites farther down Ingraham Trail to catch the twilight colours in the stunningly clear sky.

Sunset Twilight at Prosperous Lake
Twilight at Prosperous Lake on the Ingraham Trail, near Yellowknife, NWT, Sept. 7, 2019. The colours are accentuated by volcanic ash in the atmosphere.

Madeline Lake

This small lake and picnic site farther along the Trail serves as a great place to shoot the Lights reflected in the calm waters and looking north. I spent one of my nights at Madeline Lake, a popular spot for local residents to have a campfire under the Lights.

Campfire Under the Aurora #2
Enjoying a campfire on a fine September Saturday night under the brightening Northern Lights, at Madeline Lake on the Ingraham Trail near Yellowknife. This is a single 10-second exposure with the 20mm Sigma lens at f/2 and Nikon D750 at ISO 800.

And it’s popular for tour buses, whose headlights shine out across the lake as they arrive through the night, in this case casting my long shadow across the misty lake.

Selfie Shadow at Madeline Lake with Aurora
A novelty shot of the shadow of me and my tripod projected across a misty Madeline Lake by car headlights from arriving aurora tourists at this popular spot on the Ingraham Trail near Yellowknife. This was September 7, 2019. A single exposure.
Aurora Tourists at Madeline Lake
A group of aurora tourists take in the show at Madeline Lake, on the Ingraham Trail near Yellowknife, NWT, a popular spot for the busloads of visitors being shuttled around each night. The Big Dipper is at centre. This is a single exposure, 6 seconds at ISO 3200 with the Laowa 15mm lens at f/2 and Sony a7III.

However, again with patience it is possible to get clean images of the aurora and its reflections in the lake.

Aurora over Madeline Lake Panorama (Sept 7, 2019)
The Northern Lights in a subtle but colourful display over the still waters of Madeline Lake on the Ingraham Trail near Yellowknife, NWT. This was the night of September 7-8, 2019. This is a 4-segment panorama, each 13 seconds at ISO 1600 with the Venus Optics 15mm lens at f/2 and Sony a7III camera.

The Ramparts

Farther down the Trail is a spot the tour buses will not go to as a visit to the Ramparts waterfall on the Cameron River requires a hike down a wooded trail, in the dark with bears about. Luckily, my astrophoto colleague, amateur astronomer, and local resident Stephen Bedingfield joined me for a superb shoot with us the only ones present at this stunning location.

Photographer at Cameron River Ramparts
Photographer Stephen Bedingfield is shooting the Northern Lights at the Ramparts waterfalls on the Cameron River, September 8, 2019. This is a single 8-second exposure with the Laowa 15mm lens at f/2 and Sony a7III at ISO 3200.
Aurora over Cameron River Ramparts
The Northern Lights over the waterfalls known as the Ramparts on the Cameron River east of Yellowknife, NWT, on September 8, 2019. This is a single exposure of 20 seconds with the 15mm Laowa lens at f/2 and Sony a7III at ISO 1600, blended with two light painted exposures of the same duration but with the water illuminated to make it more white.

The view looking the other way north over the river was equally wonderful. What a place for viewing the Northern Lights!

Aurora over Cameron River with Autumn Colours
The Northern Lights in an arc across the northern sky over the Cameron River, downriver from the Ramparts Falls. This was September 8, 2019 with the trees turning in their fall colours. The Big Dipper at top centre. This is a two-segment panorama, each 25 seconds at f/2 with the Laowa 15mm lens and Sony a7III at ISO 800. Stitched with ACR.

The view from a viewpoint early on the trail down to the Ramparts and overlooking the Cameron River yielded a superb scene with the low Moon and twilight providing the illumination as the Lights kicked up early in the evening.

Aurora over Cameron River in Moonlight
The curtains of an early evening aurora starting to dance in the twilight and with the western sky lit by moonlight from the waxing gibbous Moon low in the sky and off-frame to the right. This is from the Cameron River viewpoint off the Ramparts falls trail on the Ingraham trail near Yellowknife. This is a single 15-second exposure with the 15mm Laowa lens at f/2 and Sony a7III at ISO 1600.

Prelude Lake

A favourite spot is the major camping and boat launch area of Prelude Lake Territorial Park. But to avoid the crowds down by the shoreline, Stephen and I hiked up to the overlook above the lake looking north. A few other ardent photographers joined us. This was another spectacular and perfect night.

Aurora in Twilight over Prelude Lake
An arc of Northern Lights appears in the evening twilight over Prelude Lake near Yellowknife, NWT, on September 9, 2019. This is a single 25-second exposure at f/2 with the Venus Optics 15mm lens and Sony a7III at ISO 800.

September is a superb time to visit as the lakes are still open and the autumn colours make for a good contrast with the sky colours.

The panorama below takes in the Big Dipper at left, Capella at centre, and with the Pleiades and Hyades rising at right of centre.

Auroral Arc in the Twilight at Prelude Lake
The arc of Northern Lights starting a show in the deep twilight over Prelude Lake on the Ingraham Trail near Yellowknife, NWT. This was September 9, 2019. Light from the waxing gibbous Moon behind the camera also illuminates the scene. This is a 5-segment panorama with the 15mm Laowa lens at f/2 and Sony a7III at ISO 800 and all at 25 seconds. Stitched with PTGui, as ACR and Photoshop refused to joint the left segments.

I used the 8mm fish-eye lens to capture the entire sky, the only way you can really take in the whole scene on camera. When the Lights fill the sky you don’t know which way to look or aim your camera!

There are many other scenic spots along the Trail, such as Pontoon Lake, Reid Lake, and Tibbitt Lake at the very end of Ingraham Trail. For images and movies I shot last year at Tibbitt Lake, see my blog post at Aurora Reflections in Yellowknife.

But in my 8 nights in Yellowknife this year I managed to hit many of the key aurora spots for photography and viewing. I recommend a visit, especially in September before autumn clouds roll in later in the season, and while the lakes are not frozen and nighttime temperatures are mild.

Here’s a 3-minute music video of clips I shot from all these sites showing the motion of the Lights as it appeared to the eye in “real-time,” not sped up or in time-lapse.

The Northern Lights of Yellowknife from Alan Dyer on Vimeo.

It’s in 4K on Vimeo. Enjoy!

I’ve made my bookings for next year in September!

— Alan / October 6, 2019 / © 2019 AmazingSky.com

 

Testing the MSM Tracker


MSM Test Title

A new low-cost sky tracker promises to simplify not only tracking the sky but also taking time-lapses panning along the horizon. It works but …

If you are an active nightscape photographer chances are your social media feeds have been punctuated with ads for this new low-cost tracker from MoveShootMove.com. 

For $200, much less than popular trackers from Sky-Watcher and iOptron, the SiFo unit (as it is labelled) offers the ability track the sky, avoiding any star trails. That alone would make it a bargain, and useful for nightscape and deep-sky photographers. 

But it also has a function for panning horizontally, moving incrementally between exposures, thus the Move-Shoot-Move designation. The result is a time-lapse movie that pans along the horizon, but with each frame with the ground sharp, as the camera moves only between exposures, not during them. 

 

MSM Polar Aligned Side V1
The Move-Shoot-Move Tracker
The $200 MSM can be polar aligned using the optional laser, shown here, or an optical polar scope to allow to follow the sky. The ball head is user supplied. 

Again, for $200 this is an excellent feature lacking in trackers like the Sky-Watcher Star Adventurer or iOptron SkyTracker. The Sky-Watcher Star Adventurer Mini does, however, offer both tracking and “move-shoot-move” time-lapse functions, but at a cost of $300 to $400 U.S., depending on accessories. 

All these functions are provided in a unit that is light (weighing 700 grams with a tripod plate and the laser) and compact (taking up less space in your camera bag than most lenses). By comparison, the Star Adventurer Mini weighs 900 grams with the polar scope, while the original larger Star Adventurer is 1.4 kg, double the MSM’s weight. 

Note, that the MSM’s advertised weight of 445 grams does not include the laser or a tripod plate, two items you need to use it. So 700 grams is a more realistic figure, still light, but not lighter than the competition by as much as you might be led to believe. 

Nevertheless, the MSM’s small size and weight make it attractive for travel, especially for flights to remote sites. Construction is solid and all-metal. This is not a cheap plastic toy.

But does it work? Yes, but with several important caveats that might be a concern for some buyers. 

What I Tested

I purchased the Basic Kit B package for $220 U.S., which includes a small case, a laser pointer and bracket for polar alignment (and with a small charger for the laser’s single 3.7-volt battery), and with the camera sync cable needed for time-lapse shooting. 

I also purchased the new “button” model, not the older version that used a knob to set various tracking rates. 

 

MSM with Canon 6D MkII
MSM Fitted Out
Keep in mind that to use any tracker like the MSM you will need a solid tripod with a head good enough to hold the tracker and camera steady when tipped over when polar aligned, and another ball head on the tracker itself.

The ball head needed to go on top of the tracker is something you supply. The kit does come with two 3/8-inch stud bolts and a 3/8-to1/4-inch bushing adapter, for placing the tracker on tripods in the various mounting configurations I show below. 

The first units were labelled as ‘SiFo,” but current units now carry the Gauda brand name. I’ll just call it the MSM. 

I purchased the gear from the MSM website, and had my order fulfilled and shipped to me in Canada from China with no problems. 

Tracking the Sky in Nightscapes

The attraction is its tracking function, allowing a camera to follow the sky and take exposures longer than any dictated by “500” or “NPF” Rules to avoid any star trailing. 

Exposures can be a minute or more to record much more depth and detail in the Milky Way, though the ground will blur. But blending tracked sky exposures with untracked ground exposures gets around that, and with the MSM it’s easy to turn on and off the tracking motor, something not possible with the low-cost wind-up Mini Track from Omegon. 

MSM Polar Aligned Side V2
Mounting on the Side
The MSM is shown in illustrations and instructions mounted by its side panel bolt hole. This works, but produced problems with the gears not meshing well and the MSM not tracking at all for initial exposures. 

The illustrations and instructions (in a PDF well-hidden off the MSM Buy page) show the MSM mounted using the 1/4-20 bolt hole on the side of the unit opposite the LED-illuminated control panel. While this seems to be the preferred  method, in the first unit I tested I found it produced serious mis-tracking problems. 

MSM Test (On Side) 1 minute 50mm
50mm Lens Set, Mounted on the Side
A set of five consecutive 1-minute exposures taken with the original SiFo-branded MSM mounted by its side bolt hole showed the MSM’s habit of taking several minutes for the gears to mesh and to begin tracking. Tap or click to download full-res version.

With a Canon 6D MkII and 50mm f/1.4 lens (not a particularly heavy combination), the MSM’s gears would not engage and start tracking until after about 5 minutes. The first exposures were useless. This was also the case whenever I moved the camera to a new position to re-frame the scene or sky. Again, the first few minutes produced no or poor tracking until the gears finally engaged. 

This would be a problem when taking tracked/untracked sets for nightscapes, as images need to be taken in quick succession. It’s also just plain annoying.

However, see the UPDATE at the end for the performance of a new Gauda-branded unit that was sent to me. 

Sagittarius - Red Enhancer Filter
50mm Nightscape
With patience and persistence you can get well-tracked nightscapes with the MSM. This is a single 1-minute exposure with a 50mm lens. Tap or click to download full-res version.

Mounting Options

The solution was to mount the MSM using the 3/8-inch bolt hole on the back plate of the tracker, using the 1/4-20 adapter ring to allow it to attach to my tripod head. This still allowed me to tip the unit up to polar align it. 

MSM Polar Aligned Back V1
Mounting on the Back
Mounting the MSM using its back plate produced more reliable tracking results, though requires swapping mounting bolts and 3/8-1/4-inch adapter rings from the preferred method of mounting the MSM for time-lapse work. 

Tracking was now much more consistent, with only the first exposure usually badly trailed. But subsequent exposures all tracked, but with varying degrees of accuracy as I show below. 

When used as a tracker, you need to control the camera’s exposure time with an external intervalometer you supply, to allow setting exposures over 30 seconds long. 

The MSM offers a N and S setting, the latter for use in the Southern Hemisphere. A 1/2-speed setting turns the tracker at half the normal sidereal rate, useful for nightscapes as a compromise speed to provide some tracking while minimizing ground blurring. 

Polar Alignment

For any tracker to track, its rotation axis has to be aimed at the Celestial Pole, near Polaris in the Northern Hemisphere, and near Sigma Octantis in the Southern Hemisphere. 

MSM Tracker with Laser Pointer (Red Light Version)
Polar Aligning on Polaris
The MSM’s bright laser pointer is useful for aiming the tracker at the North Celestial Pole, located about a degree away from Polaris in the direction of Alkaid, the end star in the Handle of the Big Dipper or Plough. 

I chose the laser pointer option for this, rather than the polar alignment scope. The laser attaches to the side of the MSM using a small screw-on metal bracket so that it points up along the axis of rotation, the polar axis. 

The laser is labeled as a 1mw unit, but it is far brighter than any 1mw I’ve used. This does make it bright, allowing the beam to show up even when the sky is not dark. The battery is rechargeable and a small charger comes with the laser. Considering the laser is just a $15 option, it’s a bargain. But ….


UPDATE ADDED SEPTEMBER 1

Since I published the review, I have had the laser professionally tested, and it measured as having an output of 45 milliwatts. Yet it is labeled as being under 1 milliwatt. This is serious misrepresentation of the specs, done I can only assume to circumvent import restrictions. In Canada it is now illegal to import, own, or use any green laser over 5 milliwatts, a power level that would be sufficient for the intended use of polar aligning. 45mw is outright illegal. 


So be warned, use of this laser will be illegal in some areas. And use of any green laser will be illegal close to airports, and outlawed entirely in some jurisdictions such as Australia, a fact the MSM website mentions. 

The legal alternative is the optical polar alignment scope. I already have several of those, but my expectation that I could use one I had with the same bracket supplied with the laser were dashed by the fact that the bracket’s hole is too narrow to accept any of the other polar alignment scopes I have, which are all standard items. I you want a polar scope, buy theirs for $70. 

However, if you can use it where you live, the laser works well enough, allowing you to aim the tracker at the Pole just by eye. For the wide lenses the tracker is intended to be used with, eyeball alignment proved good enough.

Just be very, very careful not to accidentally look down the beam. Seriously. It is far too easy to do by mistake, but doing so could damage your eye in moments. 

Tracking the Sky in Deep-Sky Images

How well does the MSM actually track? In tests of the original SiFo unit I bought, and in sets of exposures with 35mm, 50mm, and 135mm lenses, and with the tracker mounted on the back, I found that 25% to 50% of the images showed mis-tracking. Gear errors still produced slightly trailed stars. This gear error shows itself more as you shoot with longer focal lengths. 

MSM Test (On Back) 2 min 35mm
35mm Lens Set, Mounted on the Back
A set of 2-minute exposures with the MSM mounted by its back plate showed better tracking with quicker gear meshing, though still with some frames showing trailing. Tap or click to download full-res version.

The MSM is best for what it is advertised as — as a tracker for nightscapes with forgiving wide-angle lenses in the 14mm to 24mm range. With longer lenses, expect to throw away a good number of exposures as unusable. Take twice as many as you think you might need.

MSM Test (On Back) 1 min 135mm
135mm Telephoto Lens Set
A set of 20 one-minute exposures with a 135mm lens showed more than half with unusable amounts of mis-tracking. But enough worked to be usable! Tap or click to download full-res version.

With a 135mm lens taking Milky Way closeups, more than half the shots were badly trailed. Really badly trailed. This is not from poor polar alignment, which produces a gradual drift of the frame, but from errors in the drive gears, and random errors at that, not periodic errors. 

To be fair, this is often the case with other trackers as well. People always want to weight them down with heavy and demanding telephotos for deep-sky portraits, but that’s rarely a good idea with any tracker. They are best with wide lenses.

That said, I found the MSM’s error rate and amount to be much worse than with other trackers. With the Star Adventurer models and a 135mm lens for example, I can expect only 20% to 25% of the images to be trailed, and even then rarely as badly as what the MSM exhibited.

See the UPDATE at the end for the performance of the replacement Gauda-branded unit sent to me with the promise of much improved tracking accuracy. 

The Arrow, Dumbbell, and Coathanger
Sagitta and Area with the 135mm
The result of the above set was a stack of 8 of the best for a fine portrait of the Milky Way area in Sagitta, showing the Dumbbell Nebula and Coathanger asterism. Each sub-frame was 1 minute at f/2 and ISO 1600. Tap or click to download full-res version.

Yes, enough shots worked to be usable, but it took using a fast f/2 lens to keep exposure times down to a minute to provide that yield. Users of slow f/5.6 kit-zoom lenses will struggle trying to take deep-sky images with the MSM. 

In short, this is a low-cost tracker and it shows. It does work, but not as well as the higher-cost competitors. But restrict it to wide-angle lenses and you’ll be fine. 

Panning the Ground 

The other mode the MSM can be used in is as a time-lapse motion controller. Here you mount the MSM horizontally so the camera turns parallel to the horizon (or it can be mounted vertically for vertical panning, a mode I rarely use and did not test). 

MSM Tracker Taking Time-Lapse in Moonlight
The MSM at Work
I performed all the time-lapse testing from my rural backyard on nights in mid-August 2019 with a waning Moon lighting the sky. 

This is where the Move-Shoot-Move function comes in. 

The supplied Sync cable goes from the camera’s flash hot shoe to the MSM’s camera jack. What happens is that when the camera finishes an exposure it sends a pulse to the MSM, which then quickly moves while the shutter is closed by the increment you set.

There is a choice of 4 speeds, marked in degrees-per-move: 0.05°, 0.2°, 0.5°, and 1.0°. For example, as the movie below shows, taking 360 frames at the 1° speed results in a complete 360° turn.

 

MSM Control Panel CU
Time-Lapse Speeds
The control panel offers a choice of N and S rotation directions, a 1/2-speed rate for partially tracked nightscapes, and Move-Shoot-Move rates per move of 0.05°, 0.2°, 0.5° and a very fast 1° setting. The Sync cable plugs into the jack on the MSM. The other jack is for connecting to a motion control slider, a function I didn’t test.

The MSM does the moving, but all the shutter speed control and intervals must be set using a separate intervalometer, either one built into the camera, or an outboard hardware unit. The MSM does not control the camera shutter. In fact, the camera controls the MSM.

Intervals should be set to be about 2 seconds longer than the shutter speed, to allow the MSM to perform its move and settle. 

This connection between the MSM and camera worked very well. It is unconventional, but simple and effective.

MSM Time-Lapse Correct
Mounting for Time-Lapse
The preferred method of mounting the MSM for time-lapses is to do so “upside-down” with its rotating top plate at bottom attached to the tripod. Thus the whole MSM and camera turns, preventing the Sync cable from winding up during a turn. 

Too Slow or Too Fast

The issue is the limited choice of move speeds. I found the 0.5° and 1° speeds much too fast for night use, except perhaps for special effects in urban cityscapes. Even in daytime use, when exposure times are very short, the results are dizzying, as I show below. 

Even the 0.2°-per-move speed I feel is too fast for most nightscape work. Over the 300 exposures one typically takes for a time-lapse movie, that speed will turn the MSM (300 x 0.2°) = 60 degrees. That’s a lot of motion for 300 shots, which will usually be rendered out at 24 or 30 frames per second for a clip that lasts 10 to 12 seconds. The scene will turn a lot in that time.

On the other hand, the 0.05°-per-move setting is rather slow, producing a turn of (300 x 0.05°) = 15° during the 300 shots. 

That works, but with all the motion controllers I’ve used — units that can run at whatever speed they need to get from the start point to the end point you set — I find a rate of about 0.1° per move is what works best for a movie that provides the right amount of motion. Not too slow. Not too fast. Just right. 

MSM Time-Lapse Correct CU
Inverted Control Panel
When mounted as recommended for time-lapses, the control panel does end up upside-down. 

Following the Sky in a Time-Lapse

The additional complication is trying to get the MSM to also turn at the right rate to follow the sky — for example, to keep the galaxy core in frame during the time-lapse clip. I think doing so produces one of the most effective time-lapse sequences. 

But to do that with any device requires turning at a rate of 15° per hour, the rate the sky moves from east to west.

Because the MSM provides only set fixed speeds, the only way you have of controlling how much it moves over a given amount of time, such as an hour, is to vary the shutter speed. 

I found that to get the MSM to follow the Milky Way in a time-lapse using the 0.05° rate and shooting 300 frames required shooting at a shutter speed of 12 seconds. No more, no less. 

MSM Time-Lapse Top Plate
Top Plate Display
When mounted “upside-down” for a time-lapse the top surface provides the N-S direction arrows (N moves clockwise) and a small, handy bubble level.

Do the Math

Where does that number come from? 

At its rate of 0.05°/move, the MSM will turn 15° over 300 shots. The sky moves 15° in one hour, or 3600 seconds. So to fit 300 shots into 3600 seconds means each shot has to be no longer than (3600/300) = 12 seconds long. 

The result works, as I show in the sampler movie. 

But 12 seconds is a rather short shutter speed on a dark, moonless night with the Milky Way. 

For properly exposed images you would need to shoot at very fast apertures (f/1.4 to f/2) and/or high and noisy ISO speeds. Neither are optimal. But they are forced upon you by the MSM’s restricted rates. 

Using the faster 0.2° rate yields a turn of 60° over 300 shots. That’s four hours of sky motion. So each exposure now has to be 48 seconds long for the camera to follow the sky, four times longer because the drive rate is now four times faster. 

A shutter speed of 48 seconds is a little too long in my opinion. Stars in each frame will trail. Plus a turn of 60° over 300 shots is quite a lot, producing a movie that turns too quickly. 

MSM Time-Lapse Inverted
Alternative Time-Lapse Configuration
The other option is to mount the MSM so the control panel is right-side-up and the top turn-table (the part that turns and that the camera is attached to) is on top. Now only the camera turns; the MSM does not. This works but the Sync cable can wrap around and bind in long turns. For short turns of 30° to 60° it is fine. 

By far the best speed for motion control time-lapses would have been 0.1° per move. That would allow 24-second exposures to follow the sky, allowing a stop less in aperture or ISO speed. 

MSM — please ditch the 1° rate. 

Though MSM claims the unit was designed by astrophotographers, it’s hard to imagine any time-lapse experts thinking the speeds they settled on were the best. 

Yes, having only a limited number of pre-wired speeds does make the MSM much easier to program than devices like the Star Adventurer Mini or SYRP Genie Mini that use wireless apps to set their functions. No question, the MSM is better suited to beginners who don’t want to fuss with lots of parameters. 

But … If only the MSM had a better 0.1° speed, it would be ideal for beginners wanting to dabble in motion-control time-lapse.

As it is, getting a decent result requires some math and juggling of camera settings to make up for the MSM’s limited and, in my opinion, wrong choices of speeds. 

Time-Lapse Movie Examples

This compilation shows examples of daytime time-lapses taken at the fastest and dizzying 0.5° and 1.0° speeds, and night time-lapses taken at the slower speeds. The final clip is taken at 0.05°/move and with 12-second exposures, a combination that allowed the camera to nicely follow the Milky Way, albeit at a slow pace. Taking more than the 300 frames used here would have produced a clip that turned at the same rate, but lasted longer. 

Battery Life

The MSM is powered off an internal rechargeable battery, which can be charged from any 5-volt charger you have from a mobile phone. 

The MSM uses a USB-C jack for the power cable, but a USB-A to USB-C cord is supplied, handy as you might not have one if you don’t have other USB-C devices. 

The battery lasted for half a dozen or more 300-shot time-lapses, enough to get you through at least 2 or 3 nights of shooting. However, my testing was done on warm summer nights. In winter battery life will be less. 

While the built-in battery is handy, in the field should you find battery level low (the N and S switches blink as a warning) you can’t just swap in fresh batteries. Just remember to charge up before heading out. Alternatively, it can be charged from an external 5V battery pack such as used to prolong cell phone life. 

Hercules and Corona Borealis (50mm 6D)
The constellations of Hercules and Corona Borealis in the northern spring and summer sky. This is a stack of 3 x 2-minute exposures with the 50mm Sigma lens at f/2.8 and Canon 6D at ISO 800, plus an additional 2 min exposure through the Kenko Softon filter to add the star glows. All tracked on the original MSM SiFo Tracker from China. Tap or click to download full-res version.

Other Caveats

The MSM does not offer, nor does it promise, any form of automated panorama shooting. This is where the device turns by, say, 15° to 45° between shots, to shoot the segments for a still-image panorama. More sophisticated motion controllers from SYRP and Edelkrone offer that function, including the ability to mate two devices for automated multi-tier panoramas. 

Nor does the MSM offer the more advanced option of ramping speeds up and down at the start and end of a time-lapse. It moves at a constant rate throughout. 

While some of the shortcomings could perhaps be fixed with a firmware update, there is no indication anywhere that its internal firmware can be updated through the USB-C port. 

MSM Polar Aligned On Back


UPDATE ADDED OCTOBER 7, 2019

Since I published the review, MSM saw the initial test results and admitted that the earlier units like mine (ordered in June) exhibited large amounts of tracking error. They sent me a replacement unit, now branded with the Gauda label. According to MSM it contains a more powerful motor promised to improve tracking accuracy and making it possible to take images with lenses as long as 135mm.

I’m sorry to report it didn’t.

MSM Gauda-135mm Back-NE
This shows 300% blow-ups of a star field rising in the northeast sky taken with the new Gauda unit and with a 135mm lens, each for 2 minutes in quick succession. Less than 50% of the frames were useable and untrailed. (The first frames were shot through high clouds.)
MSM Gauda-135mm Back-Zenith
Taken the same night as the previous set, this shows 24 shots taken in quick succession with the same 135mm lens for 2 minutes each but with the camera aimed overhead to the zenith. None of the images were usable. All were trailed, most very badly.

In tests with the 135mm lens the new, improved MSM still showed lots of tracking error, to the point that images taken with a lens as long as this were mostly unusable.

Tap or click on the images to download full-res versions.

The short movie above takes the full-frame images from the zenith set of 24 frames taken over 48 minutes and turns them into a little time-lapse. It shows how the mechanism of the MSM seems to be wobbling the camera around in a circle, creating the mis-tracking.

Comparison with the Star Adventurer

As a comparison, the next night I used a Sky-Watcher Star Adventurer (the full-size model not the Mini) to shoot the same fields in the northeast and overhead with the same 135mm lens and with the same ball-head, to ensure the ball-head was not at fault. Here are the results:

Star Adventurer-135mm-NE
The same field looking northeast, with 300% blow-ups of 2-minute exposures with the 135mm lens and Star Adventurer tracker. As is usual with this unit, about 20% of the frames show mis-tracking, but none as badly as the MSM.
Star Adventurer-135mm-Zenith
Aiming the camera to the zenith the Star Adventurer again showed a good success rate with a slightly greater percentage trailed, but again, none as badly as the MSM.

The Star Adventurer performed much better. Most images were well-tracked. Even on those frames that showed trailing, it was slight. The Star Adventurer is a unit you can use to take close-ups of deep-sky fields with telephoto lenses, if that’s your desire.

By contrast, the MSM is best used — indeed, I feel can only be used practically — with wide-angle lenses and with exposures under 2 minutes. Here’s a set taken with a 35mm lens, each for 2 minutes.

MSM Gauda-35mm Side-NE
This is a set of consecutive 2-minute exposures with a 35mm lens and Canon 6D MkII on the MSM tracker, with the tracker mounted using the side 1/4-20 bolt hole. It was aimed to the northeast. About half the images showed significant trailing.

With the more forgiving 35mm lens, while more images worked, the success rate was still only 50%.

What I did not see with the new Gauda unit was the 5-minute delay before the gears meshed and tracking began. That issue has been resolved by the new, more powerful motor. The new Gauda model does start tracking right away.

But it is still prone to significant enough drive errors that stars are often trailed even with a 35mm lens (this was on a full-frame Canon 6D MkII).


UPDATED CONCLUSIONS

The MSM tracker is low-cost, well-built, and compact for easy packing and travel. It performs its advertised functions well enough to allow users to get results, either tracked images of the Milky Way and constellations, or simple motion-control time-lapses. 

But it is best used — indeed I would suggest can only be used — with wide-angle lenses for tracked Milky Way nightscapes. Even then, take more shots than you think you need to be sure enough are well-tracked and usable. 

It can also be used for simple motion-control time-lapses, provided you do to the math to get it to turn by the amount you want, working around the too-slow or too-fast speeds. A 0.1° per move rate would have been much better. 

However, I think aspiring time-lapse photographers will soon outgrow the MSM’s limitations for motion-control sequences. But it can get you started. 

If you really value its compactness and your budget is tight, the MSM will serve you well enough for tracked nightscape shooting with wide-angle lenses.

But if you wish to take close-ups of starfields and deep-sky objects with longer lenses, consider a unit like the Sky-Watcher Star Adventurer for its lower tracking errors. Or the Star Adventurer Mini for its better motion-control time-lapse functions. 

— Alan Dyer / August 22, 2019 / UPDATED October 7, 2019 / © 2019 AmazingSky.com

 

Celebrating Apollo


Presenting Apollo Show

To mark the 50th anniversary of Apollo 11, my contribution was to produce a planetarium show about the missions. 

I’ve been retired from active planetarium show production and science centre work for more than 5 years now. But it’s great to get back in the Dome now and then.

The opportunity came this summer with the hugely popular 50th anniversary of the first Moon landing by Apollo 11. Everyone was hosting events and parties.

To contribute to the local science centre’s event, TELUS Spark in Calgary kindly gave me the keys to the Evans and Sutherland Digistar planetarium system to produce a special lecture/show for the Dome about the Apollo landings.

It was part of Spark’s well-attended Moon Landing Party night July 20. A collage of iPhone images shows some of the other activities that evening.

It was a capacity crowd, and both my shows were “sold out” with full houses. Indeed, I’m presenting extra shows by popular demand in the coming week so those who couldn’t get tickets on July 20 can see the program.

For you to see the show, and to document it for my posterity, I shot time-lapses of me presenting the show, first in rehearsal with some staff present shot from the audience point of view, then in the first presentation from the stage (my) point of view.

The time-lapses compressed the hour-long show into two 1-minute clips. It really wasn’t that frantic in real life! Here’s the video, from my YouTube channel.

I was impressed and surprised at how popular the Apollo anniversary has been. For most today the Moon landings are old history, before their time. Yet, the Apollo missions continue to inspire and amaze.

It was a wonderful moment to be alive.

— Alan, July 24, 2019 / © 2019 Alan Dyer / AmazingSky.com

 

Auroras at Sea


Aurora from at Sea Near Lofotens #1

As I do a couple of times a year, earlier this month I was cruising the coast of Norway chasing the Northern Lights – successfully!

One of my “retirement gigs” is to serve as a lecturer for the educational travel company Road Scholar (formerly Elderhostel) on some of their aurora cruises along the Norwegian coast on one of the Hurtigruten ferry ships.

This time, as I was last autumn, I was on Hurtigruten’s flagship coastal ferry, the m/s Trollfjord.

Aurora over the Norwegian Sea #2 (Feb 27, 2019)
The Northern Lights over the Norwegian Sea south of the small fishing village of Oksfjord, from the Hurtigruten ferry ship the m/s Trollfjord on the northbound voyage from Bergen to Kirkenes. This was during a minor geomagnetic storm producing an all-sky aurora with a Kp Index however of no more Kp 3 – 4 this night. A break in the clouds allowed a glimpse of the Lights for about an hour at 11 pm. This is looking north. This is a single 1.6-second exposure at f/2 with the Venus Optics 15mm lens and Sony a7III at ISO 6400. Ship motion inevitably adds some star trailing.

Our tour group was treated to five fine nights with auroras, an unusually good take out of the 12-day round trip cruise from Bergen to Kirkenes and back to Bergen. Our first look, above, was on February 27, but through cloud.

Auroral Swirls over Båtsfjord, Norway
Swirls of auroral curtains over Båtsfjord, Norway while we were in port on the southbound portion of the Hurtigruten coastal cruise on the ms Trollfjord. This was March 1, 2019. The stars of Taurus and the Pleiades are at left; Cassiopeia at upper right. This is a single 0.8-second exposure at f/2 with the 15mm Venus Optics lens and Sony a7III at ISO 1600.

But after we reached the top end at Kirkenes and turned around for the southbound voyage, skies cleared remarkably. We had a wonderful four clear days and nights in a row, all with Northern Lights.

Auroral Swirls Overhed from the ms Trollfjord
Auroral curtains in an overhead coronal burst swirling at the zenith during a fine display on March 1, 2019, as seen from the deck of the Hurtigruten ferry ship the ms Trollfjord, while in port in Båtsfjord, Norway. The Big Dipper is at upper right; Cassiopeia at lower left, and Polaris in the centre amid the aurora. This is a single 1-second exposure at f/2 with the Venus Optics 15mm lens and Sony a7III at ISO 3200. It was taken from port with the ship stationary and amid the port lights.

The best show was March 1, and when we were in port in the northern coastal village of Båtsfjord. The Lights danced overhead in the best show I had seen from Norway.

Aurora over Skjervøy, Norway
The Northern Lights over the village of Skjervøy on the northern coast of Norway north of Tromsø. Taken from the deck of the Hurtigruten ship the ms Trollfjord while in port, March 2, 2019. Looking west with Cassiopeia at right and the Pleiades at left. This is a blend of two exposures: a long 4-second exposure for the sky and aurora, and a short 0.8-second exposure for the ground and city lights. All at f/2 with the 15mm Venus Optics lens and Sony a7III at ISO 800.

The next night we got a good show while we were in the port of Skjervøy.

As we continued south we emerged out from under the auroral oval zone, placing the Lights to the north, back in the direction we had come from.

Equally spectacular in my mind were some of the sunsets and twilight skies we enjoyed as we sailed through the Lofoten Islands, including on our visit to the narrow Trollfjord fjord for which the ship is named.

Sunset from the Trollfjord
Sunset in Norway from the ms Trollfjord on the southbound voyage, on March 2, 2019.
Trollfjord at Twilight
The mouth of the Trollfjord in the Lofoten Islands, Norway, at twilight taken from the forward Deck 6 of the ms Trollfjord, the Hurtigruten ferry ship named for the narrow fjord. This is a 4-section handheld panorama with the Venus Optics 15mm lens at f/8 and Sony a7III camera at ISO 100. Stitched with ACR.
Alpenglow and Twilight on the Fjords
A panorama of the Raftsundet Strait at sunset with alpenglow on the peaks and evening twilight colours to the right at the sunset point. This was March 3, 2019 on the southbound voyage on the ms Trollfjord as we approached the Trollfjord itself. This is a 7-section panorama, handheld, with the Venus Optics 15mm lens and Sony a7III, stitched with ACR.

On our aurora nights I mostly shot “real-time” video of the Lights, using the low-light capability and 4K functions of the Sony a7III camera. The result is a music video linked to below.

The Northern Lights At Sea from Alan Dyer on Vimeo.

I hope you enjoy it. Do view it full-screen and at 4K resolution.

For details on this cruise (I’ll be on the October 10 trip this fall) see the Road Scholar page for this Arctic Skies trip. Autumn is a spectacular time in the fjords and along the coast, as the mountainsides are in fall colours.

Join me!

— Alan, March 15, 2019 / © 2019 Alan Dyer / AmazingSky.com

 

Aurora Reflections in Yellowknife


Auroral Arc over Tibbitt Lake

The Northern Lights are amazing from Yellowknife, in Canada’s Northwest Territories. 

A handful of locations in the world are meccas for aurora chasers. Yellowknife is one of them and, for me, surprisingly accessible with daily flights north.

In a two-hour flight from Calgary you can be at latitude 62° North and standing under the auroral oval with the lights dancing overhead every clear night.

Aurora Panorama at Tibbit Lake #2

The attraction of going in early September, as I did, is that the more persistent clouds of late autumn have not set in, and the many lakes and rivers are not yet frozen, making for superb photo opportunities.

Lakes down Highway 4, the Ingraham Trail, such as Prosperous, Prelude, and Pontoon are popular spots for the busloads of tourists who fly in every year from around the world.

On one magical night I and my local host and guide, Stephen Bedingfield, went to the end of the Trail, to where the Ice Road begins, to Tibbitt Lake, and had the site to ourselves. The aurora was jaw-dropping that night.

On other nights with less certain prospects I stayed in town, and still got a fine show on several nights, the Lights so bright they show up well even from within urban Yellowknife.

On another night we chased into clear skies down Highway 3 to the west, to a rocky plateau on the Canadian Precambrian Shield. Even amid the clouds, the aurora was impressive.

Aurora in the Clouds Panorama

But it was the night at Tibbitt that was the highlight.

Here is the finale music video from movies shot that night, September 8, 2018, with two cameras: the Sony a7III used to take “real-time” 4K videos of the aurora motion, and the Nikon D750 used to take time-lapses.

The movie is in 4K. The music, Eternal Hope, is by Steven Gutheinz and is used by permission of West One Music.

Aurora Reflections from Alan Dyer on Vimeo.

Click through to Vimeo for more technical info about the video.

Enjoy! And do share!

And make Yellowknife one of your bucket-list locations.

— Alan, October 2, 2018 / © 2018 Alan Dyer / AmazingSky.com 

 

Banff by Night


Milky Way Reflections at Bow Lake

Three perfect nights in July provided opportunities to capture the night sky at popular sites in Banff National Park.

When the weather forecast in mid-July looked so promising I made an impromptu trip to Banff to shoot nightscapes and time-lapses under unusually clear skies. Clouds are often the norm in the mountains or, increasingly these days, forest fire smoke in late summer.

But from July 15 to 17 the skies could not have been clearer, except for the clouds that rolled in late on my last night, when I was happy to pack up and get some sleep.

Conjunction over the Continental Divide with Train

My first priority was to shoot the marvellous close conjunction of the Moon and Venus on July 15. I did so from the Storm Mountain viewpoint on the Bow Valley Parkway, with a cooperative train also coming through the scene at the right time.

The Milky Way and Mars over Storm Mountain

This was the view later with the Milky Way and Mars over Bow Valley and Storm Mountain.

Bow Lake by Night Panorama

The next night, July 16, was one of the most perfect I had ever seen in the Rockies. Crystal clear skies, calm winds, and great lake reflections made for a picture-perfect night at Bow Lake on the Icefields Parkway. Above is a 360° panorama shot toward the end of the night when the galactic centre of the Milky Way was over Bow Glacier.

Streaks of green airglow arc across the south, while to the north the sky is purple from a faint display of aurora.

Earlier that night the usual auroral arc known as Steve put in an unexpected appearance. It was just a grey band to the eye, but the camera picked up Steve’s usual pink colours. Another photographer from the U.S. who showed up had no idea there was an aurora happening until I pointed it out.

Mars and the Milky Way at Herbert Lake

My last night was at Herbert Lake, a small pond great for capturing reflections of the mountains around Lake Louise, and the Milky Way. Here, brilliant Mars, so photogenic this summer, also reflects in the still waters.

At each site I shot time-lapses, and used those frames to have some fun with star trail stacking, showing the stars turning from east to west and reflected in the lake waters, and with a single still image taken at the end of the sequence layered in to show the untrailed sky and Milky Way.

But I also turned those frames into time-lapse movies, and incorporated them into a new music video, along with some favourite older clips reprocessed for this new video.

Banff by Night (4K) from Alan Dyer on Vimeo.

Enjoy! And do enlarge to full screen. The video is also in 4K resolution.

Clear skies!

— Alan, August 2, 2018 / © 2018 Alan Dyer / AmazingSky.com