Red Moon Over the Rockies


Red Moon over the Rockies

Prospects looked bleak for seeing the January 31 total eclipse of the Moon. A little planning, a chase, and a lot of luck made it possible.

A mid-winter eclipse doesn’t bode well. Especially one in the cold dawn hours. Skies could be cloudy. Or, if they are clear, temperatures could be -25° C.

I managed to pull this one off, not just seeing the eclipse of the Moon, but getting a few photos.

The secret was in planning, using some helpful apps …

Starry Night
Starry Night™ / Simulation Curriculum

Because this eclipse was occurring before dawn for western North America the eclipsed Moon was going to be in the west, setting.

To plan any shoot the first app I turn to is the desktop planetarium program Starry Night™.

Shown above, the program simulates the eclipse with the correct timing, accurate appearance, and location in the sky at your site. You can set up indicators for the fields of various lenses, to help you pick a lens. The yellow box shows the field of view of a 50mm lens on my full-frame camera, essential information for framing the scene.

With that information in mind, the plan was to shoot the Moon over the Rocky Mountains, which lie along the western border of Alberta.

The original plan was a site in Banff on the Bow Valley Parkway looking west toward the peaks of the Divide.

But then the next critical information was the weather.

For that I turned to the website ClearDarkSky.com. It uses information from Environment Canada’s Astronomy forecasts and weather maps to predict the likelihood of clouds at your site. The day before the eclipse this is what it showed.

ClearDarkSky
ClearSkyChart

Not good! Home on the prairies was not an option. While Banff looked OK, the best prospects were from farther south in the Crowsnest Pass area of Alberta, as marked. So a chase was in order, involving a half-day drive south.

But what actual site was going to be useful? Where could I set up for the shot I wanted?

Time to break out another app, The Photographer’s Ephemeris. This is for desktop and mobile devices.

TPE
The Photographer’s Ephemeris

I needed a spot off a main highway but drivable to, and with no trees in the way. I did not know the area, but Allison Road looked like a possibility.

The TPE app shows the direction to the Sun and Moon to help plan images by day. And in its night mode it can show where the Milky Way is. Here, the thin blue line is showing the direction to the Moon during totality, showing it to the south of Mt. Tecumseh. I wanted the Moon over the mountains, but not behind a mountain!

With a possible site picked out, it was time to take a virtual drive with Google Earth.

Google Street View
Google Earth Street View

The background map TPE uses is from Google Earth. But the actual Google Earth app also offers the option of a Street View for many locations.

Above is its view from along Allison Road, on the nice summer day when the Google camera car made the drive. But at least this confirms there are no obstructions or ugly elements to spoil the scene, or trees to block the view.

But there’s nothing like being there to be sure. It looks a little different in winter!

vert_angle_deg=5.0 / horiz_angle_deg=1.2
Theodolite App

After driving down to the Crowsnest Pass the morning before, the first order of the day upon arrival was to go to the site before it got dark, to see if it was usable.

I used the mobile app Theodolite to take images (above) that superimpose the altitude and azimuth (direction) where the camera was aimed. It confirms the direction where the Moon will be is in open sky to the left of Tecumseh peak. And the on-site inspection shows I can park there!

All set?

There is one more new and very powerful app that provides another level of planning. From The Photographer’s Ephemeris, you can hand off your position to a companion mobile app (for iOS only) called TPE 3D

TPE 3D 50mm
TPE 3D with 50mm lens field

It provides elevation maps and places you on site, with the actual skyline around you drawn in. And with the Moon and stars in the sky at their correct positions.

While it doesn’t simulate the actual eclipse, it sure shows an accurate sky … and what you’ll frame with your lens with the actual skyline in place.

Compare the simulation, above, to the real thing, below:

Red Moon over the Rockies
This is a blend of a 15-second exposure for the sky and foreground, and a shorter 1-second exposure for the Moon to prevent its disk from being overexposed, despite it being dim and deep red in totality. Both were at f/2.8 with the 50mm Sigma lens on the Canon 6D MkII at ISO 1600.

Pretty amazing!

Zooming out with TPE 3D provides this preview of a panorama I hoped to take.

TPE 3D Panorama
TPE 3D zoomed out for 11mm lens simulation

It shows Cassiopeia (the W of stars at right) over the iconic Crowsnest Mountain, and the stars of Gemini setting to the right of Tecumseh.

Here’s the real thing, in an even wider 180° view sweeping from south to north. Again, just as predicted!

Red Moon over the Rockies Panorama
The panorama is from 8 segments, each with the 35mm lens at f/2.8 for 15 seconds at ISO 1600 with the Canon 6D MkII. Stitching was with Adobe Camera Raw. The Moon itself is blend of 4 exposures: 15 seconds, 4 seconds, 1 second, and 1/4 second to retain the red disk of the eclipsed Moon while bringing out the stars in the twilight sky.

Between the weather predictions – which proved spot on – and the geographical and astronomical planning apps – which were deadly accurate – we now have incredible tools to make it easier to plan the shot.

If only we could control the clouds! As it was, the Moon was in and out of clouds throughout the 70 minutes of totality. But I was happy to just get a look, let alone a photo.

Total Lunar Eclipse over the Continental Divide

The next total lunar eclipse is in six months, on July 27, 2018, but in an event visible only from the eastern hemisphere.

The next TLE for North America is a more convenient evening event on January 20, 2019. That will be another winter eclipse requiring careful planning!

Clear skies!

— Alan, February 1, 2018 / © 2018 Alan Dyer / AmazingSky.com

Urban Orion


Urban Nightscape – Orion over Calgary

On a very clear night, Orion shines over the skyline of Calgary.

As I live in the country, it’s not often I shoot the stars from urban sites, and certainly not from downtown Calgary. But the combination of a clear night and a speaking commitment in Calgary provided a chance to see what was possible under ideal conditions.

The lead image is real – I did not paste an image of the sky taken at some other time or place over the skyline image.

However, the sky image is a longer exposure (10 seconds) than the ground (3 seconds) in order to bring out the stars better, while keeping the city lights under control with no overexposure. So it is sort of a high dynamic range blend.

The other factor that helped reveal stars as faint as shown here (fainter than what the naked eye can see) is the use of a light pollution reduction filter (a NISI Natural Night filter) to penetrate the yellow sky glow and provide a more pleasing colour to the sky.

Earlier in the night, during twilight when urban light pollution is not so much of an issue, I shot the waxing crescent Moon setting over the skyline.

Crresent Moon over Calgary

This is a panorama image made from high dynamic range blends of various exposures, to again accommodate the large range in brightness in the scene. But I did not use the NISI filter here.

These images demonstrate how you can get fine astronomy images even from urban sites, with planning and timing.

To that end, I used my favourite app, The Photographer’s Ephemeris, to determine where the sky elements would be as seen from a couple of viewpoints over the city that I’ve used in the past.

The blue spheres in the left image of TPE in its Night mode represent the Milky Way. That chart also shows the direction toward Orion over the city core.

The right image of TPE in its Day mode shows the position of the Moon at 6 pm that evening, again showing it to the left of the urban core.

Other apps are capable of providing the same information, but I like TPE for its ease of use.

Clear skies!

— Alan, January 20, 2018 / © 2018 Alan Dyer / AmazingSky.com 

 

How to Photograph the Lunar Eclipse


Total Lunar Eclipse, Dec 20, 2010 Partial HDR

The first total lunar eclipse in 2.5 years provides lots of opportunities for some great photos.

On the morning of January 31, before sunrise for North America, the Full Moon passes through the umbral shadow of the Earth, creating the first total eclipse of the Moon since September 27, 2015.

The pre-dawn event provides many photo opportunities. Here’s my summary of tips and techniques for capturing the eclipsed Moon.


But First … What is a Lunar Eclipse?

As the animation (courtesy NASA/Goddard Space Flight Center) shows, an eclipse of the Moon occurs when the Full Moon (and they can happen only when the Moon is exactly full) travels through the shadow of the Earth.

The Moon does so at least two times a year, though often not as a total eclipse, one where the entire disk of the Moon is engulfed by the umbra.

When the Moon is within only the outer penumbral shadow we see very little effect, with a barely perceptible darkening of the Moon, if that. I don’t even list the times below for the start and end of the penumbral phases.

Earth Shadow Edge Colors (Oct 8, 2014)
An HDR stack of images to encompass the range of brightness from the bright portion of the lunar disk (at right here) still just in the penumbral shadow, to the dark portion of the disk at left deep in the umbral shadow. I shot this at the October 8, 2014 total lunar eclipse, from Writing-on-Stone Park in southern Alberta. Taken 7 to 5 minutes before totality began.

It’s only when the Moon begins to enter the central umbral shadow that we see an obvious effect. That’s when the partial eclipse begins, and we see a dark bite appear on the left edge of the Moon. The shadow appears to creep across the Moon to darken more of its disk. While it looks like the shadow is moving across the Moon, it is really the Moon moving into, then out of, the umbral shadow that causes the eclipse.

At this eclipse the partial phases last about an hour before and after totality.

Once the Moon is completely immersed in the umbra, totality begins, and lasts 77 minutes at this eclipse, a generous length. However, in North America, only sites in the western half of the continent get to see all or most of totality.


Where is the Eclipse?

ec2018-Fig01
Courtesy Fred Espenak and Royal Astronomical Society of Canada (Observer’s Handbook)

As the chart above shows, the Pacific area including Hawaii, Australia, and eastern Asia can see the entire eclipse with the Moon high in the evening or midnight sky.

Most of North America (my tips are aimed at North American photographers) can see at least some part of this eclipse.

From the eastern half of the continent the Moon sets at sunrise during either totality (from the central areas of North America), or during the first partial phases (from eastern North America). Those in the east can take advantage of interesting photo opportunities by capturing the partially eclipsed Moon setting in the west in the dawn twilight.

Total Lunar Eclipse (Dec 10, 2011)
The total eclipse of the Moon on December 10, 2011, taken from the the Rothney Astrophysical Observatory, near Priddis, Alberta, and looking west to the Rockies. This is a 2 second exposure at ISO 800 with the Canon 5DMkII and Canon 200mm lens at f/4. This was taken toward the end of totality at 7:48 a.m. local time.

However, the most dramatic images of a deep red Moon in the western sky, such as above, will be possible only from the west. And even then, the further north and west you live, the better your view.

Even from the southwestern United States the Moon sets just after the end of totality, requiring a site with a low and clear horizon to the west in order to see the whole event.

I live in Alberta, Canada, and the diagrams I provide here are for my area, where the Moon sets during the final partial phase. I offer them as examples of the kinds of planning you can do to ensure great photos. But exactly where the Moon will be during totality, and where and when it will set on your horizon, will depend on your location.

To plan your local shoot, I suggest using planetarium software such as Stellarium or Starry Night (the software I used to prepare the charts below), and photo planning apps such as The Photographer’s Ephemeris or PhotoPills

The latter two apps present the sightlines toward the Moon overlaid on a map of your location, to help you plan where to be to shoot the eclipsed Moon setting behind a suitable foreground.


When is the Eclipse?

While where the Moon is in your sky depends on your site, the various eclipse events happen at the same time for everyone, with differences in hour due only to the time zone you are in.

Here are the times for the start and end of the partial and total phases.

Note that all times are A.M., in the early morning, before sunrise, on January 31. Go out at 6 P.M. on the evening of January 31 and you’ll be 12 hours too late. You missed it!

Eclipse Times Table

All times are A.M. on January 31. “—“ means the event is not visible; the Moon has set.

The time of moonset at your site will vary with your location. Use planning apps to calculate your local moonset time.


Picking a Site

No matter where you are in North America you want a site with a good view to the west and northwest, preferably with a clear view of a relatively unobstructed but photogenic horizon.

While having an eclipse occur at dawn (or at dusk) does limit the amount of eclipse we can see, it has the benefit of providing many more photo opportunities of the eclipsed Moon above a scenic landscape or foreground element.

Eclipse Moonrise at Writing-on-Stone
The Full Moon rises in partial eclipse over the sandstone formations of Writing-on-Stone Provincial Park in southern Alberta, on the evening of September 27, 2015. Shot with the 200mm lens and 1.4x extender, on the Canon 5DMkII.

From eastern North America you will have to be content with images of the partially eclipsed Moon setting, similar to the image above of a rising partially-eclipsed Moon.

From the centre of the continent, where the Moon sets during totality, the dim, reddened Moon is likely to disappear into the brightening sky. Remember, when the Moon is full it sets just as the Sun rises. So shots of a red Moon right on the horizon aren’t likely to be possible. The Moon will be too dim and the sky too bright.

From sites in the west, the Moon will set either just at the end of totality or shortly afterwards, making the Moon brighter and more obvious in the sunrise sky, as the foreground in the west lights up with red light from the Sun rising in the east.

It is that same red sunlight filtered by our atmosphere that continues on into our planet’s shadow and lights the Moon red during totality.


Picking a Technique

Lunar eclipses lend themselves to a wide range of techniques, from a simple camera on a tripod, to a telescope on a tracking mount following the sky.

What you use depends not only on the gear you have on hand, but also on your site. It might not be practical to set up loads of gear at a scenic site you have to trek into — especially when you have to set up in the wee hours of a cold winter morning.

You could set up earlier that night on January 30, but only if your site is safe enough to leave the gear unattended while you sleep.

Keep it simple!


Option 1: Simple Camera-on-Tripod

Eclipsed Moon over Writing on Stone
The Moon in totality in the deep twilight on September 27, 2015, with a 35mm lens on a full-frame camera. This is one frame from a time-lapse sequence. A 5-second exposure at f/2.8 and at ISO 800.

The easiest method is to take single shots with a moderate wide-angle or normal lens with the camera on a fixed tripod. No fancy trackers are needed here.

If the sky is bright with twilight, you might be able to meter the scene and use Auto exposure.

Jan 31 Eclipse-50mm Mid-Totality (Courtesy Starry Night™/Simulation Curriculum)
Composing a single shot during mid-totality from southern Alberta, framed to include Castor and Pollux in Gemini.

But earlier in the night, with the Moon in a darker sky, as I show above, use Manual exposure and try settings of 1 to 10 seconds at f/2.8 to f/4 at ISO 400 to 1600. That’s a wide range, to be sure, but it will vary a lot depending on when you shoot and where you are, factors that will affect how bright the sky is at your site. Just shoot, check, and adjust.


Option 2: Advanced Camera-on-Tripod

A more advanced method is to compose the scene so the lens frames the entire path of the Moon from the start of the partial eclipse until moonset.

Jan 31 Eclipse-35mm Lens Sequence
Framing a time-lapse sequence for southern Alberta. (Courtesy Starry Night™/Simulation Curriculum)

As shown above, that will take at least a 35mm lens on a full frame camera, or 20mm lens on a cropped frame camera.

Take exposures every 15 to 30 seconds if you want to turn the set into a time-lapse movie. But a still-image composite with the lunar disks well separated will need shots only every 5 to 10 minutes.

Such a composite takes good planning and proper exposures to pull off, but will be true to the scene, with the lunar disk and its motion shown to the correct scale as it was in the sky. That’s in stark contrast to the flurry of ugly “faked” composites that will appear on the web by the end of February 1, ones with huge telephoto Moons pasted willy-nilly onto a wide-angle sky. Don’t do it!

Exposures for any lunar eclipse are tricky, whether you are shooting closeups or wide-angles, because the Moon and sky change so much in brightness.

For wide-angle composites, you can expose just for the bright lunar disk and let the sky go dark. Exposures for just the Moon will range from very short (about 1/500th second at ISO 100) for the partials, to 1 to 2 seconds at ISO 400 for the totals, then shorter again (1/15 to 1/2 second at ISO 400) for the end shots in twilight when the Moon and sky may be similar in brightness. That’ll take constant monitoring and adjusting throughout the shoot.

As I did below, you’d then composite and layer the well-exposed disks into another background image exposed longer for the sky, likely shot in twilight. To maintain the correct relative locations of the lunar disks and foreground, the camera cannot move.

That technique works best if it’s just a still image you are after, such as below.

Lunar Eclipse Sequence from Monument Valley
The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in Monument Valley, Utah. I shot the totality images at 6:01 a.m. MDT, during mid-totality during the very short 4 minutes of totality. The mid-totality image is a composite of 2 exposures: 30 seconds at f/2.8 and ISO 1600 for the sky and landscape, with the sky brightening blue from dawn twilight, and 1.5 seconds at f/5.6 and ISO 400 for the disk of the Moon itself. Also, layered in are 26 short exposures for the partial phases, most being 1/125th sec at f/8 and ISO 400, with ones closer to totality being longer, of varying durations. All are with a 24mm lens and Canon 6D on a static tripod, with the camera not moved through the entire sequence. The short duration of totality at this eclipse lent itself to a sequence with one total phase image flanked by partial phases.

The above image is a composite of the April 4, 2015 total lunar eclipse from Monument Valley, Utah. That eclipse occurred under similar circumstances as this month’s eclipse, with the eclipse underway as the Moon set in the west at sunrise.

Lunar Eclipse From Beginning to End, To True Scale
A multiple-exposure composite of the total lunar eclipse of Sunday, September 27, 2015, as shot from Writing-on-Stone Provincial Park, Alberta, Canada. NOTE: The size of the Moon and its path across the sky are accurate here, because all the images for this composite were taken with the same lens using a camera that did not move during the shoot.

By comparison, the composite here is made of a few selected frames out of hundreds I took at 15-second intervals, and with each frame exposed for the sky, for use in a time-lapse movie. In this case, the Moon became overexposed at the end as it emerged from the umbra.

Indeed, if it’s a time-lapse movie you want (see the video linked to below), then each frame will have to be exposed well enough to show the sky and landscape.

While this method will overexpose the partially-eclipsed Moon, the Moon will darken and become better exposed throughout totality when the same long exposure for the reddened Moon might also work for the sky, to pick up stars. Exposures will have to shorten again as the sky brightens with twilight.

Again, constant baby-sitting and adjusting the camera will be needed. So if it’s cold where you are prepare for a frigid multi-hour shoot. I doubt you’ll be able to leave the camera on Auto exposure to run on its own, not until at least bright twilight begins.


Option 3: Telephoto Close-Ups

Jan 31 Eclipse-Telescope
Size of the Moon with a 600mm telephoto on a full-frame and cropped-frame camera. (Courtesy Starry Night™/Simulation Curriculum)

The Moon is surprisingly small (only 1/2-degree across) and needs a lot of focal length to do it justice.

For an “in-your-face” close-up of the eclipse you’ll need a 300mm to 800mm (!) lens. Unfortunately, the Moon and sky are moving and any exposures over 1 to 2 seconds (required during totality) will blur the Moon badly if its disk is large on the frame.

If you don’t have a tracking mount, one solution is to keep the Moon’s disk small (using no more than a fast f/2.8 200mm lens) and exposures short by using a high ISO speed.

Total Lunar Eclipse (Dec 10, 2011)
The eclipse of December 10, 2011, with the Moon setting in deep partial eclipse at sunrise.

Or plan to shoot with a telephoto only when the Moon is low in the sky, as I did above, when you can include the horizon which you would want to be sharp anyway. Framing the Moon and horizon won’t need a super telephoto.

The sky will then also be brighter and require short exposures that don’t need to be tracked. However, how bright and obvious the Moon will be will again depend on your location. This may or may not be a practical option, certainly not if the Moon is setting during mid-totality where you are.

Option 4: Tracked Telescopic Close-Ups 

Jan 31 Eclipse-Telephoto Lenses
Framing the eclipsed Moon and the Beehive star cluster (Messier 44). (Courtesy Starry Night™/Simulation Curriculum)

If you have a mount that can be polar aligned to track the sky, then more options are open to you.

You can use a telescope mount or one of the compact and portable trackers, such as the Sky-Watcher Star Adventurer or iOptron Sky Tracker units. While these latter units work great, you are best to keep the payload weight down and your lens size under 300mm.

That’s just fine for this eclipse, as you really don’t need a frame-filling Moon. The reason is that the Moon will appear about 4 degrees away from the bright star cluster called the Beehive, or Messier 44, in Cancer. As shown above, a 200mm to 300mm lens will frame this unique pairing well.

Even so, exposures to show the cluster properly might have to be long enough that the Moon overexposes, even at mid-totality. If so, take different exposures for the Moon and stars and composite them later, as I did below.

Total Lunar Eclipse, Dec 20, 2010 Total HDR
A High Dynamic Range composite of 7 exposures of the Dec 20/21, 2010 total lunar eclipse, from 1/2 second to 30 seconds, to show the more normally exposed eclipsed Moon with the star cluster M35 at left in Gemini, to show the scene more like it appeared in binoculars. Each photo taken with a 77mm aperture Borg apo refractor at f/4.2 (300mm focal length) and Canon 5D MkII camera at ISO 1600.

If you do want to shoot with more focal length, a monster telephoto lens will work, but a small telescope such as an 80mm aperture f/6 to f/7 refractor will provide enough focal length and image size at much lower cost. But either way, the lens or telescope should be mounted on a solid equatorial telescope mount, and polar aligned to track the sky.

For the sharpest lunar disks, use the Lunar tracking rate.

Exposures will vary from as short as 1/500th second at ISO 100 to 200 for the barely eclipsed Moon, to 4 to 16 seconds at f/6 to f/8 and at ISO 400 to 1600 for the Moon at mid-totality.

Total Lunar Eclipse, Dec 20, 2010 Partial HDR
Total eclipse of the Moon, December 20/21, 2010, taken with a 130mm AP apo refractor at f/6 and Canon 7D at ISO 400. An HDR composite of 9 images from 1/125 second to 2 seconds, composited in Photoshop.Taken at about 12:21 a.m. MST on Dec 21, about 20 minutes before totality began, during the partial phase.

As I did above, during the deep partial phases shoot both long exposures for the red umbra and short exposures for the bright part of the Moon not yet in the umbra. Merge those later with High Dynamic Range (HDR) techniques and software, or with luminosity masks.

Even if you’re not sure how to do this now, shoot all the required exposures anyway so you’ll have them when your processing skills improve.

Option 5: Time-Lapse Close-Ups 

Total Lunar Eclipse (December 20/21, 2010)
Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400 for 4 seconds, single exposure, shortly after totality began.

With a tracking telescope you could fire shots every 30 seconds or so, and then assemble them into a time-lapse movie.

But as with wide-angle time-lapses, that will take constant attention to gradually and smoothly shift exposures, ideally by 1/3rd-stop increments every few shots during the partial and total phases.

If you track at the lunar rate, as I did in the still image below and in the music video linked to at bottom, the Moon will stay centred while it drifts though the stars.

Total Lunar Eclipse-August 28, 2007
Taken with 90mm Stowaway AP Refractor, with Borg .85x compressor/flattener for f/5.6. With Canon 20Da camera at ISO 400 for a 13 second exposure, on a Skywatcher HEQ5 mount tracking at Lunar rate. Exposure was long to bring out star background.

Track at the sidereal rate and the stars will stay more or less fixed while the Moon drifts through the frame from right to left (west to east). But that takes even more careful planning to position the Moon correctly at the start of the sequence so it remains “in frame” for the duration of the eclipse and ends up where you want at the end, which will occur with the Moon low in a bright sky.

Again, planetarium software such as Starry Night, which can be set to display a camera frame, is essential to plan the shoot.

Either way, do take care to accurately polar align your mount, or you’ll be confronted with the monumental task of having to manually align hundreds of images later. Trust me, I know!

Watching the Lunar Eclipse
Me enjoying the September 27, 2015 total lunar eclipse while various cameras snapped away, but still requiring constant attention and adjustments.

I would consider the telescopic time-lapse method the most challenging of techniques.

Considering the hour of the night and the likely cold temperatures, your best plan might be to keep it simple. It’s what I plan to do. I’ll be happy to get a few good wide-angle still images, and perhaps a tracked telephoto close-up of the Moon and Beehive as a bonus.

While there is another total lunar eclipse (TLE) in six months on July 27/28, it is not visible at all from North America.

Our next TLE occurs 12 Full Moons, or one lunar year from now, on the night of January 20/21, 2019, when all of North America gets to watch totality at a more reasonable hour, though perhaps not at a more reasonable temperature.

I leave you with a music video of the last TLE, on September 27, 2015 that incorporates still and time-lapse sequences shot using all of the above methods.

Enjoy!

Selfie Success Shot at Lunar Eclipse
Success! A post-totality trophy shot.

Good luck and clear skies on eclipse morning!

— Alan, January 6, 2018 / © 2018 Alan Dyer / amazingsky.com

 

Testing 10 Photoshop Contenders


1-Comparing Raw Developers (Wide)

To Adobe or not to Adobe. That is the question many photographers are asking with the spate of new image processing programs vying to “kill Photoshop.”

I tested more than ten contenders as alternatives to Adobe’s image processing software, evaluating them ONLY for the specialized task of editing demanding nightscape images taken under the Milky Way, both for single still images and for time-lapses of the moving sky. I did not test these programs for other more “normal” types of images.

Also, please keep in mind, I am a Mac user and tested only programs available for MacOS, though many are also available for Windows. I’ve indicated these.

But I did not test any Windows-only programs. So sorry, fans of Paintshop Pro (though see my note at the end), Photoline, Picture Window Pro, or Xara Photo & Graphic Designer. They’re not here. Even so, I think you will find there’s plenty to pick from!

This review expands upon and updates mini-reviews I included in my Nightscapes and Time-Lapses eBook, shown at right.

If you are hoping there’s a clear winner in the battle against Adobe, one program I can say does it all and for less cost and commitment, I didn’t find one.

Group of 9 (small)

However, a number of contenders offer excellent features and might replace at least one member of Adobe’s image processing suite.


For example, only four of these programs can truly serve as a layer-based editing program replacing Photoshop.

The others are better described as Adobe Lightroom competitors – programs that can catalog image libraries and develop raw image files, with some offering adjustment layers for correcting color, contrast, etc. But as with Lightroom, layering of images – to stack, composite, and mask them – is beyond their ability.

For processing time-lapse sequences, however, we don’t need, nor can we use, the ability to layer and mask several images into one composite.

What we need for time-lapses is to:

  • Develop a single key raw file, then …
  • Copy its settings to the hundreds of other raw files in the time-lapse set, then …
  • Export that folder of raw images to “intermediate JPGs” for assembly into a movie.

Even so, not all these contenders are up to the task.

Here are the image processing programs I looked at. Costs are in U.S. dollars. Most have free trial copies available.


Photoshop+Bridge+Lightroom (small)

The Champion from Adobe

Adobe Camera Raw (ACR), Photoshop, Bridge, and Lightroom, the standards to measure others by

Cost: $10 a month by subscription, includes ACR, Photoshop, Bridge, and Lightroom

Website: https://www.adobe.com

OS: Windows and Mac

Adobe Camera Raw (ACR) is the raw development plug-in that comes with Photoshop and Adobe Bridge, Adobe’s image browsing application that accompanies Photoshop. Camera Raw is equivalent to the Develop module in Lightroom, Adobe’s cataloguing and raw processing software. Camera Raw and Lightroom have identical processing functions and can produce identical results.

Photoshop and Lightroom complement each other and are now available together, but only by monthly subscription through Adobe’s Creative Cloud service, at $10/month. Though $120 for a year is not far off the cost of purchasing many of these other programs and perhaps upgrading them annually, many photographers prefer to purchase their software and not subscribe to it.

Thus the popularity of these alternative programs. Most offered major updates in late 2017.

My question is, how well do they work? Are any serious contenders to replace Photoshop or Lightroom?


Group of 5 Raw DevelopersLightroom Contenders: Five Raw Developers

ACDSee Photo Studio (current as of late 2017)

Cost: $60 to $100, depending on version, upgrades $40 to $60.

Website: http://www.acdsystems.com

OS: Windows and Mac

I tested the single MacOS version. Windows users have a choice of either a Standard or Professional version. Only the Pro version offers the full suite of raw development features, in addition to cataloging functions. The MacOS version resembles the Windows Pro version.


Capture One v11 (late 2017 release)

Cost: $299, and $120 for major upgrades, or by subscription for $180/year

Website: https://www.phaseone.com

OS: Windows and Mac

As of version 11 this powerful raw developer and cataloguing program offers “Layers.” But these are only for applying local adjustments to masked areas of an image. You cannot layer different images. So Capture One cannot be used like Photoshop, to stack and composite images. It is a Lightroom replacement only, but a very good one indeed.


Corel Aftershot Pro v3 (late 2017)

Cost: $80, and $60 for upgrades

Website: http://www.aftershotpro.com/en/

OS: Windows, Mac, and Linux

Here’s a low cost Lightroom replacement for image management and raw processing abilities. Noise reduction is “Perfectly Clear” from Athentech and works well.


DxO PhotoLab ELITE v1 (late 2017)

Cost: $199

Website: http://www.dxo.com/us/photography/photo-software/dxo-photolab

OS: Windows and Mac

The ELITE version of what DxO now calls “PhotoLab” offers DxO’s superb PRIME noise reduction and excellent ClearView contrast enhancement feature. While it has an image browser, PhotoLab does not create a catalog, so this isn’t a full Lightroom replacement, but it is a superb raw developer. DxO also recently acquired the excellent Nik Collection of image processing plug-ins, so we can expect some interesting additions and features.


Raw Therapee v5.3 (mid-2017 release)

Cost: Free

Website: http://rawtherapee.com

OS: Windows, Mac, and Linux

This free open source program has been created and is supported by a loyal community of programmers. It offers a bewildering blizzard of panels and controls, among them the ability to apply dark frames and flat field images, features unique among any raw developer and aimed specifically at astrophotographers. Yes, it’s free, but the learning curve is precipitous.


Group of 4 Layer-Based EditorsPhotoshop Contenders: Four Raw Developers with Layering/Compositing

These programs can not only develop at least single raw images, if not many, but also offer some degree of image layering, compositing, and masking like Photoshop.

However, only ON1 Photo RAW can do that and also catalog/browse images as Lightroom can. Neither Affinity, Luminar, or Pixelmator offer a library catalog like Lightroom, nor even a file browsing function such as Adobe Bridge, serious deficiencies I feel.


Affinity Photo v1.6 (late 2017)

Cost: $50

Website: https://affinity.serif.com

OS: Windows and Mac

This is the lowest cost raw developer and layer-based program on offer here, and has some impressive features, such as stacking images, HDR blending, and panorama stitching. However, it lacks any library or cataloguing function, so this is not a Lightroom replacement, but it could replace Photoshop.


Luminar 2018

Cost: $80, and $40 for major upgrades

Website: https://macphun.com

OS: Windows and Mac

Macphun has changed their name to Skylum and now makes their fine Luminar program for both Mac and Windows. While adding special effects is its forte, Luminar does work well both as a raw developer and layer-based editor. But like Affinity, it has no cataloguing feature. It cannot replace Lightroom.


ON1 Photo RAW 2018

Cost: $120, and $100 for major upgrades

Website: https://www.on1.com

OS: Windows and Mac

Of all the contenders tested here, this is the only program that can truly replace both Lightroom and Photoshop, in that ON1 has cataloguing, raw developing, and image layering and masking abilities. In fact, ON1 allows you to migrate your Lightroom catalog into its format. However, ON1’s cost to buy and maintain is similar to Adobe’s Creative Cloud Photo subscription plan. It’s just that ON1’s license is “perpetual.”

NOTE: Windows users might find Corel’s Paintshop Pro 2018 a good “do-it-all” solution – I tested only Corel’s raw developer program Aftershot Pro, which Paintshop Pro uses.


Pixelmator Pro v1 (late 2017 release)

Cost: $60

Website: http://www.pixelmator.com/pro/

OS: MacOS only

The “Pro” version of Pixelmator was introduced in November 2017. It has an innovative interface and many fine features, and it allows layering and masking of multiple images. However, it lacks some of the key functions (listed below) needed for nightscape and time-lapse work. Touted as a Photoshop replacement, it isn’t there yet.


The Challenge

This is the image I threw at all the programs, a 2-minute exposure of the Milky Way taken at Writing-on-Stone Provincial Park in southern Alberta in late July 2017.

NOTE: Click/tap on any of the screen shots to bring them up full screen so you can inspect and save them. 

2-ACR Original Undeveloped
Original Raw Image Out of the Camera, BEFORE Development

The lens was the Sigma 20mm Art lens at f/2 and the camera the Nikon D750 at ISO 1600.

The camera was on a tracking unit (a Sky-Watcher Star Adventurer Mini) to keep stars pinpoints.

Thus the ground is blurred. Keep that in mind, as it will always look fuzzy in the comparison images. But it does show up noise well, including hot pixels. This image of the sky is designed to be composited with one taken without the tracker turning, to keep the ground sharp.

3-ACR Developed (Wide)
Raw Image AFTER Development in Adobe Camera Raw

Above is the image after development in Adobe Camera Raw (ACR), using sliders under its Basic, Tone Curve, Detail, HSL, Lens Corrections, and Effects tabs. Plus I added a “local adjustment” gradient to darken the sky at the top of the frame. I judged programs on how well they could match or beat this result.

4-Adobe Lightroom
Same Image Developed in Adobe Lightroom

Above is the same image developed in Adobe Lightroom, to demonstrate how it can achieve identical results to Camera Raw, because at heart it is Camera Raw.


Feature Focus

I have assumed a workflow that starts with raw image files from the camera, not JPGs, for high-quality results.

And I have assumed the goal of making that raw image look as good as possible at the raw stage, before it goes to Photoshop or some other bit-mapped editor. That’s an essential workflow for time-lapse shooting, if not still-image nightscapes.

However, I made no attempt to evaluate all these programs for a wide range of photo applications. That would be a monumental task!

Nor, in the few programs capable of the task, did I test image layering. My focus was on developing a raw image. As such, I did not test the popular free program GIMP, as it does not open raw files. GIMP users must turn to one of the raw developers here as a first stage.

If you are curious how a program might perform for your purposes and on your photos, then why not test drive a trial copy?

Instead, my focus was on these programs’ abilities to produce great looking results when processing one type of image: my typical Milky Way nightscape, below.

TIFF from DxO into Photoshop
TIFF Exported from DxO PhotoLab … then Imported into Photoshop

Such an image is a challenge because…

  • The subject is inherently low in contrast, with the sky often much brighter than the ground. The sky needs much more contrast applied, but without blocking up the shadows in the ground.
  • The sky is often plagued by off-color tints from artificial and natural sky glows.
  • The ground is dark, perhaps lit only by starlight. Bringing out landscape details requires excellent shadow recovery.
  • Key to success is superb noise reduction. Images are shot at high ISOs and are rife with noise in the shadows. We need to reduce noise without losing stars or sharpness in the landscape.

I focused on being able to make one image look as good as possible as a raw file, before bringing it into Photoshop or a layer-based editor – though that’s where it will usually end up, for stacking and compositing, as per the final result shown at the end.

I then looked at each program’s ability to transfer that one key image’s settings over to what could be hundreds of other images taken that night, either for stacking into star trails or for assembling into a time-lapse movie.


Summary Conclusions

1-Comparing Raw Developers (Wide)
Results of 8 Programs compared to ACR (at left)

None of the programs I tested ticked all the boxes in providing all the functions and image quality of the Adobe products.

But here’s a summary of my recommendations:


For Advanced Time-Lapse

Photoshop+Bridge+Lightroom+LRT

None of the non-Adobe programs will work with the third-party software LRTimelapse (www.lrtimelapse.com). It is an essential tool for advanced time-lapse processing. LRTimelapse works with Lightroom or ACR/Bridge to gradually shift processing settings over a sequence, and smooth annoying image flickering.

If serious and professional time-lapse shooting is your goal, none of the Adobe contenders will work. Period. Subscribe to Creative Cloud. And buy LRTimelapse.


For Basic Time-Lapse

Group of 5 for Time-Lapse

However, for less-demanding time-lapse shooting, when the same settings can be applied to all the images in a sequence, then I feel the best non-Adobe choices are, in alphabetical order:

  • ACDSee
  • Capture One
  • Corel Aftershot Pro
  • DxO PhotoLab
  • ON1 Photo RAW

… With, in my opinion, DxO and Capture One having the edge for image quality and features. But all five have a Library or Browser mode with easy-to-use Copy & Paste and Batch Export functions needed for time-lapse preparation.

Also worth a try is PhotoDirector9 (MacOS and Windows), a good Lightroom replacement. Scroll to the end for more details and a link.


For Still Image Nightscapes

Group of 3 for Still Images

If you are processing just individual still images, perhaps needing only to stack or composite a few exposures, and want to do all the raw development and subsequent layering of images within one non-Adobe program, then look at (again alphabetically):

  • Affinity Photo
  • Luminar 2018
  • ON1 Photo RAW 2018

… With Affinity Photo having the edge in offering a readily-available function off its File menu for stacking images, either for noise smoothing (Mean) or creating star trails (Maximum).

However, I found its raw development module did not produce as good a result as most competitors due to Affinity’s poorer noise reduction and less effective shadow and highlight controls. Using Affinity’s “Develop Persona” module, I could not make my test image look as good as with other programs.

Luminar 2018 has better noise reduction but it demands more manual work to stack and blend images.

While ON1 Photo Raw has some fine features and good masking tools, it exhibits odd de-Bayering artifacts, giving images a cross-hatched appearance at the pixel-peeping level. Sky backgrounds just aren’t smooth, even after noise reduction.

To go into more detail, these are the key factors I used to compare programs.


Noise Reduction

Absolutely essential is effective noise reduction, of luminance noise and chrominance color speckles and splotches.

Ideally, programs should also have a function for suppressing bright “hot” pixels and dark “dead” pixels.

Here’s what I consider to be the “gold standard” for noise reduction, Adobe Camera Raw’s result using the latest processing engine in ACR v10/Photoshop CC 2018.

5A-ACR (Close-Up)
BEFORE and AFTER Noise Reduction with Adobe Camera Raw (ACR)

I judged other programs on their ability to produce results as good as this, if not better, using their noise reduction sliders. Some programs did better than others in providing smooth, noiseless skies and ground, while retaining detail.

5B-DxO Noise Reduction
BEFORE and AFTER Noise Reduction and Other Adjustments with DxO PhotoLab

For example, one of the best was DxO PhotoLab, above. It has excellent options for reducing noise without being overwhelming in its choices, the case with a couple of other programs. For example, DxO has a mostly effective dead/hot pixel removal slider.

ACR does apply such a hot pixel removal “under the hood” as a default, but often still leaves many glaring hot specks that must be fixed later in Photoshop.

Comparing Noise Reduction

6-Comparing Raw Developers (CU)
300% Close-Ups to Compare Noise Reduction

Above are 8 of the contender programs compared to Camera Raw for noise reduction.

Missing from this group is the brand new Pixelmator Pro, for MacOS only. It does not yet have any noise reduction in its v1 release, a serious deficiency in imaging software marketed as “Pro.” For that reason alone, I cannot recommend it. I describe its other deficiencies below.


Lens Corrections

The wide-angle lenses we typically use in nightscape and time-lapse imaging suffer from vignetting and lens distortions. Having software that can automatically detect the lens used and apply bespoke corrections is wonderful.

8B-Capture One Lens Correction
Lens Corrections in Capture One

Only a few programs, such as Capture One (above), have a library of camera and lens data to draw upon to apply accurate corrections with one click. With others you have to dial in corrections manually by eye, which is crude and inaccurate.


Shadows and Highlights

All programs have exposure and contrast adjustments, but the key to making a Milky Way nightscape look good is being able to boost the shadows (the dark ground) while preventing the sky from becoming overly bright, yet while still applying good contrast to the sky.

7-DxO Shadows and Highlights
Shadows and Highlight and other Enhancements in DxO PhotoLab

Of the contenders, I liked DxO PhotoLab best (shown above), not only for its good shadow and highlight recovery, but also excellent “Smart Lighting” and “ClearView” functions which served as effective clarity and dehaze controls to snap up the otherwise low-contrast sky. With most other programs it was tough to boost the shadows without also flattening the contrast.

On the other hand, Capture One’s excellent layering and local adjustments did make it easier to brush in adjustments just to the sky or ground.

However, any local adjustments like those will be feasible only for still images or time-lapses where the camera does not move. In any motion control sequences the horizon will be shifting from frame to frame, making precise masking impractical over a sequence of hundreds of images.

Therefore, I didn’t place too much weight on the presence of good local adjustments. But they are nice to have. Capture One, DxO PhotoLab, and ON1 win here.


Selective Color Adjustments

All programs allow tweaking the white balance and overall tint.

But it’s beneficial to also adjust individual colors selectively, to enhance red nebulas, enhance or suppress green airglow, bring out green grass, or suppress yellow or orange light pollution.

Some programs have an HSL panel (Hue, Saturation, Lightness) or an equalizer-style control for boosting or dialing back specific colors.

8A-Capture One Color Adjustments
Color Adjustments in Capture One

Capture One (above) has the most control over color correction, with an impressive array of color wheels and sliders that can be set to tweak a broad or narrow range of colors.

And yet, despite this, I was still unable to make my test image look quite the way I wanted for color balance. ACR and DxO PhotoLab still won out for the best looking final result.


Copy and Paste Settings

Even when shooting nightscape stills we often take several images to stack later. It’s desirable to be able to process just one image, then copy and paste its settings to all the others in one fell swoop. And then to be able to inspect those images in thumbnails to be sure they all look good.

Some programs (Affinity Photo, Luminar, Pixelmator Pro) lack any library function for viewing or browsing a folder of thumbnail images. Yes, you can export a bunch of images with your settings applied as a user preset, but that’s not nearly as good as actually seeing those images displayed in a Browser mode.

9A-ON1 Photo RAW Copy & Paste
Copy and Paste Settings in ON1 Photo RAW

What’s ideal is a function such as ON1 Photo RAW displays here, and that some other programs have: the ability to inspect a folder of images, work on one, then copy and paste its settings to all the others in the set.

This is absolutely essential for time-lapse work, and nice to have even when working on a small set to be stacked into a still image.


Batch Export

Once you develop a folder of raw images with “Copy and Paste,” you now have to export them with all those settings “baked into” the exported files.

This step is to create an intermediate set of JPGs to assemble into a movie. Or perhaps to stack into a star trail composite using third party software such as StarStaX, or to work on the images in another layer-based program of your choice.

9B-ON1 Photo RAW Batch Export
Batch Export in ON1 Photo RAW

As ON1 Photo RAW shows above, this is best done using a Library or Browser mode to visually select the images, then call up an Export panel or menu to choose the image size, format, quality, and location for the exports.

Click Export and go for coffee – or a leisurely dinner – while the program works through your folder. All programs took an hour or more to export hundreds of images.


Design

Those functions were the key features I looked for when evaluating the programs for nightscape and time-lapse work.

Every program had other attractive features, often ones I wished were in Adobe Camera Raw. But if the program lacked any of the above features, I judged it unsuitable.

Yes, the new contenders to the Photoshop crown have the benefit of starting from a blank slate for interface design.

26-Luminar Interface
Luminar 2018’s Clean User Interface

Many, such as Luminar 2018 above, have a clean, attractive design, with less reliance on menus than Photoshop.

Photoshop has grown haphazardly over 25 years, resulting in complex menus. Just finding key functions can take many tutorial courses!

But Adobe dares to “improve” Photoshop’s design and menu structure at its peril, as Photoshop fans would scream if any menus they know and love were to be reorganized!

The new mobile-oriented Lightroom CC is Adobe’s chance to start afresh with a new interface.


Summary Table of Key Features

Comparison Table
Click or tap to view and save full screen version.

Fair = Feature is present but doesn’t work as easily or produce as good a result

Partial = Program has lens correction but failed to fully apply settings automatically / DxO has a Browse function but not Cataloging

Manual = Program has only a manually-applied lens correction

= Program is missing that feature altogether


Program-by-Program Results

Group of 9 (small)

I could end the review here, but I feel it’s important to present the evidence, in the form of screen shots of all the programs, showing both the whole image, and a close-up to show the all-important noise reduction.


ACDSee Photo Studio

10A-ACDSee (Wide)
ACDSee Full Screen
10B-ACDSee (CU)
ACDSee Enlargement

PROS: This capable cataloging program has good selective color and highlight/shadow recovery, and pretty smooth noise reduction. It can copy and paste settings and batch export images, for time-lapses. It is certainly affordable, making it a low-cost Lightroom contender.

CONS: It lacks any gradient or local adjustments, or even spot removal brushes. Lens corrections are just manual. There is no dehaze control, which can be useful for snapping up even clear night skies. You cannot layer images to create composites or image stacks. This is not a Photoshop replacement.


Affinity Photo

11A-Affinity Photo (Wide)
Affinity Photo Full Screen
11B-Affinity Photo (CU)
Affinity Photo Enlargement

PROS: Affinity supports image layers, masking with precise selection tools, non-destructive “live” filters (like Photoshop’s Smart Filters), and many other Photoshop-like functions. It has a command for image stacking with a choice of stack modes for averaging and adding images.

It’s a very powerful but low cost alternative to Photoshop, but not Lightroom. It works fine when restricted to working on just a handful of images.

CONS: Affinity has no lens correction database, and I found it hard to snap up contrast in the sky and ground without washing them out, or having them block up. Raw noise reduction was acceptable but not up to the best for smoothness. It produced a blocky appearance. There are no selective color adjustments.

Nor is there any library or browse function. You can batch export images, but only through an unfriendly dialog box that lists images only by file name – you cannot see them. Nor can you copy and paste settings visually, but only apply a user-defined “macro” to develop images en masse upon export.

This is not a program for time-lapse work.


Capture One 11

13A-Capture One Pro (Wide)
Capture One 11 Full Screen
13B-Capture One Pro (CU)
Capture One 11 Enlargement

PROS: With version 11 Capture One became one of the most powerful raw developers, using multiple layers to allow brushing in local adjustments, a far better method than Adobe Camera Raw’s local adjustment “pins.” It can create a catalog from imported images, or images can be opened directly for quick editing. Its noise reduction was good, with hot pixel removal lacking in Camera Raw.

Its color correction options were many!

It can batch export images. And it can export files in the raw DNG format, though in tests only Adobe Camera Raw was able to read the DNG file with settings more or less intact.

CONS: It’s costly to purchase, and more expensive than Creative Cloud to subscribe to. Despite all its options I could never quite get as good looking an image using Capture One, compared to DxO PhotoLab for example.

It is just a Lightroom replacement; it can’t layer images.


Corel Aftershot Pro 3

12A-Aftershot Pro (Wide)
Corel Aftershot Pro Full Screen
12B-Aftershot Pro (CU)
Corel Aftershot Pro Enlargement

PROS: This low-cost option has good noise reduction using Athentech’s Perfectly Clear process, with good hot pixel or “impulse” noise removal. It has good selective color and offers adjustment layers for brushing in local corrections. And its library mode can be used to copy and paste settings and batch export images.

Again, it’s solely a Lightroom alternative.

CONS: While it has a database of lenses, and identified my lens, it failed to apply any automatic corrections. Its shadow and highlight recovery never produced a satisfactory image with good contrast. Its local adjustment brush is very basic, with no edge detection.


DxO PhotoLab

14A-DxO PhotoLab (Wide)
DxO PhotoLab Full Screen
14B-DxO PhotoLab (CU)
DxO PhotoLab Enlargement

PROS: I found DxO produced the best looking image, better perhaps than Camera Raw, because of its DxO ClearView and Smart Lighting options. It has downloadable camera and lens modules for automatic lens corrections. Its noise reduction was excellent, with its PRIME option producing by far the best results of all the programs, better perhaps than Camera Raw, plus with hot pixel suppression.

DxO has good selective color adjustments, and its copy and paste and batch export work fine.

CONS: There are no adjustment layers as such. Local adjustments and repairing are done through the unique U-Point interface which works something like ACR’s “pins,” but isn’t as visually intuitive as masks and layers. Plus, DxO is just a raw developer; there is no image layering or compositing. Nor does it create a catalog as such.

So it is not a full replacement for either Lightroom or Photoshop. But it does produce great looking raw files for export (even as raw DNGs) to other programs.


Luminar 2018

15A-Luminar 2018 (Wide)
Luminar 2018 Full Screen
15B-Luminar 2018 (CU)
Luminar 2018 Enlargement

PROS: Luminar has good selective color adjustments, a dehaze control, and good contrast adjustments for highlights, mid-tones, and shadows. Adjustments can be added in layers, making them easier to edit. Noise reduction was smooth and artifact-free, but adjustments were basic. Many filters can be painted on locally with a brush, or with a radial or gradient mask.

CONS: It has no lens correction database; all adjustments are manual. The preview was slow to refresh and display results when adjusting filters. The interface is clean but always requires adding filters to the filter panel to use them when creating new layers. Its batch export is crude, with only a dialog box and no visual browser to inspect or select images.

Settings are applied as a user preset on export, not through a visual copy-and-paste function. I don’t consider that method practical for time-lapses.


ON1 Photo RAW 2018

16A-ON1 Photo Raw (Wide)
ON1 Photo RAW Full Screen
16B-ON1 Photo Raw (CU)
ON1 Photo RAW Enlargement

PROS: ON1 is the only program of the bunch that can: catalog images, develop raw files, and then layer and stack images, performing all that Lightroom and Photoshop can do. It is fast to render previews in its “Fast” mode, but in its “Accurate” mode ON1 is no faster than Lightroom. It has good layering and masking functions, both in its Develop mode and in its Photoshop-like Layers mode.

Selective color and contrast adjustments were good, as was noise reduction. Developing, then exporting a time-lapse set worked very well, but still took as long as with Lightroom or Photoshop.

CONS: Despite promising automatic lens detection and correction, ON1 failed to apply any vignetting correction for my 20mm Sigma lens. Stars exhibited dark haloes, even with no sharpening, dehaze, or noise reduction applied. Its de-Bayering algorithm produced a cross-hatched pattern at the pixel level, an effect not seen on other programs.

Noise reduction did not smooth this. Thus, image quality simply wasn’t as good.


Pixelmator Pro

17A-Pixelmator Pro (Wide)
Pixelmator Pro Full Screen
17B-Pixelmator Pro (CU)
Pixelmator Pro Enlargement

PROS: It is low cost. And it has an attractive interface.

CONS: As of version 1 released in November 2017 Pixelmator Pro lacks: any noise reduction (it’s on their list to add!), any library mode or copy and paste function, nor even the ability to open several images at once displayed together.

It is simply not a contender for “Photoshop killer” for any photo application, despite what click-bait “reviews” promise, ones that only re-write press releases and don’t actually test the product.


Raw Therapee v5.3

18A-Raw Therapee (Wide)
Raw Therapee Full Screen
18B-Raw Therapee (CU)
Raw Therapee Enlargement – With and Without Noise Reduction

PROS: It’s free! It offers an immense number of controls and sliders. You can even change the debayering method. It detects and applies lens corrections (though in my case only distortion, not vignetting). It has good selective color with equalizer-style sliders. It has acceptable (sort of!) noise reduction and sharpening with a choice of methods, and with hot and dead pixel removal.

It can load and apply dark frames and flat fields, the only raw developer software that can. This is immensely useful for deep-sky photography.

CONS: It offers an immense number of controls and sliders! Too many! It is open source software by committee, with no one in charge of design or user friendliness. Yes, there is documentation, but it, too, is a lot to wade through to understand, especially with its broken English translations. This is software for digital signal processing geeks.

But worst of all, as shown above, its noise reduction left lots of noisy patches in shadows, no matter what combination of settings I applied. Despite all its hundreds of sliders, results just didn’t look as good.


What About …? (updated December 28)

What About Group of 8

No matter how many programs I found to test, someone always asks, “What about …?” In some cases such comments pointed me to programs I wasn’t even aware of, but subsequently tried out. So here are even more to pick from…


Acorn (https://flyingmeat.com/acorn/)

Acorn
Acorn’s very basic raw adjustment module.

Billed as having “everything you need in an image editor,” this low-cost ($30) MacOS-only program is anything but. Its raw developer module is crude and lacks any of the sophisticated range of adjustments offered by all the other programs on offer here. It might be useful as a layer-based editor of images developed by another program.


Alien Skin Exposure x3 (https://www.alienskin.com)

Alien Skin (Wide)
Alien Skin Exposure x3 at work on the the image

Available for Mac and Windows for $150, this Lightroom competitor offers a good browser function, with the ability to “copy-from-one and paste-to-many” images (unlike some of the programs below), and a good batch export function for time-lapse work. It has good selective color controls and very good noise reduction providing a smooth background without artifacts like blockiness or haloes. Local adjustments, either through brushed-on adjustments or through gradients, are applied via handy and easy to understand (I think!) layers.

While it has auto lens corrections, its database seemed limited — it did not have my Sigma 20mm lens despite it being on the market for 18 months. Manual vignetting correction produced a poor result with just a washed out look.

The main issue was that its shadow, highlight, and clarity adjustments just did not produce the snap and contrast I was looking for, but that other programs could add to raw files. Still, it looks promising, and is worth a try with the trial copy. You might find you like it. I did not. For similar cost, other programs did a better job, notably DxO PhotoLab.


darktable (http://www.darktable.org)

In the same ilk as Raw Therapee, I also tested out another free, open-source raw developer, one simply called “darktable,” with v2.2.5 shown below. While it has some nice functions and produced a decent result, it took a lot of time and work to use.

19A-Darktable
darktable RAW Developer

The MacOS version I tried (on a brand new 5K iMac) ran so sluggishly, taking so long to re-render screen previews, that I judged it impractical to use. Sliders were slow to move and when I made any adjustments often many seconds would pass before I would see the result. Pretty frustrating, even for free.


Iridient Developer (http://www.iridientdigital.com)

19B-Iridient Developer
Iridient Developer

A similar crowd-developed raw processing program, Iridient Developer (above), sells for $99 US. I tested a trial copy of v3.2. While it worked OK, I was never able to produce a great looking image with it. It had no redeeming features over the competition that made its price worthwhile.


Paintshop Pro (https://www.paintshoppro.com/en/)

PaintShop Raw Developer
Paintshop Pro’s included but very basic Raw developer.

Using Parallels running Windows 10 on my Mac, I did try out this popular Windows-only program from Corel. By itself, Paintshop Pro’s raw developer module (shown above) is basic, crude and hardly up to the tax of processing demanding raw files. You are prompted to purchase Corel’s Aftershot Pro for more capable raw development, and I would agree – Aftershot would be an essential addition. However …

As I showed above, I did test the MacOS version of Aftershot Pro on my raw sample image, and found it did the poorest job of making my raw test image look good. Keep in mind that it is the ability of all these programs to develop this typical raw nightscape image that I am primarily testing.

That said, given a well-developed raw file, Paintshop Pro can do much more with it, such as further layering of images and applying non-destructive and masked adjustment layers, as per Photoshop. Indeed, it is sold as a low-cost (~ $60) Photoshop replacement. As such, many Windows users find Paintshop’s features very attractive. However, Paintshop lacks the non-destructive “smart” filters, and the more advanced selection and masking options offered by Photoshop, Affinity Photo, and ON1 Photo Raw. If you have never used these, you likely don’t realize what you are missing.

If it’s an Adobe alternative you are after, I would suggest Windows users would be better served by other options. Why not test drive Affinity and ON1?


PhotoDirector 9 (https://www.cyberlink.com/products/photodirector-ultra/features_en_US.html

Photo Director Wide
PhotoDirector’s very Lightroom-like interface and controls.

This was a surprising find. Little known, certainly to me, this Windows and MacOS program from the Taiwanese company Cyberlink, is best described as a Lightroom substitute, but it’s a good one. Its regular list price is $170. I bought it on sale for $60.

Like Lightroom, working on any images with PhotoDirector requires importing them into a catalog. You cannot just browse to the images. Fine. But one thing some people complain about with Lightroom is the need to always import images.

I was impressed with how good a job PhotoDirector did on my raw test image. PhotoDirector has excellent controls for shadow and highlight recovery, HSL selective color, copying-and-pasting settings, and batch exporting. So it will work well for basic time-lapse processing.

Noise reduction was very good and artifact-free. While it does have automatic lens corrections, its database did not include the 2-year old Sigma 20mm Art lens I used. So it appears its lens data is not updated frequently.

PhotoDirector has good local adjustments and gradients using “pins” rather than layers, similar to Camera Raw and Lightroom.

After performing raw image “Adjustments,” you can take an image into an Edit module (for adding special effects), then into a Layers module for further work. However, doing so destructively “flattens” the image to apply the raw adjustments you made. You cannot go back and tweak the raw settings in the Adjustment module, as you can when opening a raw file as a “smart object” in Adobe Photoshop.

While PhotoDirector does allow you to layer in other images to make basic composites (such as adding type or logos), there is no masking function nor any non-destructive adjustment layers. So this is most assuredly not a Photoshop substitute, despite what the advertising might suggest. But if it’s a Lightroom replacement you are after, do check it out in a trial copy.


Picktorial v3 (https://www.picktorial.com)

Picktorial
MacOS-only Picktorial v3, with its clean interface

This little-known MacOS-only program (only $40 on sale) for developing raw images looks very attractive, with good selective color, lots of local adjustments, and good masking tools, the features promoted on the website. It does have a browse function and can batch export a set of developed files.

However … its noise reduction was poor, introducing glowing haloes around stars when turned up to any useful level. Its shadows, highlights, and contrast adjustments were also poor – it was tough to make the test image look good without flattening contrast or blocking up shadows. Boosting clarity even a little added awful dark haloes to stars, making this a useless function. It has no lens correction, either automatic or manual. Like Topaz Studio, below, it cannot copy and paste settings to a batch of images, only to one image at a time, so it isn’t useful for time-lapse processing.

I cannot recommend this program, no matter how affordable it might be.


Silky Pix Developer Studio 8 (http://www.silkypix.us

Silky Pix Wide

Popular among some camera manufacturers as their included raw developer, Silky Pix can be purchased separately ($80 list price for the standard version, $250 list price for the Pro version) with support for many cameras’ image files. It is available for MacOS and Windows. I tried the lower-cost “non-Pro” version 8. It did produce a good-looking end result, with good shadow and highlight recovery, and excellent color controls. Also on the plus side, Silky Pix has very good copy-and-paste functions for development settings, and good batch export functions, so it can be used to work on a folder of time-lapse frames.

On the down side, noise reduction, while acceptable, left an odd mottled pattern, hardly “silky.” The added “Neat” noise reduction option only smoothed out detail and was of little value except perhaps for very noisy images. Noise reduction did nothing to remove hot pixels, leaving lots of colored specks across the image. The program uses unorthodox controls whose purposes are not obvious. Instead of  Highlights and Shadows you get Exposure Bias and HDR. Instead of Luminance and Color noise reduction, you get sliders labeled Smoothness and Color Distortion. You really need to read the extensive documentation to learn how to use this program.

I found sliders could be sticky and not easy to adjust precisely. The MacOS version was slow, often presenting long bouts of spinning beachballs while it performed some function. This is a program worth a try, and you might find you like it. But considering what the competition offers, I would not recommend it.


Topaz Studio (http://www.topazlabs.com)

Topaz Studio (Wide)
Topaz Studio at work on the test image

While Topaz Labs previously offered only plug-ins for Photoshop and other programs (their Topaz DeNoise 6 is very good), their Topaz Studio stand-alone program now offers full raw processing abilities.

It is for Mac and Windows. While it did a decent job developing my test Milky Way image (above), with good color and contrast adjustments, it cannot copy and paste settings from one image to a folder of images, only to one other image. Nor can it batch export a folder of images. Both deficiencies make it useless for time-lapse work.

In addition, while the base program is free, adding the “Pro Adjustments” modules I needed to process my test image (Noise Reduction, Dehaze, Precision Contrast, etc.) would cost $160 – each Adjustment is bought separately. Some users might like it, but I wouldn’t recommend it.


And … Adobe Photoshop Elements v18 (late 2017 release)

What about Adobe’s own Photoshop “Lite?” Elements is available for $99 as a boxed or downloadable one-time purchase, but with annual updates costing about $50. While it offers image and adjustment layers, it cannot do much with 16-bit images, and has very limited functions for developing raw files.

And its Lightroom-like Organizer module does not have any copy-and-paste settings or batch export functions, making it unsuitable for time-lapse production.

19C-Photoshop Elements
Photoshop Elements v18 – Showing its Version of Camera Raw Lite

Elements is for processing photos for the snapshot family album. Like Apple’s Photos and other free photo apps, I don’t consider Elements to be a serious option for nightscape and time-lapse work. But it can be pressed into service for raw editing and layering single images, especially by beginners.

However, a Creative Cloud Photo subscription doesn’t cost much more than buying, then upgrading Elements outright, yet gets you far, far more in professional-level software.


And Yet More…!

In addition, for just developing raw files, you likely already have software to do the job – the program that came with your camera.

20-Canon DPP
Canon Digital Photo Professional v4

For Canon it’s Digital Photo Professional (shown above); for Nikon it’s Capture NX; for Pentax it’s Digital Camera Utility, etc.

These are all capable raw developers, but have no layering capabilities. And they read only the files from their camera brand. If theirs is the only software you have, try it. They are great for learning on.

But you’ll find that the programs from other companies offer more features and better image quality.


What Would I Buy?

Except for Capture One, which I tested as a trial copy, I did buy all the software in question, for testing for my Nightscapes eBook.

However, as I’ve described, none of the programs tick all the boxes. Each has strengths, but also weaknesses, if not outright deficiencies. I don’t feel any can fully replace Adobe products for features and image quality.

DxO to Affinity

A possible non-Adobe combination for the best image quality might be DxO PhotoLab for raw developing and basic time-lapse processing, and Affinity Photo for stacking and compositing still images, from finished TIFF files exported out of DxO and opened and layered with Affinity.

But that combo lacks any cataloging option. For that you’d have to add ACDSee or Aftershot for a budget option. It’s hardly a convenient workflow I’d want to use.

DxO vs ON1 Noise
ON1 De-Bayer Artifacts (Right) Compared to DxO PhotoLab (Left), at 400%

I’d love to recommend ON1 Photo RAW more highly as a single solution, if only it had better raw processing results, and didn’t suffer from de-Bayering artifacts (shown in a 400% close-up above, compared to DxO PhotoLab). These add the star haloes and a subtle blocky pattern to the sky, most obvious at right.


To Adobe or Not to Adobe

I’m just not anxious, as others are, to “avoid Adobe.”

I’ve been a satisfied Creative Cloud subscriber for several years, and view the monthly fee as the cost of doing business. It’s much cheaper than the annual updates that boxed Photoshop versions used to cost. Nor am I worried about Adobe suddenly jacking up the fees or holding us hostage with demands.

21-LRTimelapse
LRTimelapse at Work on a Time-Lapse Sequence

For me, the need to use LRTimelapse (shown above) for about 80 percent of all the time-lapse sequences I shoot means the question is settled. LRTimelapse works only with Adobe software, and the combination works great. Sold.

I feel Camera Raw/Lightroom produces results that others can only just match, if that.

Only DxO PhotoLab beat Adobe for its excellent contrast enhancements and PRIME noise reduction.

Yes, other programs certainly have some fine features I wish Camera Raw or Lightroom had, such as:

  • Hot and dead pixel removal
  • Dark frame subtraction and flat field division
  • Better options for contrast enhancement
  • And adding local adjustments to raw files via layers, with more precise masking tools
  • Among others!

But those aren’t “must haves.”

Using ACR or Lightroom makes it easy to export raw files for time-lapse assembly, or to open them into Photoshop for layering and compositing, usually as “smart objects” for non-destructive editing, as shown below.

21-Photoshop Final Image
Final Layered Photoshop Image

Above is the final layered image, consisting of:

  • A stack of 4 tracked exposures for the sky (the test image is one of those exposures)
  • And 4 untracked exposures for the ground.

The mean stacking smooths noise even more. The masking reveals just the sky on the tracked set. Every adjustment layer, mask, and “smart filter” is non-destructive and can be adjusted later.

I’ll work on recreating this same image with the three non-Adobe programs capable of doing so –  Affinity, Luminar, and ON1 Photo RAW – to see how well they do. But that’s the topic of a future blog.


Making the Switch?

The issue with switching from Adobe to any new program is compatibility.

While making a switch will be fine when working on all new images, reading the terabytes of old images I have processed with Adobe software (and being able to re-adjust their raw settings and layered adjustments) will always require that Adobe software.

If you let your Creative Cloud subscription lapse, as I understand it the only thing that will continue to work is Lightroom’s Library module, allowing you to review images only. You can’t do anything to them.

None of the contender programs will read Adobe’s XMP metadata files to display raw images with Adobe’s settings intact.

Conversely, nor can Adobe read the proprietary files and metadata other programs create.

ON1 Warning Dialog

With final layered Photoshop files, while some programs can read .PSD files, they usually open them just as flattened images, as ON1 warns it will do above. It flattened all of the non-destructive editing elements created in Photoshop. Luminar did the same.

23-Affinity Opening PSB File
A Layered Photoshop PSB File Opened in Affinity Photo

Only Affinity Photo (above) successfully read a complex and very large Photoshop .PSB file correctly, honouring at least its adjustment and image layers. So, if backwards compatibility with your legacy Photoshop images is important, choose Affinity Photo.

However, Affinity flattened Photoshop’s smart object image layers and their smart filters. Even Adobe’s own Photoshop Elements doesn’t honor smart objects.

Lest you think that’s a “walled garden” created by “evil Adobe,” keep in mind that the same will be true of the image formats and catalogs that all the contender programs produce.

To read the adjustments, layers, and “live filters” you create using any another program, you will need to use that program.

Will Affinity, DxO, Luminar, ON1, etc. be around in ten years?

Yes, you can save out flattened TIFFs that any program can read in the future, but that rules out using those other programs to re-work any of the image’s original settings.


In Conclusion!

24-DxO UPoint Local
U-Point Local Adjustments in DxO PhotoLab

I can see using DxO PhotoLab (above) or Raw Therapee for some specific images that benefit from their unique features.

Or using ACDSee as a handy image browser.

28-Luminar as Plug-In
Luminar 2018 as a Plug-In Within Photoshop

And ON1 and Luminar have some lovely effects that can be applied by calling them up as plug-ins from within Photoshop, and applied as smart filters. Above, I show Luminar working as a plug-in, applying its “Soft & Airy” filter.

In the case of Capture One and DxO PhotoLab, their ability to save images back as raw DNG files (the only contender programs of the bunch that can), means that any raw processing program in the future should be able to read the raw image.

27-CaptureOne DNG Opened in ACR
DNG Raw File Created by Capture One Opened in ACR

However, only Capture One’s Export to DNG option produced a raw file readable and editable by Adobe Camera Raw with its settings from Capture One (mostly) intact (as shown above).

Even so, I won’t be switching away from Adobe any time soon.

But I hope my survey has given you useful information to judge whether you should make the switch. And if so, to what program.

Thanks! 

— Alan, December 6, 2017 / © 2017 Alan Dyer / AmazingSky.com

My 2018 Amazing Sky Calendar


2018 Sky Calendar CoverMy free Amazing Sky Calendar for 2018 is now available for download! Plan your astronomical year!

As in recent years, I have prepared a free 12-month Calendar listing loads of celestial events, Moon phases, highlighted space events, and with small charts to show what’s happening in the sky for the coming year. The monthly pages are illustrated with my favourite images from 2017.

You can download it as a 25-megabyte PDF at my website at

http://www.amazingsky.com/aboutalan.html

Scroll down the page for the button link.

You can print the Calendar as you wish for your personal use.

Do tell others about the Calendar, but please send them to my page for them to download the PDF Calendar for themselves.

Thanks, and here’s to a great celestial 2018!

— Alan, October 8, 2017 / © 2017 Alan Dyer / amazingsky.com

The Fast 14s Face-Off


Sigma and Rokinon 14mm on Stars

I put two new fast 14mm lenses to the test: the Sigma 14mm f/1.8 Art vs. the Rokinon 14mm f/2.4 SP. 

Much to the delight of nightscape and astrophotographers everywhere we have a great selection of new and fast wide-angle lenses to pick from.

Introduced in 2017 are two fast ultra-wide 14mm lenses, from Sigma and from Rokinon/Samyang. Both are rectilinear, not fish-eye, lenses.

I tested the Nikon version of the Sigma 14mm f/1.8 Art lens vs. the Canon version of the Rokinon 14mm f/2.4 SP. I used a Nikon D750 and Canon 6D MkII camera.

I also tested the new faster Rokinon SP against the older and still available Rokinon 14mm f/2.8, long a popular lens among nightscape photographers.

The Sigma 14mm is a fully automatic lens with auto focus. It is the latest in their highly regarded Art series of premium lenses. I have their 20mm and 24mm Art lenses and love them.

The Rokinon 14mm SP (also sold under the Samyang brand) is a manual focus lens, but with an AE chip so that it communicates with the camera. Adjusting the aperture is done on the camera, not by turning a manual aperture ring, as is the case with many of Rokinon’s lower cost series of manual lenses. The lens aperture is then recorded in each image’s EXIF metadata, an aid to later processing. It is part of Rokinon’s premium “Special Performance” SP series which includes an 85mm f/1.2 lens.

All units I tested were items purchased from stock, and were not supplied by manufacturers as samples for testing. I own these!


CONCLUSIONS

For those with no time to read the full review, here are the key points:

• The Sigma f/1.8 Art exhibits slightly more off-axis aberrations than the Rokinon 14mm SP, even at the same aperture. But aberrations are very well controlled.

• As its key selling point, the Sigma offers another full stop of aperture over the Rokinon SP (f/1.8 vs. f/2.4), making many types of images much more feasible, such as high-cadence aurora time-lapses and fixed-camera stills and time-lapses of a deeper, richer Milky Way.

• The Sigma also has lower levels of vignetting (darkening of the frame corners) than the Rokinon 14mm SP, even at the same apertures.

• Both the Sigma Art and Rokinon SP lenses showed very sharp star images at the centre of the frame.

• Comparing the new premium Rokinon 14mm SP against the older Rokinon 14mm f/2.8 revealed that the new SP model has reduced off-axis aberrations and lower levels of vignetting than the lower-cost f/2.8 model. However, so it should for double the price or more of the original f/2.8 lens.

• The Rokinon 14mm SP is a great choice for deep-sky imaging where optical quality is paramount. The Sigma 14mm Art’s extra speed will be superb for time-lapse imaging where the f/1.8 aperture provides more freedom to use shorter shutter speeds or lower ISO settings.

Though exhibiting the lowest image quality of the three lenses, the original Rokinon 14mm f/2.8 remains a superb value, at its typical price of $350 to $500. For nightscapers on a budget, it’s an excellent choice.

 


TESTING PROCEDURES

For all these tests I placed the camera and lens on a tracking mount, the Sky-Watcher Star Adventurer Mini shown below. This allowed the camera to follow the sky, preventing any star trailing. Any distortions you see are due to the lens, not sky motion.

Sigma on SAM on Stars
Star Adventurer Mini Tracker (with Sigma 14mm on Nikon D750)

As I stopped down the aperture, I lengthened the exposure time to compensate, so all images were equally well exposed.

In developing the Raw files in Adobe Camera Raw, I applied a standard level of Contrast (25) and Clarity (50) boost, and a modest colour correction to neutralize the background sky colour. I also applied a standard level of noise reduction and sharpening.

However, I did not apply any lens corrections that, if applied, would reduce lateral chromatic aberrations and compensate for lens vignetting.

So what you see here is what the lens produced out of the camera, with no corrections. Keep in mind that the vignetting you see can be largely compensated for in Raw development, with the provisos noted below. But I wanted to show how much vignetting each lens exhibited.


OFF-AXIS ABERRATIONS

Stars are the severest test of any lens. Not test charts, not day shots of city skylines. Stars.

The first concern with any fast lens is how sharp the stars are not only in the centre of the frame, but also across the frame to the corners. Every lens design requires manufacturers to make compromises on what lens aberrations they are going to suppress at the expense of other lens characteristics. You can never have it all!

However, for astrophotography we do look for stars to be as pinpoint as possible to the corners, with little coma and astigmatism splaying stars into seagull and comet shapes. Stars should also not become rainbow-coloured blobs from lateral chromatic aberration.

SIGMA 14mm ART

Sigma 14mm Upper L Corner
Sigma 14mm Art – Upper Left Corner Close-up at 5 Apertures
Sigma 14mm Upper R Corner
Sigma 14mm Art – Upper Right Corner Close-up at 5 Apertures

These images show 200% blowups of the two upper corners of the Sigma 14mm Art lens, each at five apertures, from wide open at f/1.8, then stopped down at 1/3rd stop increments to f/2.8. As you would expect, performance improves as you stop down the lens, though some astigmatism and coma are still present at f/2.8.

But even wide open at f/1.8, off-axis aberrations are very well controlled and minimal. You have to zoom up this much to see them.

There was no detectable lateral chromatic aberration.

Aberrations were also equal at each corner, showing good lens centering and tight assembly tolerances.

ROKINON 14mm SP

Rokinon 14mm Upper L Corner
Rokinon 14mm SP at 3 Apertures
Rokinon 14mm Upper R Corner
Rokinon 14mm SP at 3 Apertures

Similarly, these images show 200% blow-ups of the upper corners of the Rokinon SP, at its three widest apertures: f/2.4, f/2.8 and f/3.2.

Star images look tighter and less aberrated in the Rokinon, even when compared at the same apertures.

But images look better on the left side of the frame than on the right, indicating a slight lens de-centering or variation in lens position or figuring, a flaw noted by other users in testing Rokinon lenses. The difference is not great and takes pixel-peeping to see. Nevertheless, it is there, and may vary from unit to unit. This should not be the case with any “premium” lens.

SIGMA vs. ROKINON

Rokinon vs Sigma (Corner Aberrations)
Rokinon vs. Sigma Corner Aberrations Compared

This image shows both lenses in one frame, at the same apertures, for a more direct comparison. The Rokinon SP is better, but of course, doesn’t go to f/1.8 as does the Sigma.


ON-AXIS ABERRATIONS

We don’t want good performance at the corners if it means sacrificing sharp images at the centre of the frame, where other aberrations such as spherical aberration can take their toll and blur images.

These images compare the two lenses in 200% blow-ups of an area in the Cygnus Milky Way that includes the Coathanger star cluster. Both lenses look equally as sharp.

SIGMA 14mm ART

Sigma 14mm Centre
Sigma 14mm Art – Centre of Frame Close-up

Even when wide open at f/1.8 the Sigma Art shows very sharp star images, with little improvement when stopped down. Excellent!

ROKINON 14mm SP

Rokinon 14mm Centre
Rokinon 14mm SP – Centre of Frame Close-up

The same can be said for the Rokinon SP. It performs very well when wide open at f/2.4, with star images as sharp as when stopped down 2/3rds of an f-stop to f/3.2

SIGMA vs. ROKINON

Rokinon vs Sigma (Centre Aberrations)
Sigma vs. Rokinon Centre Sharpness Compared

This image shows both lenses in one frame, but with the Sigma wide open at f/1.8 and stopped down to f/2.8, vs. the Rokinon wide open at f/2.4 and stopped to f/2.8. All look superb.


VIGNETTING

The bane of wide-angle lenses is the light fall-off that is inevitable as lens focal lengths decrease. We’d like this vignetting to be minimal. While it can be corrected for later when developing the Raw files, doing so can raise the visibility of noise and discolouration, such as magenta casts. The less vignetting we have to deal with the better.

As with off-axis aberrations, vignetting decreases as lenses are stopped down. Images become more uniformly illuminated across the frame, with less of a “hot spot” in the centre.

SIGMA 14mm ART

Sigma 14mm Vignetting (5 Apertures)
Sigma 14mm Art – Vignetting Compared at 5 Apertures

This set compares the left edge of the frame in the Sigma SP at five apertures, from f/1.8 to f/2.8. You can see how the image gets brighter and more uniform as the lens is stopped down. (The inset image at upper right show what part of the frame I am zooming into.)

ROKINON 14mm SP

Rokinon 14mm Vignetting (3 Apertures)
Rokinon 14mm SP – Vignetting Compared at 3 Apertures

This similar set compares the frame’s left edge in the Rokinon SP at its three widest apertures, from f/2.4 to f/3.2. Again, vignetting improves but is still present at f/3.2.

SIGMA vs. ROKINON

Rokinon vs Sigma Vignetting
Rokinon vs. Sigma – Vignetting Compared

This compares both lenses at similar apertures side by side for a direct comparison. The Sigma is better than the Rokinon with a much more uniform illumination across the frame.

Sigma 14mm Vignetting at f1.8
Sigma 14mm Art – Vignetting at f/1.8 Maximum Aperture
Rokinon 14mm Vignetting at f2.4
Rokinon 14mm SP – Vignetting at f/2.4 Maximum Aperture

In these two images, above, of the entire frame at their respectively widest apertures, I’d say the Sigma exhibits less vignetting than the Rokinon, even when wide open at f/1.8. The cost for this performance, other than in dollars, is that the Sigma is a large, heavy lens with a massive front lens element.


ROKINON 14mm f/2.4 SP vs. ROKINON 14mm f/2.8 Standard

Even the Rokinon 14mm SP, though a manual lens, carries a premium price, at $800 to $1000 U.S., depending on the lens mount.

Samyang 14mm Lens
The 14mm Rokinon/Samyang f/2.8 Lens

For those looking for a low-cost, ultra-wide lens, the original Rokinon/Samyang 14mm f/2.8 (shown above) is still available and popular. It is a fully manual lens, though versions are available with a AE chip to communicate lens aperture information to the camera.

I happily used this f/2.8 lens for several years. Before I sold it earlier in 2017 (before I acquired the Sigma 14mm), I tested it against Rokinon’s premium SP version.

The older f/2.8 lens exhibited worse off-axis and on-axis aberrations and vignetting than the SP, even with the SP lens set to the same f/2.8 aperture. But image quality of the original lens is still very good, and the price is attractive, at half the price or less, than the 14mm SP Rokinon.

TWO 14mm ROKINONS: OFF-AXIS ABERRATIONS

14mm Rokinons Aberrations (Upper L Corner)
Two Rokinons (Older “Standard” vs. new SP) – Upper Left Corner Close-up
14mm Rokinons Aberrations (Upper R Corner)
Two Rokinons (Older “Standard” vs. new SP) – Upper Right Corner Close-up

Here, in closeups of the upper corners, I show the difference between the two Rokinons, the older standard lens on the left, and the new SP on the right.

The SP, as it should, shows lower aberrations and tighter star images, though with the improvement most marked on the left corner; not so much on the right corner. The original f/2.8 lens holds its own quite well.

TWO 14mm ROKINONS: ON-AXIS ABERRATIONS

14mm Rokinons Aberrations (Centre)
Two Rokinons (Older “Standard” vs. new SP) – Centre of Frame Close-up

At the centre of the frame, the difference is more apparent, with the SP lens exhibiting sharper star images than the old 14mm with its generally softer, larger star images. The latter likely has more spherical aberration.

TWO 14mm ROKINONS: VIGNETTING

14mm Rokinons Vignetting
Two Rokinons (Older “Standard” vs. new SP) – Vignetting Compared

The new SP lens clearly has the advantage here, with less vignetting and brighter corners even when wide open at f/2.4 than the older lens does at its widest aperture of f/2.8. This is another reason to go for the new SP if image quality is paramount


PRICES

The new Sigma 14mm Art lens is costly, at $1600 U.S., though with a price commensurate with its focal length and aperture. Other premium lenses in this focal length range, either prime or zoom, from Nikon and Canon sell for much more, and have only an f/2.8 maximum aperture. So in that sense, the Sigma Art is a bargain.

The new Rokinon 14mm SP sells for $800 to $1000, still a premium price for a manual focus lens. But its optical quality competes with the best.

The older Rokinon 14mm f/2.8 is a fantastic value at $350 to $500, depending on lens mount and AE chip. For anyone getting into nightscape and Milky Way photography, it is a great choice.


RECOMMENDATIONS

With such a huge range in price, what should you buy?

A 14mm is a superb lens for nightscape shooting – for sky-filling auroras, for panoramas along the Milky Way, or of the entire sky. But the lens needs to be fast. All three lenses on offer here satisfy that requirement.

Sigma 14mm & Rokinon 14mm SP (Front)
Sigma 14mm Art (left) and Rokinon 14mm SP (right)

SIGMA 14mm f/1.8 ART

If you want sheer speed, this is the lens. It offers a full stop gain over the already fast Rokinon f/2.5, allowing exposures to be half the length, or shooting at half the ISO speed for less noise.

Its fast speed comes into its own for rapid cadence aurora time-lapses, to freeze auroral motion as much as possible in exposures as short as 1 to 2 seconds at a high ISO. The fast speed might also make real-time movies of the aurora possible on cameras sensitive and noiseless enough to allow video shooting at ISO 25,000 and higher, such as the Sony a7s models.

The Sigma’s fast speed also allows grabbing rich images of the Milky Way in exposures short enough to avoid star trailing, either in still images or in time-lapses of the Milky Way in motion.

While the Sigma does exhibit some edge aberrations, they are very well controlled (much less than I see with some 24mm and 35mm lenses I have) and are a reasonable tradeoff for the speed and low level of vignetting, which results in less noisy corners.

Photographers obsess over corner aberrations when, for fixed-camera nightscape shooting, a low level of vignetting is probably more critical. Correcting excessive vignetting introduces noise, while the corner aberrations may well be masked by star trailing. Only in tracked images do corner aberrations become more visible, as in the test images here.

I’d suggest the Sigma is the best choice for nightscape and time-lapse shooting, with its speed allowing for kinds of shots not possible otherwise.

The Sigma also appears to be the best coated of all the lenses, as you can see in the reflections in the lenses in the opening image, and below. However, I did not test the lenses for flares and ghosting.

As a footnote, none of the lenses allow front-mounted filters, and none have filter drawers.

ROKINON 14mm f/2.4 SP

For less money you get excellent optical quality, though with perhaps some worrisome variation in how well the lens elements are figured or assembled, as evidenced by the inconsistent level of aberration from corner to corner.

Nevertheless, stars are tight on- and off-axis, and vignetting is quite low, for corners that will be less noisy when the shadows are recovered in processing.

I’d suggest the Rokinon SP is a great choice if tracked deep-sky images are your prime interest, where off-axis performance is most visible. However, the SP’s inconsistent aberrations from corner to corner are evidence of lower manufacturing tolerances than Sigma’s, so your unit may not perform like mine.

For nightscape work, the SP’s f/2.4 aperture might seem a minor gain over Rokinon’s lower-cost f/2.8 lens. But it is 1/3 of an f-stop. That means, for example, untracked Milky Way exposures could be 30 seconds instead of 40 seconds, short enough to avoid obvious star trailing. At night, every fraction of an f-stop gain is welcome and significant.

ROKINON 14mm f/2.8 Standard

You might never see the difference in quality between this lens and its premium SP brother in images intended for time-lapse movies, even at 4K resolution.

But those intending to do long-exposure deep-sky imaging, as these test images are, will want the sharpest stars possible across the frame. In which case, consider the 14mm SP.

But if price is a prime consideration, the original f/2.8 Rokinon is a fine choice. You’ll need to apply a fair amount of lens correction in processing, but the lens exists in the Camera Raw/Lightroom database, so correction is just a click away.


Sigma and Rokinon 14mm on Stars

That was a lengthy report, I know! But there’s no point in providing recommendations without the evidence to back them up.

All images, other than the opening “beauty shot,” can be clicked/tapped on to download a full-resolution original JPG for closer inspection.

As I’ve just received the Sigma Art lens I’ve not had a chance to shoot any “real” nightscape images with it yet, just these test shots. But for a real life deep-sky image of the Milky Way shot with the Rokinon SP, see this image from Australia. https://flic.kr/p/SSQm7G

I hope you found the test of value in helping you choose a lens.

Clear skies!

— Alan, September 22, 2017 / © 2017 Alan Dyer / amazingsky.com

 

Testing the Canon 6D Mark II for Deep-Sky


6D MkII on Cygnus

Following up on my earlier tests, I compare the new Canon 6D MkII camera to earlier Canon full-frame models in long, tracked exposures of the Milky Way.

A month ago I published tests of the new Canon 6D MkII camera for nightscape images, ones taken using a fixed tripod in which exposures usually have to be limited to no longer than 30 to 60 seconds, to prevent star trailing.

Despite these short exposures, we still like to extract details from the dark shadows of the scene, making nightscape images a severe test of any camera.

I refer you to my August 9, 2017 blog Testing the Canon 6D MkII for Nightscapes for the results. The 6D MkII did not fare well.

Here I test the 6D MkII for what, in many respects, is a less demanding task: shooting long exposures of deep-sky objects, the Milky Way in Cygnus in this case.

Why is this an easier task? The camera is now on a tracking mount (I used the new Sky-Watcher Star Adventurer Mini) which is polar aligned to follow the rotation of the sky. As such, exposures can now be many minutes long if needed. We can give the camera sensor as much signal as the darkness of the night sky allows. More signal equals less noise in the final images.

In addition, there are no contrasty, dark shadows where noise lurks. Indeed, the subjects of deep-sky images are often so low in contrast, as here, they require aggressive contrast boosting later in processing to make a dramatic image.

While that post-processing can bring out artifacts and camera flaws, as a rule I never see the great increase in noise, banding, and magenta casts I sometimes encounter when processing short-exposure nightscape scenes.


6D MkII at Four ISOs
The Canon 6D MkII at four typical ISO speeds in tracked exposures.

6D at Four ISOs
The original Canon 6D at four typical ISO speeds in tracked exposures.

5D MkII at Four ISOs
A Canon 5D MkII that has been filter-modified at four typical ISO speeds in tracked exposures.
For this test, I shot the same region of sky with the same 35mm lens L-Series lens at f/2.2, using three cameras:

• Canon 6D MkII (2017)

• Canon 6D (2012)

• Canon 5D MkII (2008)

Note that the 5D MkII has been “filter-modified” to make its sensor more sensitive to the deep red wavelengths emitted by hydrogen gas, the main component of the nebulas along the Milky Way. You’ll see how it picks up the red North America Nebula much better than do the two off-the-shelf “stock” cameras. (Canon had their own factory-modified “a” models in years past: the 20Da and 60Da. Canon: How about a 6D MkIIa?)

I shot at four ISO speeds typical of deep-sky images: 800, 1600, 3200, and 6400.

Exposures were 4 minutes, 2 minutes, 1 minute, and 30 seconds, respectively, to produce equally exposed frames with a histogram shifted well to the right, as it should be for a good signal-to-noise ratio.

Noisy deep-sky images with DSLR cameras are usually the result of the photographer underexposing needlessly, often in the mistaken belief that doing so will reduce noise when, in fact, it does just the opposite.

The above set of three images compares each of the three cameras at those four ISO speeds. In all cases I have applied very little processing to the images: only a lens correction, some sharpening, a slight contrast and clarity increase, and a slight color correction to neutralize the background sky.

However, I did not apply any luminance noise reduction. So all the images are noisier than what they would be in a final processed image.

Even so, all look very good. And with similar performance.

All frames were shot with Long Exposure Noise Reduction (LENR) on, for an automatic dark frame subtraction by the camera. I saw no artifacts from applying LENR vs. shots taken without it.

The 6D and 6D MkII perhaps show a little less noise than the old 5D MkII, as they should being newer cameras.

The 6D MkII also shows a little less pixelation on small stars, as it should being a 26 megapixel camera vs. 20 to 21 megapixels for the older cameras. However, you have to examine the images at pixel-peeping levels to see these differences. Nevertheless, having higher resolution without the penalty of higher noise is very welcome.


3 Canons at ISO 1600
The three cameras compared at ISO 1600. Note the histogram and region of the frame we are examining up close.

3 Canons at ISO 3200
The three cameras compared at ISO 3200. Note the histogram and region of the frame we are examining up close.

3 Canons at ISO 6400
The three cameras compared at ISO 6400. Note the histogram and region of the frame we are examining up close.
Above, I show images from the three cameras side by side at ISOs 1600, 3200, and 6400. It is tough to tell the difference in noise levels, the key characteristic for this type of astrophotography.

The new 6D MkII shows very similar levels of noise to the 6D, perhaps improving upon the older cameras a tad.

Because images are well-exposed (note the histogram at right), the 6D MkII is showing none of the flaws of its lower dynamic range reported elsewhere.

That’s the key. The 6D MkII needs a well-exposed image. Given that, it performs very well.


3 Canons Stacked & Processed
The three cameras in stacked and processed final images.
This version shows the same images but now with stacked frames and with a typical level of processing to make a more attractive and richer final image. Again, all look good, but with the modified camera showing richer nebulosity, as they do in deep-sky images.

The lead image at the very top is a final full-frame image with the Canon 6D MkII.


As such, based on my initial testing, I can recommend the Canon 6D MkII (and plan to use it myself) for deep-sky photography.

Indeed, I’ll likely have the camera filter-modified to replace my vintage yet faithful 5D MkII for most of my deep-sky shooting. The 6D MkII’s tilting LCD screen alone (a neck, back, and knee saver when attached to a telescope!) makes it a welcome upgrade from the earlier cameras.

The only drawback to the 6D MkII for deep-sky work is its limited dark frame buffer. As noted in my earlier review, it can shoot only three Raw files in rapid succession with Long Exposure Noise Reduction turned on. The 5D MkII can shoot five; the 6D can shoot four. (A 6D MkIIa should have this buffer increased to at least 4, if not 8 images.)

I make use of this undocumented feature all the time to ensure cleaner images in long deep-sky exposures, as it produces and subtracts dark frames with far greater accuracy than any taken later and applied in post-processing.


I hope you’ve found this report of interest.

With the 6D MkII so new, and between smoky skies and the interference of the Moon, I’ve had only one night under dark skies to perform these tests. But the results are promising.

For more tips on deep-sky imaging and processing see my pages on my website:

Ten Tips for Deep-Sky Images

Ten Steps to Deep-Sky Processing

Thanks and clear skies!

— Alan, September 7, 2017 / © 2017 Alan Dyer / amazingsky.com