The Great Red Aurora


On November 11, 2025 the sky erupted with a swath of red Northern Lights seen over much of North America.

It is rare when those living at southerly latitudes can see Northern Lights. Instead of having to travel north to Arctic sites, the aurora comes south to them. That’s what happened on November 11, 2025 when one of the largest solar storms in recent years brought the aurora down over much of the North America.

This was the latest in a set of wonderful aurora shows we’ve enjoyed in the last two years, as the Sun reached the peak of its 11-year cycle of activity.

As I show below, the apps and indicators were registering extreme conditions, with the “Kp Index” peaking at 8 out of a maximum of 9, and the auroral “Ovation” oval lighting up red, indicating a major geomagnetic storm was underway. In the lingo of the local Alberta Aurora Chasers Facebook group, it was most definitely a “pants on” night!

The source of the storm was two major flares on the Sun in quick succession. In only a day the high-speed “coronal mass ejections” they had unleashed reached Earth and lit up the sky.

As a result the ring of aurora borealis which usually circles the Arctic moved down over southern Canada and the northern United States. I was under that ring of lights!

This is a blend of two exposures, for sky and ground, both 8 seconds at f/2.8 with the TTArtisan 11mm full-frame fish-eye lens on the Canon R5 at ISO 1600.

As it got dark this night, large swaths of red were easily visible to the eye, especially to the northwest as above, and below.

A single 5-second exposure at f/2.8 with the TTArtisan 11mm lens on the Canon R5 at ISO 1600.

Early on a large curtain of red extended across the sky, from northwest to southeast. It is rare to see bright reds with the eye, and unusual to see the reds so extensive and sky-spanning.

This 360ยบ panorama is a stitch of 6 segments, 60ยบ apart, each 5-second exposures at f/2.8 with the TTArtisan 11mm full-frame fish-eye lens on the Canon R5 at ISO 1600, and in landscape orientation.

The reds are mostly from oxygen atoms, but can also come from nitrogen molecules, which require the input of a lot of energy to get excited and glow! They certainly were this night.

The reds mixed with the more common green light from oxygen to produce shades of yellow and orange, and with blues from nitrogen to produce vivid pinks and magentas. While the eye could see some of these subtle colours, a camera (with its longer exposure and wider aperture lens compared to the human eye) was best for picking up the full range of what this show had on display.

This 360ยบ panorama is a stitch of 10 segments, 36ยบ apart, each 4-second exposure at f/2.8 with the Laowa 10mm rectilinear wide-angle lens on the Nikon Z8 at ISO 1600, and in portrait orientation.

The panorama above taken about 2 hours after the previous all-sky scene, shows a quieter aurora but still with curtains covering the sky and converging to the “magnetic zenith,” a little south of the point straight overhead.

Such an all-sky show of aurora is among the sky’s finest spectacles.

A real-time video with the Nikon Z6III at ISO 25600 and Viltrox 16mm lens at f/1/8.

In the video above taken early in the evening I pan around the horizon over the full 360ยบ to take in the scene much as the eye did see it. Video uses shorter exposures more like the eye does. I narrate the video at the camera.

When the aurora covers the sky it’s hard to take it all in and capture it on camera. The 10mm ultra-wide lens I used for the images above sweep up well past the zenith to show the converging curtains, forming shapes that kept changing by the minute.

In the video below I used the same lens with the camera turned to portrait orientation to create a “vertical video,” again narrated at the camera. It shows how the aurora was changing, but slowly this night. It did not have the rapid dynamics I’ve seen with other bright displays, despite the obvious high energies involved here to excite the reds.

Real-time video with the Laowa 10mm lens at f/2.8 and Nikon Z8 at ISO 25,600 & 1/4 second shutter.

Again, this real-time video captures the scene much as the unaided eye saw it. I’ve not processed either of these real-time videos, other than what the camera itself did.

This is a panorama of 12 segments, each 1 second at f/1.8 with the Viltrox 16mm lens on the Nikon Z6III at ISO 1600. Stitched in Adobe Camera Raw.
This is a stitch of 6 segments, 60ยบ apart, each 4-second exposure at f/2.8 with the TTArtisan 11mm full-frame fish-eye lens on the Canon R5 at ISO 1600, in landscape orientation. Stitched in PTGui.

On a night like this, I try to shoot not only single still images and videos, but also multi-image panoramas, such as the circular images earlier and these two rectangular “panos” above. Both cover a full 360ยบ in width but don’t go up to the zenith.

Again, they record the range of colours that were on show on this Kp8 night, which were more visible and extensive than usual for an all-sky display.

I also shot two time-lapse sequences. These form the main visuals for this edited music video I produced around the time-lapses.

The link takes you to my Vimeo channel to watch the video. Do enlarge it to full screen!

A single 2.5-second exposure at f/1.8 with the Viltrox 16mm lens on the Nikon Z6III at ISO 1600.

I also always try to take some selfies at every great aurora show, with me often lit just by aurora light! They’re fun to use for talks and “bio pix.”

This is a single 4-second exposure at f/2.8 with the Laowa 10mm lens on the Nikon Z8 at ISO 1600.

As a final bonus this night, one of the fish-eye lens time-lapse frames happened to capture a bright meteor. You see it briefly in a flash in the music video above, but below is the single frame.

A single 4-second exposure at f/2 with the TTArtisan 7.5mm circular fish-eye lens on the Nikon Z8 at ISO 1600. Taken as part of a 780-frame time-lapse.

Because it is streaking away from the constellation of Taurus, this is likely a member of the annual Taurid meteor shower which was in its final nights of the long period it is active in late October and early November. In fact, there are two Taurid showers, Northern and Southern, active at once and coming from similar spots in Taurus. They are known to produce bright fireballs and this was certainly one!

While the Sun is now in the downward slope of its cycle, coming off “solar max” last year, we may still see more major storms and aurora shows like this. Historically, the biggest solar flares and aurora displays often occur in the 2 or 3 years after solar maximum.

So stay tuned! The sky may still light up red with Northern Lights!

โ€” Alan, November 15, 2025

ยฉ AmazingSky.com

The Great Aurora Show of May 10, 2024


It has been many years since we were treated to an aurora as widely seen as the show on May 10, 2024. Here’s my tale of the great display.

As the sky darkened around the world on May 10/11, 2024, sky watchers in both the northern and southern hemispheres were amazed to see the sky lit by the deep reds, greens and pinks of a massive display of aurora. For me, this was my first Kp8 to 9 show (to use one measure of aurora intensity) in more than 20 years, back in the film era!

Throughout the day, aurora chasers’ phones (mine included) had been beeping with alerts of the arrival of a major solar storm, with the usual indicators of auroral activity pinned to the top of the scale.

A NOAA satellite’s eye view of the ring of aurora May 10/11, showing it south of me in Alberta, and across the northern U.S. People in the southern U.S. saw it to their north.

As I show below, the graphic of the intensity of the band of aurora, the auroral oval, was lit up red and wide. This was a night we didn’t have to chase north to see the Northern Lights or aurora borealis โ€” they were coming south to meet us (as I show above).

Observers in the southern hemisphere had the normally elusive aurora australis move much farther north than usual, bringing the Southern Lights even to tropical latitudes in Australia, South America and Africa.

The cause was a massive sunspot group on the Sun which had let off several intense solar flares.

Sunspot group 3664 was so big it could be seen with the naked eye, using solar eclipse glasses. Photo courtesy NASA.

The flares had in turn blown off parts of the Sun’s atmosphere, the corona, that anyone who saw the total eclipse a month earlier had admired so much. But a month later, the corona was being blown our way, in a series of Coronal Mass Ejections (CMEs), to collide with Earth.

A movie of six CMEs blasting toward Earth, captured by the SOHO satellite. Courtesy NASA/ESA.

As it happened I was scheduled to give a community talk in the nearby town early in the evening of May 10, on the topic of The Amazing Sky! Watching the indicators, I could more or less promise the audience that we would indeed see an amazing sky later that evening as it got dark.

Post talk, I hurried home to get the cameras ready, choosing to forgo more hurried driving out to a scenic site in southern Alberta, for the convenience of shooting from my rural backyard. As the sky darkened, the clouds were lit purple, and curtains of aurora appeared in the clear patches.

Clouds and aurora in twilight with the 11mm TTArtisan full-frame fish-eye lens.
A bright arc of aurora shining through the purple clouds, with the 7.5mm TTArtisan circular fish-eye lens.

Something big was going on! This was promising to be the best show of Northern Lights I had seen from home in a year. (Spring 2023 had three great shows at monthly intervals, followed by an aurora drought for many months. See The Great April Aurora.)

A selfie at the start of the great aurora show of May 10, 2024.

I shot with four cameras (a Canon EOS R, Ra, R5 and R6) โ€” two for time-lapses, one for real-time movies, and one for still images. I used the latter to take many multi-image panoramas, as they are often the best way to capture the wide extent of an aurora across the sky.

The arc of aurora in purple and white across the northern sky from home in Alberta at the start of the great display (about 11:30 p.m. MDT).

Early in the evening the arc of aurora wasn’t the usual green from oxygen, but shades of purple, pink, and even white, likely from sunlit nitrogen. The panorama above is looking north toward a strangely coloured arc of nitrogen (?) aurora.

Then after midnight a more normal curtain appeared suddenly, but toward the south, brightening and rising to engulf much of the southern sky and the sky overhead.

Looking south with the 15mm wide-angle lens.

It is at local midnight to 1 a.m. when substorms usually hit, as we are then looking straight down Earth’s magnetic tail, toward the rain of incoming aurora particles bombarding the Earth. During a substorm, the rain turns into a deluge โ€” the intensity of the incoming electrons increases, sparking a sudden brightening of the aurora, making it dance all the more rapidly.

This is a 300ยฐ panorama of my home sky now filled with colourful curtains.

As the aurora explodes in brightness it often swirls up to the zenith (or more correctly, the magnetic zenith) to form one of the sky’s greatest sights, a coronal outburst. Rays and beams converge overhead to form a tunnel effect. It is jaw-dropping.

I’ve seen this many times from northern sites such as Churchill and Yellowknife, where the aurora often dances straight up. And from my latitude of 51ยฐ N in western Canada, the aurora does often come down to us.

But this night, people at latitudes where, at best, the aurora might be seen just as a glow on the horizon, saw it dance overhead in a corona show to rival the solar eclipse, and that other corona we saw on April 8!

This is a panorama of a substorm outburst creating an overhead corona with rays converging to the magnetic zenith (south of the true zenith), and amid clouds. The rays show a rich mix of oxygen greens and reds, as well as nitrogen blues blending to create purples. Some greens and reds are mixing to make yellows.

Yes, the long exposures of aurora photos (even those taken with phone cameras) show the colours better than your eye can see them (insensitive as our eyes are to colour in dim light). But this night portions of the arcs and rays were bright enough that greens and pinks were easily visible to the naked eye.


This is a single 9-second exposure of the peak of a bright outburst at 1 a.m. MDT. It was with the Laowa 7.5mm circular fish-eye lens at f/2 on the Canon R5 at ISO 800. It is one frame from a time-lapse sequence.

At its peak the show was changing rapidly enough, I couldn’t get to all the cameras to aim and frame them, especially the movie camera. The brightest outburst at 1 a.m. lasted just a minute โ€” the time-lapse cameras caught it. The sequence below shows the view in 9-second exposures taken consecutively just 1 second apart.

This series shows a brief outburst of bright aurora at the magnetic zenith overhead. The time between these 7 consecutive 9-second exposures is only 1 second, so this bright outburst did not last long (little more than a minute). With the TTArtisan 7.5mm f/2 fish-eye lens on the Canon R5. Click or tap to enlarge to full screen.

Here’s another sequence of frames taken as part of a time-lapse sequence with the 11mm lens. It shows the change in the aurora over the 80 minutes or so that it was most active for me at my site.


The time between these 12 images is usually 8 minutes, though to include some interesting activity at a bright outburst, the interval is 5 minutes for three of the images around 1 a.m. Each is a 7- or 9-second exposure taken as part of a time-lapse sequence using the 11mm TTArtisan lens at f/2.8 on the Canon R at ISO 800 or 1600.

Shooting time-lapses with fish-eye lenses captures the show with a minimum of attention needed (except to adjust ISO or exposure times when the aurora brightens!). I could use the still camera (with the Laowa 15mm f/2 lens) to take individual shots, such as more selfies and home shots.

This is a single 8-second exposure with the Laowa 15mm lens at f/2 on the Canon Ra at ISO 800. Another camera taking a time-lapse is in the scene. I had four going this night.

As colourful as the aurora was at its best between midnight and 1:30 a.m., I think the most unique shots came after the show had subsided to appear just as faint rays across the north again, much as it had begun. To the eye it didn’t look like much, but even on the camera’s live screen I could see unusual colours.

I took more panoramas, to capture one of the most unusual auroral arcs I’ve even seen โ€” a blue and magenta aurora across the north, similar to how the night started.

This a stitch of 11 segments, each 13-second exposures, with the Laowa 15mm lens at f/2 on the Canon Ra camera at ISO 800, and turned to portrait orientation. Processed in Camera Raw and stitched with PTGui.

The colours may be from nitrogen glowing, which tends to light up in blues and purples, especially when illuminated by sunlight at high altitudes. At 2 to 2:30 a.m. the Sun might have been illuminating the aurora at a height of 150 to 400 km, and far to the north.

I’d seen blue-topped green auroras before (and there’s a green aurora off to the west at left here). But this was the first time I’d seen an all-blue aurora, no doubt a product of the intense energy flowing in the upper atmosphere this night. And the season and my latitude.

The panorama is a spherical projection spanning 360ยบ, and reaching to the zenith 90ยฐ high at centre. This a stitch of 20 segments, each 13-second exposures, with the Laowa 15mm lens at f/2 on the Canon Ra camera at ISO 800, and turned to portrait orientation. Processed in Camera Raw and stitched with PTGui.

The weirdest aurora was at 2:30 a.m., when in addition to the blue rays of nitrogen, an odd white and magenta patch appeared briefly to the south. What was that??

The lesson here? During a bright show do not go back to sleep when things seem to be dying down. Interesting phenomena can appear in the post-storm time, as we’ve learned with STEVE and other odd red arcs and green proton blobs that we aurora photographers have helped document.

I end with a finale music video, mostly made of the time-lapses I shot this night.

Enjoy!

Bring on more aurora shows as the Sun peaks in activity, perhaps this year. But the best shows often occur in the 2 or 3 years after solar max. So we have several more years to look forward to seeing the Lights dance in our skies.

Watch in full screen and in 4K if you can. For all the tech details click through to YouTube and check the description below the video.

Thanks and clear skies!

โ€” Alan, May 18, 2024 amazingsky.com

The Total Eclipse of 2024 โ€” The Video


I present a two-minute video set to music of the April 8, 2024 total solar eclipse.

In my previous blog Chasing the Cross Continental Eclipse I told the tale of my chase to see the total eclipse of the Sun. I ended up under mostly clear skies in the Eastern Townships of Quรฉbec, Canada, not Texas, my original destination.

Here I present the result of shooting with four cameras that afternoon, taking still images, time-lapses, and a 4K movie.

Be sure to watch in 4K!

The site worked out very well, as the lower Sun in eastern Canada lent itself to views framing the eclipse over a landscape below, in this case a very wavy lake. But I was lucky to have open water as other lakes in the area were still frozen.

My post-eclipse selfie at the Lac Brome site in Quebec for the April 8, 2024 total eclipse of the Sun.

As it was, a snow storm a few days earlier left lots of snow in the area to be included in my post-eclipse selfie.

The description below the video on YouTube provides lots of information about the images used in the video. Click through to the video’s page on YouTube to learn more.

This was only the third total solar eclipse I’ve seen from Canada, after February 26, 1979 from Manitoba, and August 1, 2008 from the air out of Cambridge Bay, Nunavut in the Canadian Arctic. The next total eclipse from Canada passes over my home in Alberta. But it is not until August 22, 2044!

โ€” Alan, April 28, 2024 โ€” AmazingSky.com

Chasing the Cross-Continental Eclipse


I had always planned to drive to the April 8, 2024 total eclipse of the Sun. But to where? I ended up on the other side of the continent than originally planned.

It is not often the path of the Moonโ€™s shadow crosses your home country, let alone continent. Only once before in recent years, on August 21, 2017, did the narrow shadow path pass near enough to my home in Alberta to allow me to drive to a total eclipse. They almost always require flying. 

Packed and ready to hit the highway for a long eclipse trip.

Yes, while I could drive to the April 8, 2024 eclipse, it was going to demand a much longer drive than in 2017. But driving allowed me to take a carload of telescope and camera gear. So that was the plan. 

My destination was San Antonio, Texas. Thatโ€™s where I had made a hotel booking more than a year earlier. The weather prospects in Texas were forecast to be best (at least according to the long-term averages) of any locations along the path in the U.S. or Canada. (I did not want to drive into Mexico.) 

On March 30, with some trepidation, I set out down I-15 heading south. I got as far as Great Falls, Montana, my stop for night one. But it was to be a move in the wrong direction.

The forecast for Eclipse Day as of March 30. Blue is bad; white is good!

The various long-range weather models were all agreeing, even 10 days in advance, that Texas (covered in blue above) was looking poor for eclipse day. But eastern Canada looked good! That was the exact opposite of what had been expected. 

So on Easter Sunday, I turned around and headed north, crossing back into Canada at a lonely border post in southwest Saskatchewan. 

I proceeded east along the TransCanada, Highway 1. I decided against a route across the northern U.S. and around the southern end of Lake Michigan, to avoid severe weather forecast for the middle of the U.S. 

One of my daily Facebook travelogue posts with a beer of the day.

Along the way I posted my beer-du-jour travel reports, as above from Day 8, that day from within the shadow path at last!

I also stopped at the only total eclipse site, of the 16 I had seen previously, I have ever been able to re-visit. On February 26, 1979 I and a small band of friends from Edmonton viewed the mid-winter eclipse (the last one visible from southern Canada) from a median road (Firdale Road as it is now called) on the TransCanada Highway near Carberry, Manitoba. I found the spot again, where I saw (and shot with my Questar telescope) my first total eclipse of the Sun. 

However, a day after entering Ontario, the bad weather caught up with me, forcing an extra night north of Lake Superior while the only highway across the region, Highway 17, was cleared of snow and re-opened at Wawa, the usual cross-Canada choke point. 

My new destination (after abandoning the site in the Texas Hill Country) was to be southern Ontario. 

However, as eclipse day approached and the weather predictions became more precise, it was apparent that Ontario would also be under some cloud. Southern Quรฉbec was looking better. So the Eastern Townships became my new Plan A site! I was running out of time!

Using the TPE app to check the Sun’s location once on site, the day before the eclipse.

I arrived on site in Quรฉbec with only a day to spare to check out the location I had found by exploring Google maps. 

With the Sun lower in the mid-afternoon sky in Quรฉbec compared to the high-noon Sun in Texas, I decided to shoot a wide-angle scene of the eclipse over a lake, preferably with open water, not ice! That required a site with public parking on an eastern lakeshore.

The site I found, then checked out on April 7, was on Lac Brome. It proved ideal โ€” except for the thin cloud that was now predicted to drift through during the eclipse. 

Sure enough, thatโ€™s just what happened. The cloud detracted from the eclipse only in preventing long-exposure images recording the outermost streamers in the Sunโ€™s atmosphere. 

A wide-field view of the eclipse of the Sun, taking in the bright planets Jupiter (at top) and Venus (below) that were easily visible to the unaided eye during totality.

I could have sought out clearer skies by going even farther east, but I was in a crunch for time and hotel rooms! As it was I was able to get rooms everywhere I wanted and at normal โ€œnon-eclipseโ€ rates! 

A panorama of the lakeside parking area at Lac Brome prior to the eclipse.

The Lac Brome site filled with cars during the day, with people from Quรฉbec and Ontario, but also from Alberta, and from Pennsylvania, Massachusetts and Maine โ€“ at least those were the homes of the folks I enjoyed meeting on eclipse day. 

Everyone had a great time and had a superb eclipse experience. 

The total eclipse of the Sun over the waters of Lac Brome, in the Eastern Townships of Quebec, Canada. The twilight colours come from sunlight from outside the shadow path.

The lunar shadow arrived from the southwest, from the direction of the Sun, appearing as a dark cloud racing toward us. At the end of the eclipse the sky brightened first in that same direction, as the trailing edge of the shadow shot up across the sky. The clouds helped make the shadow edge more visible. 

A time-lapse of the arrival and departure of the lunar shadow, made of 1200 frames each 1 second apart.

I shot with five cameras, just as I had done in 2017, possible only because I drove. 

The main rig was my faithful Astro-Physics Traveler, a 105mm refractor telescope the company owner designed for his personal use at the 1991 eclipse in Mexico. 

My main eclipse rig, with a 60mm visual scope on the 105mm photo scope, on an equatorial tracking mount.

My Traveler, bought in 1992, has lived up to its name, having now been to six central solar eclipses: the annular eclipses of 1994 (Arizona) and 2023 (Utah), and the total eclipses of 1998 (Curaรงao), 2012 (Queensland, Australia), 2017 (Idaho), and now 2024 in Quรฉbec, Canada. I paired it with the wonderful matching AP400 mount, which I had only just brought back with me the month before from Australia, where it had spent the last two decades. 

All the gear worked great. Unlike six months earlier for the October 14, 2023 annular eclipse in Utah, this time I remembered all the cables needed to have the telescope mount track the Sun.

I did mess up on a couple of settings (such as not framing the 4K movie camera as I should have โ€“ in pre-eclipse excitement I just forgot to check my chart). But none of the errors were serious. 

The eclipse in a blend of two exposures to display all the fiery pink prominences that were visible during totality around the lunar disk in one image, set against the bright inner corona of the Sun with the dark disk of the Moon in silhouette in front of the Sun.

Once started all my cameras, except for the one on the Traveler, ran unattended. 

At this eclipse I was determined to get a good look at it through the small visual scope I had piggybacked onto the Traveler photo scope. While I had used a similar rig in 2017, I only thought to look through the visual scope 20 seconds before totality ended. 

Not this year. 

A telescopic close-up of the eclipsed Sun. Onto the central blend of images for totality I layered in single images of each of the diamond rings before and after totality. They are when the last or first burst of sunlight shines through lunar valleys. The first diamond ring is at top left, the last at bottom right, so time runs from left to right.

I got a great look at the eclipsed Sun, its corona structures, flaming pink prominences, and breakout of the red chromosphere layer just as totality ended. (You canโ€™t easily see the chromosphere at the start of totality as it can be risky looking too soon through optics when the Sunโ€™s blindingly bright photosphere is still in view.) 

This is a composite showing the sequence of events surrounding totality, from just before totality (at upper left) to just after totality (at lower right), with totality in the middle. The contact images were taken 0.6 seconds apart.

And yet, as at all eclipses, I found the naked eye view the most compelling. The โ€œblack holeโ€ Sun looked huge and unearthly. While I had binoculars handy, the same 12×36 image-stabilized binoculars I bring to most eclipses, I completely forgot to look though them, just as I forget at most eclipses! 

This is a composite showing the complete sequence of the April 8, 2024 eclipse of the Sun, from first contact (at upper left) to last contact (at lower right), with totality at mid-eclipse in the middle.

I shot all the images with the Astro-Physics Traveler 105mm refractor at 630mm focal length and f/6, with the Canon R5 at ISO 100. The partial phases are 1/800 or 1/400 second exposures through a Kendrick/Baader solar filter.

Wanting to record the full sequence, I shot the partial phases until the bitter end. But post-eclipse, people came over and had a look through my scope (I think mine was the only telescope on site). We had a great time exchanging impressions. The hand-held phone camera photos people showed me looked fabulous! 

I looked for fleeting shadow bands just before and after totality (I laid out a white sheet on the ground for the purpose) but saw none, a negative observation confirmed by a fellow eclipse chaser at the site. 

Time-lapse movies of the second and third contact (start and end of totality) diamond rings, shot through the telescope with the Canon R5 in continuous burst mode for hundreds of frames each.

I did two live interviews for CBC Radio, for the Edmonton and Calgary stations, but not until after the eclipse ended. By the time I did those and finished packing away my carload of gear, it was 6:30 p.m., three hours after totality. 

I was the last to leave the site, with fishermen now arriving for an eveningโ€™s catch.

I was in that shadow as the Space Station flew over. Astronauts saw the elliptical shadow moving over eastern Canada.
The passage of the lunar shadow across the continent, showing where the clouds were. I was under the wispy clouds at upper right in Quรฉbec.

I faced no traffic jams heading back to the hotel at Ste. Helen-de-Bagot. I processed and posted one eclipse image that night. And I revised the price (down to $2.99 U.S.) and description of my How to Photograph the Solar Eclipses ebook, as now only the big processing chapter is of any value, post-eclipse. It continues to sell. 

This is the waxing crescent Moon on April 10, 2024, two days after it eclipsed the Sun, and with it above the bright planet Jupiter, with it also near Uranus. Below the solar system worlds is the faint Comet 12P/Pons-Brooks, visible here as a fuzzy star with a stubby tail..

On the long drive back to Alberta, with the pressure of having to make time now gone, I spent pleasant evenings stopping to see friends and family on the road home. So I didnโ€™t start work on the complex blends and composite images I show here until I got home a week after the eclipse. 

The happy eclipse chaser having bagged his game!

The 17-day-long drive was nearly 9,000 km over 100 hours behind the wheel. Was it worth it? Of course! 

Would I do it again? Itโ€™s a moot question as none of the upcoming eclipses allows for a cross-continent drive. Except perhaps in July 2028 in Australia. But I suspect just heading inland a day or two over the Great Dividing Range will be enough to get away from winter coastal cloud in New South Wales. (Sydney is in the path, but so is a cottage I rented last month near Coonabarabran for my superb March stay under the southern skies!)

The next total eclipse of the Sun visible from anywhere in Canada will be August 22, 2044. I wonโ€™t have to drive anywhere, as it passes right over my house! But I will have to live that long to enjoy a eclipse from my own backyard. 

I suspect this was my last chance to see โ€“ and drive to โ€“ a total eclipse in Canada.

โ€” Alan, ยฉ 2024 amazingsky.com 

Tutorials and Tips for the Solar Eclipse


As eclipse day approaches here are some tips and video tutorials from me about how best to capture the total eclipse of April 8, 2024.

There are many ways to capture great images and movies of a total eclipse of the Sun. I outline them all in great detail in my 380-page ebook How to Capture the Solar Eclipses, linked to at right.

Originally published in June 2023, I revised the ebook following the October 14, 2023 annular eclipse of the Sun to include “lessons learned at the eclipse,” and some processing tutorials on assembling annular eclipse composites. I’ve also added new content on using software to control cameras and updated information about solar filters.

Brief Tips and Techniques

The August 21, 2017 total solar eclipse over the Grand Tetons as seen from the Teton Valley in Idaho, near Driggs. With the Canon 6D and 14mm SP Rokinon lens at f/2.5 for 1/10 second at ISO 100.

My breakdown of recommend methods, in order from simplest to most complex, and with increasing demands on your time, is generally this:

  1. Use a Phone Camera for a Movie. While they can be used for a quick handheld grab shot during totality, a better method is to place a phone on a tripod using a clamp of some kind. Then a few minutes before totality aim and frame the scene, with no filter over the camera lens. Start it in movie mode to record video of the eclipse and sky changes, and the excited sounds of your group! Just remember to stop the video shortly after the end of totality and aim the phone away from the Sun. Never leave any unfiltered camera aimed at the Sun for a long time.
  2. Shoot a Wide-Angle Time-Lapse. Using a DSLR or mirrorless camera and a wide-angle lens (it might need to be as wide as a 14mm at sites in Mexico and the southern U.S.) aim and frame the camera to include the Sun and landscape below. Focus the lens! And leave it on manual focus. But put the camera into Auto-Exposure Aperture Priority (Av) with wide-area metering and with it set to underexpose by -1 EV Exposure Compensation. With the camera at ISO 100 or 200, use either its internal intervalometer (if it has one) or an external intervalometer to take frames once per second. Start the sequence with no filter on the lens a few minutes before totality. Let it run on its own until a few minutes after totality. The result is hundreds of frames you can turn into a time-lapse movie of the lunar shadow approaching and receding, and of the changes in sky colours. Or you can extract single frames at key points to process individually, as I did for the image above from August 2017. The advantage, as with the phone camera movie method, is that the camera, once going, requires no further attention. You can enjoy the eclipse!
  3. Shoot a Telephoto Video. Use a 300mm to 500mm lens on a DSLR or mirrorless camera to shoot a real-time close-up video of the eclipse. Start the video a minute or two before totality with the Sun positioned to the left of frame centre and with a solar filter over the lens. Use a slow ISO, the lens wide open (typically f/4 to f/5.6) and the camera on Auto-Exposure Aperture Priority (Av). Just be careful to focus precisely on the filtered Sun before starting the video. Poor focus is what spoils most eclipse images, not poor exposure. Just before totality (about 30 seconds prior to Second Contact) remove the filter. The auto-exposure will compensate and provide a proper exposure for the rest of totality. Just let the camera run and the Sun drift across the frame from left to right. Just remember to replace the filter, or cap the lens, and stop the video shortly (~30 seconds) after totality and Third Contact. The video will capture the diamond rings and a well-exposed corona. Vary the exposure compensation during totality if you wish, but that involves more work at the camera. Otherwise, you can just let the camera run. But, as I illustrate in my ebook, it’s important to plan and place the Sun correctly to begin with (using a planetarium app to plan the sequence), so it does not drift off the frame or close to the edge.
  4. Shoot Telephoto Close-Up Stills. Use the same type of gear to shoot still images. While you could shoot stills on Auto-Exposure, it’s better to shoot still images over a range of exposures, from very short (~1/1000 second) for the diamond rings and prominences, to long (~1 second) for the outer corona. No one exposure can capture all that the eye can see during totality. This takes more work at the camera, and with the camera on a static tripod you might have to re-centre the Sun during totality, another thing to fuss with and where things can go wrong. Using the camera’s Auto-Bracketing mode can help automate the shooting, allowing the camera to automatically shoot a set of 7 to 9 exposures at say, one-stop increments in quick succession with just one press of the shutter button (by using the self-timer set to 2 seconds).
  5. Shoot with a Telescope on a Tracking Mount. Telescopes (I like 60mm- to 100mm-aperture apochromatic refractors) allow longer focal lengths, though I would advise against shooting with any optics longer than 600mm to 800mm, so the image frames the corona well. Use similar settings as above, but with the telescope (or a telephoto lens) on a tracking mount to turn from east to west at the same rate as the sky moves. That will ensure the Sun stays centred on its own, provided you have at least roughly polar aligned the mount. (Set it to your site’s latitude and aim the polar axis as due north as you can determine from compass apps.)

Those are brief summaries of the methods I recommend, as they are ones I’ve used with success in the past and plan to use on April 8. My ebook contains much more information, and answers to most of the “But what about using ….?” questions. And I provide lots of information on what can go wrong! Some learned the hard way over 16 previous total solar eclipses.

Video Tutorials

For a video tutorial, check out the webinar I conducted as part of the Kalamazoo Astronomical Society’s excellent Eclipse Series here on YouTube. It is about a 1-hour presentation, plus with lots of Q&A at the end.

KAS Eclipse Series โ€” Part 1: Shooting

Of course, once you have all your images, you need to process them. My ebook’s biggest chapter (at 80 pages) is the one on processing still images and time-lapses.

So, a month after I presented the above webinar on Shooting, I was back on-line again for a follow-up webinar on Processing. You can view that KAS Eclipse Series tutorial here on YouTube.

KAS Eclipse Series โ€” Part 2: Processing

I cover processing single wide-angle images, a wide-angle time-lapse series, single-image close-ups, and blending multiple exposure composites.

A month later, I presented a further webinar to the Astronomical League as part of their AL Live series, again on shooting the eclipse, but now with an emphasis on techniques amateur astronomers and astrophotographers with typical telescope gear might use.

You can view the AL Live webinar here. My presentation begins at the 44-minute mark.

AL Live Webinar โ€” Scrub ahead to 44 minutes

I emphasized that the kinds of gear astrophotographers use these days with great success on deep-sky objects might not work well for the eclipse. The specialized cameras, and software used to control them, are just not designed for the demands of a total eclipse, where exposures have to range over a wide array of settings and change very quickly. Images have to be taken and recorded in rapid succession.

I suspect a lot of ambitious and overly-confident astrophotographers will come away from the 2024 eclipse disappointed โ€” and what’s worse, without having seen the eclipse because they were too wrapped up looking at laptop screens trying to get their high-tech gear working.

The Checklist page from my eBook

Practice, Practice, Practice

In these webinars and in my ebook, my common theme is the importance of practicing.

Don’t assume something will work. Practice with the gear you intend to use, on the Sun now (with proper filters) and on the Moon. The crescent Moon, with dim Earthshine lighting the lunar night side, is a great practice target because of its wide range of brightness. And it moves like the Sun will, to check maximum exposure times vs. image blurring from motion.

Practice with your tripod or mount aimed to the altitude and location in the sky where the Sun will be from the site you have chosen. Set a tracking mount to the latitude you will be at to be sure it will aim at and track the Sun without issues. Some telescope mounts stop tracking when they reach due south, exactly where the Sun will be at totality from southern sites. That’s a nasty surprise you do not want to encounter on eclipse day.

All this and much more is covered in my ebook, available for Apple Books and as a PDF for all platforms here from my website at https://www.amazingsky.com/EclipseBook

Good luck on eclipse day!

โ€” Alan, February 21, 2024

Chasing the Annular Eclipse


Like all eclipses, seeing the October 14 annular eclipse of the Sun was not a certainty. As good luck and planning would have it, the sky and location could not have been better!

Annular eclipses of the Sun donโ€™t present the spectacle of a total eclipse. Because the Moon is near its farthest point from Earth, its disk is not large enough to completely cover the Sun. At mid-eclipse, as I show below, a ring of sunlight (dubbed a โ€œring of fireโ€) remains, still too bright to view without a solar filter. 

The October 14, 2023 annular solar eclipse, in a single image captured at mid-eclipse, at 10:29 am MDT at the Ruby’s Inn Overlook on the rim of Bryce Canyon, Utah, a site well south of the centreline, with 3m03s of annularity.

While lacking the jaw-dropping beauty of a total, annular eclipses are rare and unique enough that every ardent skywatcher should make a point of seeing one. 

Prior to October 14, I had seen only one, on May 10, 1994, from southeast Arizona, an event I captured on film of course back then. 

A sunset annular on June 10, 2002 that I traveled to Puerto Vallarta, Mexico to see was mostly clouded out. The annular of May 20, 2012 traced a similar path across the U.S. Southwest as the 2023 eclipse. But work commitments at the science centre in Calgary kept me home for that one. A sunrise annular on June 10, 2021 in Northwestern Ontario was essentially out of reach due to COVID travel restrictions. 

With no other annular eclipses within easy reach in North America until 2039 and 2046, this was my next, and perhaps last, opportunity to see one, unless I chose to travel the world. 

I had planned for several months to watch the annular eclipse from southern Utah, ideally from Bryce Canyon National Park, shown above. (Clicking on the images brings them up full screen.) I booked accommodations in January 2023, finding even then that popular hotels in the area were already sold out. 

The final spot for the wide-angle composite shown below. The camera had to be next to that very fence post to frame the scene well.

The attraction was the landscape below the morning Sun, for a planned composite image of the eclipse over the hoodoos of Bryce. However, I had learned weeks earlier that traffic was going to be restricted to just park shuttle buses on eclipse day. Should Plan A not work out then Plan B was Kodachrome Basin, a state park nearby, which a park employee assured me would be open to cars well before sunrise on eclipse day. 

Seen on I-15 past Salt Lake City. Eclipse ahead!

So I made my plans to drive south, taking with me a carload of telescope and camera gear, an array I would never be able to take to an overseas eclipse. The centrepiece was my venerable Astro-Physics Traveler 105mm (4-inch) refractor, a telescope created for the 1991 total eclipse in Mexico. Since I bought mine in 1992 Iโ€™ve used it for five central solar eclipses, including now two annulars. It’s in the 1994 and 2023 site images above.

As per the instructions in my eclipse ebook, I practiced with the gear in the summer of 2023, documented here on my previous blog.

A week before the eclipse (as above at left), the weather prospects for the entire southwest looked poor. It was to be clouds everywhere. I even considered Plan S โ€“ Stay Home! And watch the 60% partial eclipse from Alberta where skies were to be clear. 

But undaunted, six days before the eclipse, I headed south on Interstate 15, checking the weather each day, and seeking out Plan C sites in New Mexico or Texas south of the projected mass of clouds. I checked where accommodation could be had at the last minute. 

At my stop in Richfield, Utah, four days before the eclipse, I had a crossroads turning point: either continue south to Bryce down US-89 (above), or head east on I-70, then south into New Mexico or Texas, with enough time to get there if needed. 

But by now the weather prospects were turning around. By three days out, and with the forecasts now much more reliable, it looked like southern Utah would be in the clear. I continued with my original plan to Bryce. But where exactly?

I had looked at possible sites on Google Earth and with the Sun-angle planning apps I use (such as The Photographer’s Ephemeris, or TPE) and found one just outside the Park that I hoped would be accessible to drive into. 

Upon arriving in the area three days early, the first priority was to inspect the site in person. It looked perfect! Almost too good to be true! 

A panorama of the Ruby’s Inn site with the eclipse in progress. My wide-angle camera is at left by that fencepost.

The site, known as the Rubyโ€™s Inn Overlook, provided a great view toward the eclipse with a stunning landscape below, including a river! (Well, it was actually an irrigation channel called the Tropic Ditch.) And I could park right next to my wide-angle landscape camera, to keep an eye on it over the five hours of shooting, while setting up the scope gear next to my car. 

I stayed at the Bryce View Lodge on eclipse eve, a hotel just a few hundred metres from the site. So no long pre-dawn drive on eclipse morn. However, the gated site was not going to be open until 7 a.m. on eclipse day. And admission was $20 per car, a cash donation to the Bryce Canyon City school sports teams. Fine! 

As it turned out, by the time I got on site and setup the priority wide-angle camera for the base-image sunrise shots at 7:30 a.m., the sky was too bright to polar align the telescope mount on Polaris, for accurate tracking of the Sun across the sky. 

It turned out that was the least of my concerns. 

My three eclipse cameras: the wide-angle, the one on the 105mm refractor telescope (with a smaller 60mm scope on top for visual views with a Herschel Solar Wedge), and one with a 100-400mm lens on the tripod.

As I unpacked the carload of scope gear at 8 a.m. I realized I had forgotten a crucial cable to connect the mount to the drive electronics. So the mount was not going to be able to track anyway! 

So much for my plans for a time-lapse through the scope. I had to manually centre the Sun every minute or so. I took lots of photos, but gave up on any effort to take them at a regular cadence.ย But I had enough images for the singles and composites shown here.

This is a composite of the October 14, 2023 annular solar eclipse with a sequence of six images showing the Moon advancing across a sunspot, the largest one visible on the Sun that day. The images are placed for a photogenic spacing, with time running forward from lower left to upper right, to reflect the Sun’s motion up across the morning sky.

Of course, once I got home the first thing I did was look downstairs in my scope room. Sure enough there was the cable, mixed up with the similar electronics from another mount I have from the same company, as I had been testing both prior to the eclipse. So much for my checklists! Theyโ€™re only good if they list every critical bit, and if you use them.

So that was one big user error. 

You don’t want to see this at an eclipse!

The other was a camera error, in fact Error70! I had set my main telescope camera to take rapid bursts of images (at up to 20 frames per second) at the crucial second and third contacts when annularity began and ended. With the Moonโ€™s rough limb tangent to the inside edge of the Sun, you see beads of light rapidly form and disappear at the contacts. 

This is a composite of the October 14, 2023 annular solar eclipse at second contact. It illustrates the irregular edge of the Moon breaking up the rim of sunlight as the dark disk of the Moon became tangent to the inner edge of the Sun at second contact at the start of annularity. 15 exposures taken over 20 seconds at second contact are combined with a single exposure taken about 1.5 minutes later at mid-annularity.

The camera worked great at second contact, shooting 344 frames over 20 seconds. A composite of 15 of those frames is above, layered to exaggerate the rough lunar limb and its mountain peaks. A time-lapse from those frames is below.

A time-lapse of second contact from 344 frames over ~20 seconds.

And it appeared to be working at third contact three minutes later. Until I looked down and saw the dreaded error message. In checking the camera later, none of the third contact images had recorded to either memory card. 

It is a known but intermittent bug in Canon firmware that can happen when the camera is not connected to a Canon lens (it was on a telescope it cannot communicate with). I saw the error once in testing. And I had a hard time reproducing it to take the screen shot above once I got home. But if something can go wrong โ€ฆ! 

This is a portrait of the October 14, 2023 annular eclipse of the Sun, captured in a sequence of images taken from the rim of Bryce Canyon, Utah, from sunrise until nearly the end of the eclipse before noon local time. This is a composite blend of unfiltered exposures taken at sunrise for the landscape lit by the rising Sun, and for the dawn sky. Onto the base panorama of the ground and sky I layered in 66 filtered images of the Sun, as it rose into the morning sky, and with the Moon moving across its disk over nearly 3 hours, reaching mid-eclipse at about 10:29 local MDT at upper right. It then appears as a ring, or annulus of light for one frame.

Despite the errors both human and machine, I count eclipse day as successful, considering a week earlier prospects had looked so poor. As it was, apart from some thin but inconsequential cloud that drifted through before mid-eclipse, the sky was perfect.

As was the site. I enabled me to get the main shot I was after, the wide-angle composite, above. It’s a winner! And it accurately depicts the size of the Sun and its motion across the sky, albeit set into a twilight sky taken at sunrise.

As it had been 29 years since my last annular, I wasnโ€™t sure what to expect. But the darkening of the sky and eerie level of sunlight, despite a blazing Sun in the day sky, were impressive. The morning just looked strange! It was a taste of the total to come.

Venus at its widest angle west of the Sun was easy to spot in the deep blue sky. I regret not thinking to shoot even a phone camera image of that sight.ย 

Projecting the solar crescents with a made-on-the-spot pinhole projection sign.

I had pleasant chats with other folks at the site, and enjoyed showing them telescopic views though the smaller visual scope I had piggybacked on the main scope, one that was just for looking through.ย Plus folks shot phone pix of my camera screen.

The October 14, 2023 annular solar eclipse, in a single image captured at second contact with the Moon tangent to the inside limb of the Sun, at 10:27 am MDT at the site I used.

But at the critical contacts, I was glued to that visual scope for the amazing sight of the horns of the crescent Sun rapidly wrapping around the Moon at second contact, then unwrapping at third contact.ย 

The October 14, 2023 annular solar eclipse, in a series of images captured at second contact with the Moon tangent to the inside limb of the Sun, at 10:27 am MDT at the site I used. The 7 frames here were selected from a set of 344 shot in high-speed continuous mode at 20 frames per second.

The breakup of the rim of sunlight into beads of light along the cratered and mountainous edge of the Moon was also impressive. I was not at the optimum site for seeing those beads, as the landscape dictated my choice of location. But those that I saw at each of the internal contacts were a fine bonus to a memorable morning.ย 

This is a composite that records the sequence around mid-eclipse of the October 14, 2023 annular eclipse of the Sun. This is a blend of 8 exposures each taken 2.25 minutes apart, about the minimum time to keep the disks separate and avoid them overlapping.

A third camera shooting a sequence with an untracked 400mm telephoto lens worked well. I used a subset of its images to create a still-image composite (above) and the full set for a time-lapse (below), with the position and motion of the Sun authentic, produced by the natural east-to-west motion of the sky. But against that you see the Moonโ€™s orbital motion moving its dark disk down across the disk of the Sun. 

A time-lapse from 300 frames taken at 4-second intervals with the sky’s motion carrying the Sun across the frame.

As soon as annularity ended, everyone else started to pack up and leave. For them the show was over. Understandably. On many total eclipse tours I’ve been on we’ve been on the road back to the hotel after totality and the requisite happy group shot.

Eclipse success! The trophy shot after everyone else had left.

But at this eclipse my shooting plan dictated that I stick it out. By the end of the eclipse I was the last one standing, alone to enjoy last contact and then lunch, killing time for any road congestion to diminish, as I had to head to another motel for the post-eclipse night, in nearby Panguitch. 

I had a celebratory dinner and Moab-brewed beer that night at Cowboyโ€™s, the best restaurant in Panguitch, sporting my Annular 2023 eclipse hat! 

But the next day I started the drive north again, for the three-day trek back up I-15 to the border, then home. 

Priority one upon getting home was to finish processing images, and to include them in a revised version of my ebook How to Photograph the Solar Eclipses. It is linked to above and here on the title. Images of some sample pages from the revised edition are in the slide show below.

Post-annular, the bookโ€™s title remains the same, but I revised the pages in Chapter 4 on planning for the 2023 eclipse with pages on โ€œlessons learned!โ€ And there were several! 

I expanded Chapter 11 on processing to include tutorials on assembling annular eclipse composites, now that I actually have some! 

Such as the composite of first- to last-contact telescopic close-ups below.

This is a composite of the various stages of the entire October 14, 2023 annular solar eclipse, from start (lower left) to end (upper right), with mid-eclipse at centre. So time runs forward from left to right, with the Suns positioned to reflect the approximate motion of the Sun in the morning sky when this eclipse occured at my site, with it rising higher through the progress of the eclipse. North is up in this image.

The new version of my ebook is 20 pages larger than the pre-annular edition. 

An email has gone out from eJunkie to all buyers of the earlier-edition PDF to alert them to the new version, and with a download link. Apple Books readers should get a notice when they open the book on their Mac or iPad in the Books app that a new version is available. 

I suspect that will be the last revision of my ebook before the big event โ€“ the total eclipse of the Sun on April 8, 2024. 

Hereโ€™s wishing us all clear skies for that one! That eclipse will indeed require a drive to Texas. This time I’ll remember that damned cable! 

โ€” Alan Dyer, October 31, 2023

amazingsky.com 

The Great April Aurora


On April 23, 2023 the sky erupted with a massive solar storm, bringing the aurora to millions of people around the word.

On April 23 warnings went out alerting aurora watchers that a solar storm was imminent. And as the sky darkened that night locations all across the Northern and Southern Hemispheres were treated to a great sky show.

This is what we want to see in our aurora apps! Code Red and a vast auroral oval.

When we see this on our phone apps, we know we’ll get a great show. This was the auroral oval, lit up red, as the display was underway at my location in Alberta, Canada.

All indicators were great!

The strength of the interplanetary field (Bt) was high and the direction of the field (Bz) was well south, all welcome indicators of a superb show.

Sure enough, as it got dark that night, and from my location after the clouds cleared, an aurora was underway covering much of the sky.

A fish-eye 360ยฐ view of the Great April Aurora of April 23, 2023, from home in southern Alberta, Canada. The Kp level reached 7 to 8 this day. The Big Dipper is above centre. This is looking north. A single 5-second exposure with the TTArtisan 7.5mm circular fish-eye lens at f/2 and Canon R6 at ISO 3200.

The aurora moved south to occupy just the southern half of the sky, but with incredible ribbons crossing from east to west, rippling and pulsating off and on. Seeing patches of aurora pulse off and on and flaming up to the zenith is not uncommon toward the end of a substorm outburst. But this was the first time I can recall seeing pulsating ribbons.

At times, there was a dark ribbon across the sky, as the aurora formed a gap in its curtains, looking like a “dark aurora.”

The view looking straight up is always the most jaw-dropping when an aurora fills the sky. Rays and curtains converge at the magnetic zenith to form a “corona.”

The aurora of April 23, 2023, looking straight up to the zenith to capture the converging curtains in a coronal display. The Big Dipper is at top. A single 3.2-second exposure with the Canon R5 at ISO 800 and Laowa 15mm lens at f/2.

I shot with three cameras, taking stills, time-lapses, and real-time movies. I edited them together here in a music video. Enlarge to full screen to view it. I hope you enjoy it!

A 3-minute video of the April 23, 2023 aurora show from Alberta.
An aurora selfie with the great all-sky Kp6 to 8 level aurora of April 23, 2023. This is looking south toward Arcturus and Spica. The Coma Berenices cluster is at top near the convergence point for the auroral curtains. Shot from home with the Canon Ra and 11mm TTArtisan full-frame fish-eye lens at f/2.8.

With the Sun ramping up in activity, we should get more great shows of Northern โ€“ and Southern! โ€“ Lights around the world in the next few years,

โ€” Alan Dyer / April 29, 2023 / ยฉ 2023 AmazingSky.com

Testing Raw Developer Software for Astrophotography


I test nine programs for processing raw files for the demands of nightscape astrophotography. 

Warning! This is a long and technical blog, but for those interested in picking the best software, I think youโ€™ll find it the most comprehensive test of programs for processing nightscapes. The review is illustrated with 50 high-resolution, downloadable images which will take a while to load. Patience!

As a background, in December 2017 I tested ten contenders vying to be alternatives to Adobeโ€™s suite of software. You can find that earlier survey here on my blog. But 2017 was ages ago in the lifetime of software. How well do the latest versions of those programs compare now for astrophotography? And what new software choices do we have as we head into 2023? 

To find out, I compared eight programs, pitting them against what I still consider the standard for image quality when developing raw files, Adobe Camera Raw (the Develop module in Adobe Lightroom is essentially identical). I tested them primarily on sample nightscape images described below. 

I tested only programs that are offered for both MacOS and Windows, with identical or nearly identical features for both platforms. However, I tested the MacOS versions. 

In addition to Adobe Camera Raw (represented by the Adobe Bridge icon), I tested, in alphabetical order, and from left to right in the icons above:

  • ACDSee Photo Studio
  • Affinity Photo 2 (from Serif)
  • Capture One 23
  • Darktable 4
  • DxO PhotoLab 6
  • Exposure X7
  • Luminar Neo (from SkyLum) 
  • ON1 Photo RAW 2023

I tested all the programs strictly for the purpose of processing, or โ€œdevelopingโ€ raw files, using nightscape images as the tests. I also looked at features for preparing and exporting a large batch of images to assemble into time-lapse movies, though the actual movie creation usually requires specialized software. 

NOTE: I did not test the programs with telescope images of nebulas or galaxies. The reason โ€” most deep-sky astrophotographers never use a raw developer anyway. Instead, the orthodox workflow is to stack and align undeveloped raw files with specialized โ€œcalibrationโ€ software such as DeepSkyStacker or PixInsight that outputs 16-bit or 32-bit TIFFs, bypassing any chance to work with the raw files.


TL;DR Conclusions

Hereโ€™s a summary of my recommendations, with the evidence for my conclusions presented at length (!) in the sections that follow:

Whatโ€™s Best for Still Image Nightscapes?

  • Adobe Camera Raw (or its equivalent in Adobe Lightroom) still produces superb results, lacking only the latest in AI noise reduction, sharpening and special effects. Though, as Iโ€™ve discovered, AI processing can ruin astrophotos if not applied carefully. 
  • The Adobe alternatives that provided the best raw image quality in my test nightscapes were Capture One and DxO PhotoLab
  • ACDSee Photo Studio, Exposure X7,and Luminar Neo produced good results, but all had flaws. 
  • ON1 Photo RAW had its flaws as well, but can serve as a single-program replacement for both Lightroom and Photoshop.
  • Affinity Photo works well as a Photoshop replacement, and at a low one-time cost. But it is a poor choice for developing raw images.

If you are adamant about avoiding subscription software, then a combination of DxO PhotoLab and Affinity Photo can work well, providing great image quality, and serving to replace both Lightroom and Photoshop. 

  • I cannot recommend Darktable, despite its zero price. I struggled to use its complex and overly technical interface, only to get poor results. It also kept crashing, despite me using the new ARM version on my M1 MacBook Pro. It was worth what I paid for it. 

At the end of my blog, I explain the reasons why I did not include other programs in the test, to answer the inevitable โ€œBut what about โ€ฆ!?โ€ questions. 

Whatโ€™s Best for Basic Time-Lapses?

For simple time-lapse processing, where the same settings can be applied to all the images in a sequence, all the programs except Affinity Photo, can copy and paste settings from one key image to all the others in a set, then export them out as JPGs for movie assembly. 

However, for the best image quality and speed, I feel the best choices are:

  • Adobe, either Lightroom or the combination of Camera Raw/Bridge
  • Capture One 23
  • DxO PhotoLab 6
  • While ON1 Photo RAW can assemble movies directly from developed raw files, I found Capture One or DxO PhotoLab can do a better job processing the raw files. And ON1โ€™s time-lapse function is limited, so in my opinion it is not a major selling point of ON1 for any serious time-lapse work. 
  • Luminar Neo was so slow at Copy & Paste and Batch Export it was essentially unusable. 

Whatโ€™s Best for Advanced Time-Lapses?

  • None of the non-Adobe programs will work with the third-party software LRTimelapse (www.lrtimelapse.com). It is an essential tool for advanced time-lapse processing.

While ON1 offers time-lapse movie assembly, it cannot do what LRTimelapse does โ€” gradually shift processing settings over a sequence based on keyframes to accommodate changing lighting, and to micro-adjust exposure levels based on actual image brightness to smooth out the bane of time-lapse shooters โ€” image flickering. 

LRTimelapse works only with Lightroom or ACR/Bridge. If serious and professional time-lapse shooting is your goal, none of the Adobe contenders will do the job. Period. Subscribe to Adobe software. And buy LRTimelapse.


Avoiding Adobe?

My testing demonstrated to me that for nightscape photography, Adobe software remains a prime choice, for its image quality and ease of use. However, the reasons to go with any program other than Adobe are:

  • For equal or even better image quality, or for features not offered by Adobe.
  • But mostly to avoid Adobeโ€™s subscription model of monthly or annual payments.
Capture One pricing as of early 2023, in Canadian funds.

All the non-Adobe alternatives can be purchased as a โ€œperpetual licenseโ€ for a one-time fee, though often with significant annual upgrade costs for each yearโ€™s major new release. However, you neednโ€™t purchase the upgrade; your old version will continue to run. Below, I provide purchase prices in U.S. funds, but most companies have frequent sales and discount offers. 

While all of Adobeโ€™s competitors will proclaim one-time pricing, several also offer their software via annual subscriptions, with additional perks and bonuses, such as file syncing to mobile apps, or better long-term or package pricing, to entice you to subscribe. 

Keep in mind that whatever program you use, its catalog and/or sidecar files where your raw image settings are stored will always be proprietary to that program. ON1 and Affinity also each save files in their own proprietary format. Switch to any other software in the future and your edits will likely not be readable by that new software. 


Raw Editing vs. Layer-Based Editing

As I mentioned, I tested all the programs strictly for their ability to process, or โ€œdevelop,โ€ raw image files for nightscapes. (Raw files are likened to being digital negatives that we โ€œdevelop.โ€)

For some nightscape still images, raw developing might be all thatโ€™s needed, especially as software companies add more advanced โ€œAIโ€ (artificial intelligence) technology to their raw developers for precise selection, masking, and special effects. 

In the case of time-lapse sequences made of hundreds of raw frames, raw developing is the only processing that is practical. What we need for time-lapses is to:

  • Develop a single key raw file to look great, then โ€ฆ
  • Copy all its settings to the hundreds of other raw files in the time-lapse set, then โ€ฆ
  • Export that folder of raw images to โ€œintermediate JPGsโ€ for assembly into a movie, usually with a specialized assembly program. 
The programs that offer layer-based editing: Adobe Photoshop, ON1 Photo RAW, and Serif Affinity Photo

However, for most still-image astrophotography, including nightscapes, we often stack and/or blend multiple images to create the final scene, for several reasons:

  • To stack multiple images with a Mean or Median stack mode to smooth noise.
  • To layer dozens of images with a Lighten blend mode to create star trails.
  • To layer and blend images via masking to combine the different exposures often needed to record the ground and sky each at their best. 
  • Or often as not, a combination of all of the above! 

All those methods require a layer-based program. Adobe Photoshop is the most popular choice. 

Of the programs tested here, only two also offer the ability to layer multiple images for stacks, blends and composites. They are:

  • Affinity Photo 2 
  • ON1 Photo RAW 2023

I did not test these two programs to compare their image layering and masking abilities vs. Photoshop, as important as those functions might be. 

Fans of Skylumโ€™s Luminar Neo will point out that it also supports image layers. In theory. In the version I tested (v1.6.2) bugs made it impossible to load files into layers properly โ€” the layer stack became confused and failed to display the stackโ€™s contents. I could not tell what it was stacking! Skylum is notorious for its buggy releases. 

Those determined not to use Adobe software should be aware that, apart from Affinity Photo and ON1 Photo RAW, all the other programs tested here are not replacements for Adobe Photoshop, nor are they advertised as such. They are just raw developers, and so can serve only to replace Adobe Lightroom or Adobe Camera Raw/Adobe Bridge. 


The Challenge

This is the main image I threw at all nine programs, a single 2-minute exposure taken at Lake Louise, Alberta in October 2022. The lens was the Canon RF15-35mm at f/2.8 on a Canon R5 camera at ISO 800. 

The original raw image

Above is the raw image as it came out of camera, with the default Adobe Color camera profile applied, but no other adjustments. The length of exposure on a static tripod meant the stars trailed. The image has: 

  • A sky that needs color correcting and contrast enhancement.
  • Dark shadows in the foreground and distance that need recovery.
  • Bright foreground areas that need suppressing, where lights from the Chateau Lake Louise hotel illuminate the mountainsides and water.
  • Lens flares and lights from night hikers that need retouching out.

It is an iconic scene, but when shot at night, itโ€™s a challenging one to process. 

The untracked image developed in Adobe Camera Raw

Above is the image after development in Adobe Camera Raw (ACR), using sliders under its Basic, Optics, Detail, Curve, Color Mixer, and Calibration tabs, and applying the Adobe Landscape camera profile. Plus I added retouching, and local adjustments with ACRโ€™s masks to affect just the sky and parts of the ground individually. This is the result I think looks best, and is the look I tried to get all other programs to match or beat. You might prefer a different look or style.  

The developed tracked image

In addition, I tried all programs on another two-minute exposure of the scene (shown above) but taken on a star tracker to produce untrailed, pinpoint stars, but a blurred ground. It served to test how well each programโ€™s noise reduction and sharpening dealt with stars. 

The final layered and blended image in Adobe Photoshop

I shot that tracked version to blend with the untracked version to produce the very final image above, created from the Camera Raw edits. That blending of sky and ground images (with each component a stack of several images) was done in Photoshop. However, Affinity Photo or ON1 Photo RAW could have done the required layering and masking. I show a version done with Affinity at the end of the blog. 


The Competitors

In a statement I read some time ago, DxO stated that Adobe products enjoy a 90% share of the image processing market, leaving all the competitors to battle over the remaining 10%. Iโ€™m not sure how accurate that is today, especially as many photographers will use more than one program.

However, I think it is fair to say Adobeโ€™s offerings are the programs all competitors are out to beat. 

NOTE: Click/tap on any of the images to bring them up full screen as high-res JPGs so you can inspect them more closely.

The Established Standard

Adobe Camera Raw (included with Photoshop, Adobe Bridge and Lightroom)

Cost: $10 a month, or $120 a year by subscription for 20 Gb of cloud storage (all prices in U.S. $)

Website: https://www.adobe.com 

Version tested: 15.1

Adobe Camera Raw (ACR) is the raw development utility that comes with Photoshop and Adobe Bridge, Adobeโ€™s image browsing application. Camera Raw is equivalent to the Develop module in Lightroom, Adobeโ€™s cataloguing and asset management software. Camera Raw and Lightroom have identical processing functions and can produce identical results, but I tested ACR. I use it in conjunction with Adobe Bridge as an image browser. Bridge can then send multiple developed images into Photoshop as layers for stacking. All programs are included in Adobeโ€™s Photo subscription plan. 

The Contenders (in Alphabetical Order)

Here are the eight programs I tested, comparing them to Adobe Camera Raw. All but Skylumโ€™s Luminar Neo offer free trial copies.  

ACDSee Photo Studio

Cost: $100 to $150, depending on version. $50 on up for annual major upgrades. By subscription from $70 a year.

Website: http://www.acdsystems.com 

Version tested: 9.1

I tested Photo Studio for Mac v9. Windows users have a choice of Photo Studio Professional or Photo Studio Ultimate. All three versions offer a suite of raw development tools, in addition to cataloging functions. However, the Ultimate version (Windows only) also offers layer-based editing, making it similar to Photoshop. ACDSee assured me that Photo Studio for Mac resembles the Windows Professional version, at least for basic raw editing and image management. However, Photo Studio Professional for Windows also has HDR and Panorama merging, which the Mac version does not. 

Affinity Photo 2

Cost: $70. Upgrades are free except for rare whole-number updates (in seven years thereโ€™s been only one of those!). No subscription plan is offered. 

Website: https://affinity.serif.com 

Version tested: 2.0.3 

Apart from the free Darktable, this is the lowest-cost raw developer on offer here. But Affinityโ€™s strength is as a layer-based editor to compete with Photoshop. As such, Affinity Photo has some impressive features, such as the unique ability to calibrate and align deep-sky images, its stack modes (great for star trails and noise smoothing) which only Photoshop also has, and its non-destructive adjustment layers, filters and masks. Affinity Photo is the most Photoshop-like of all the programs here. However, it alone of the group lacks any image browser or cataloging function, so this is not a Lightroom replacement.

Capture One 23 Pro

Cost: $299. 33% off (about $200) for annual major upgrades. By subscription for $180 a year.

Website: https://www.captureone.com/en 

Version tested: 16.0.1.17

Capture One started life as a program for tethered capture shooting in fashion studios. It has evolved into a very powerful raw developer and image management program. While Capture One advertises that it now offers โ€œlayers,โ€ these are only for applying local adjustments to masked areas of a single underlying image. While they work well, you cannot layer different images. So Capture One cannot be used like Photoshop, to stack and composite images. It is a Lightroom replacement only, but a very good one. However, it is the most costly to buy, upgrade each year, or subscribe to, which appears to be the sales model Capture One is moving toward, following Adobe.  

Darktable

Cost: Free, open source. 

Website: https://www.darktable.org 

Version tested: 4.2.0 

In contrast to Capture One, you cannot argue with Darktableโ€™s price! For a free, open-source program, Darktable is surprisingly full-featured, while being fairly well supported and updated. As with most free cross-platform programs, Darktable uses an unconventional and complex user interface lacking any menus. It has two main modules: Lighttable for browsing images, and Darkroom for editing images. Map, Slideshow, Print and Tethering modules clearly signal this program is intended to be a free version of Lightroom. The price you pay, however, is in learning to use its complex interface.

DxO PhotoLab 6 ELITE

Cost: $219. $99 for annual major upgrades. No subscription plan is offered. 

Website: https://www.dxo.com 

Version tested: 6.1.1

DxO PhotoLab is similar to Capture One in being a very complete and feature-rich raw developer with good image management functions and a well-designed interface. While it has an image browser for culling, keywording and rating images, PhotoLab does not create a catalog as such, so this isnโ€™t a full Lightroom replacement. But it is a superb raw developer, with very good image quality and noise reduction. While PhotoLab is also available in a $140 ESSENTIAL edition, it lacks the DeepPrime noise reduction and ClearView Plus haze reduction, both useful features for astrophotos. 

Exposure X7

Cost: $129. $89 for annual major upgrades. No subscription plan is offered. 

Website: https://exposure.software/ 

Version tested: 7.1.5 

Formerly known as Alien Skin Exposure, from the makers of the once-popular utilities Blow Up and Eye Candy, Exposure X7 is a surprisingly powerful raw editor (considering you might not have heard of it!), with all the expected adjustment options, plus a few unique ones such as Bokeh for purposely blurring backgrounds. It enjoys annual major updates, so is kept up to date, though is a little behind the times in lacking any AI-based effects or masking, or even automatic edge detection. Like Capture One, Exposure offers adjustment layers for ease of applying local edits. 

Luminar Neo

Cost: $149. $39 to $59 for individual Extensions. $179 for Extensions pack. By subscription for $149 a year which includes Neo and all Extensions. Frequent discounts and changing bundles make the pricing confusing and unpredictable. 

Website: https://skylum.com/luminar 

Version tested: 1.6.2

By contrast to Exposure X7, Luminar Neo from Skylum is all about AI. Indeed, its predecessor was called Luminar AI. Introduced in 2022, Neo supplanted Luminar AI, whose image catalog could not be read by Neo, much to the consternation of users. Luminar AI is now gone. All of Skylumโ€™s effort now goes into Neo. It offers the expected raw editing adjustments, along with many powerful one-click AI effects and tools, some offered as extra-cost extensions in a controversial ร  la carte sales philosophy. Neoโ€™s cataloging ability is basic and unsuitable for image management.

ON1 Photo RAW 2023

Cost: $99. $60 for annual major upgrades. $70 for individual plug-ins, each with paid annual updates. By subscription for $90 a year which includes all plug-ins and updates.

Website: https://www.on1.com 

Version tested: 17.0.2

Of all the contenders tested, this is the only program that can truly replace both Lightroom and Photoshop, in that ON1 Photo RAW has cataloging, raw developing, and image layering and masking abilities. In recent years ON1 has introduced AI functions for selection, noise reduction, and sharpening. Some of these are also available as individual plug-ins for Lightroom and Photoshop at an additional cost. While the main program and plug-ins can be purchased as perpetual licences, the total cost makes an annual subscription the cheapest way to get and maintain the full ON1 suite. Like Capture One, they are moving customers to be subscribers. 


Feature Focus

I have assumed a workflow that starts with raw image files, not JPGs, for high-quality results. And I have assumed the goal of making that raw image look as good as possible at the raw stage, an important step in the workflow, as it is the only time we have access to the full dynamic range of the 14-bit raw data that comes from the camera.

I judged each program based on several features I consider key to great nightscapes and time-lapses:

  • Browser/Cataloging Functions โ€”Because we often deal with lots of images from an astrophoto shoot, the program should allow us to sort, rate, and cull images before proceeding with developing the best of the set for later stacking, and to easily compare the results. 
  • Lens Corrections โ€”Does the program apply automatic lens corrections for distortion and vignetting? How extensive is its lens database? Or are manual adjustments required?
  • Noise Reduction โ€”We shoot at high ISOs, so good noise reduction is essential for removing digital noise without sacrificing details such as pixel-level stars, or adding AI artifacts.
  • Shadow Recovery โ€”While good highlight recovery can be important (and a prime reason for shooting and processing raw images), in nightscapes good shadow recovery is even more crucial. The starlit ground is dark, but rich in detail. We want to recover that shadow detail, without affecting other tonal ranges or introducing noise.
  • Local Adjustments and Masking โ€”Good masking tools allow us to do more at the raw stage while we have access to the full range of image data. But how precise can the masks be? How easy is it to apply different settings to the ground and sky, the most common need for local adjustments with nightscapes.
  • Overall Finished Image Quality โ€”Tools such as Dehaze and Clarity can work wonders at boosting contrast in the sky. Good color adjustments from HSL sliders can help fine-tune the overall color balance. How good did the final image look? โ€” an admittedly subjective judgement. 
  • Copy & Paste Settings โ€”A program should not only develop one image well, but also then be able to transfer all of that key imageโ€™s settings to several other images taken for noise stacking, or to what could be hundreds of images shot for a time-lapse movie or star trail scene. 
  • Batch Export โ€”For stacking images for star trails, or for creating panoramas in advanced stitching programs such as PTGui, or when assembling time-lapse movies, the program should allow a โ€œbatch exportโ€ of selected images to TIFFs or JPGs for use elsewhere. 
  • Advanced Features โ€”Does the program support panorama stitching and HDR (High Dynamic Range) merging of selected developed raw files? If so, what type of file does it create? 

Summary Comparison Table

โ€ข = Feature is present; ticks the boxes! 

โ€”  = Feature is missing 

Partial = Feature only partially implemented (e.g. Only has distortion correction but not vignetting correction, or has limited cataloging functions)

I judged other features on an admittedly subjective scale of Poor, Fair, Good, or Excellent, based on my overall impressions of the reliability, options offered, quality, and/or speed of operation. 


Feature-by-Feature Details โ€” 1. Browsing and Cataloging

Here, feature by feature, are what I feel are the differences among the programs, comparing them using the key factors I listed above.

All programs, but one, offer a Browse or Library module presenting thumbnails of all the images in a folder or on a drive. (For Adobe Camera Raw that module is Adobe Bridge, included with the Creative Cloud Photo subscription.) From the Browse/Library module you can sort, rate and cull images.

The Catalog screens from six of the programs tested
  • Luminar Neoโ€™s Catalog function (as of early 2023) allows only flagging images as favorites. It is very crude. 

The other programs have more full-featured image management, allowing star rating, color label rating, pick/reject flags, keywording, grouping into collections or projects, and searching. 

  • Capture One and ON1 Photo RAW provide the option of importing images into formal catalogs, just as Adobe Lightroom requires. However, unlike Lightroom, both programs can also work with images just by pointing them to a folder, without any formal import process. Capture One calls this a โ€œsession.โ€ Adobe Bridge works that way โ€” it doesnโ€™t produce a catalog.

While not having to import images first is convenient, having a formal catalog allows managing a library even when the original images are off-line on a disconnected hard drive, or for syncing to a mobile app. If thatโ€™s important, then consider Capture One, ON1 Photo RAW, or Adobe Lightroom. They each have mobile apps. 

  • Adobe Lightroom (but not Bridge) is also able to connect directly to what it calls โ€œPublish Servicesโ€ โ€” Flickr, PhotoShelter, and SmugMug for example, using plug-ins offered by those services. I use that feature almost daily. ACDSee offers that feature only in its Windows versions of Photo Studio. As best I could tell, all other programs lacked anything equivalent.
  • Serif Affinity Photo is the lone exception lacking any form of image browser or asset management. Itโ€™s hard to fathom why in late 2022, with their major update to Version 2 of their software suite, Serif did not introduce a digital asset management program to link their otherwise excellent Photo, Designer and Publisher programs. This is a serious limitation of Serifโ€™s Affinity creative suite, which is clearly aimed at competing one-on-one with Adobe Photoshop, Illustrator and InDesign, yet Serif has no equivalent of Adobe Bridge for asset management. 

WINNERS: Capture One and ON1 Photo RAW, for the most flexibility in informal browsing vs. formal cataloguing. Adobe Lightroom for its Publish Services. 

LOSER: Affinity Photo for lacking any image management or catalog. 


Feature-by-Feature Details โ€” 2. Lens Corrections

The wide-angle lenses we typically use in nightscape and time-lapse imaging suffer from vignetting and lens distortions. Ideally, software should automatically detect the camera and lens used and apply accurate corrections based on its equipment database. 

The Lens Corrections panels from all nine programs.
  • Of the nine programs tested, only four โ€” Adobe Camera Raw, Darktable, DxO PhotoLab, and ON1 Photo Raw โ€” automatically applied both distortion and vignetting corrections for the Canon RF15-35mm lens I used for the test images. DxO is particularly good at applying corrections, drawing upon the companyโ€™s vast repository of camera and lens data. If your local copy of PhotoLab is missing a camera-lens combination, what it calls a โ€œmodule,โ€ DxO allows you to download it or request it. 
  • Capture One and Exposure X7 both detected the lens used and applied distortion correction, but did nothing to adjust vignetting. I had to apply vignetting correction, a more important adjustment, manually by eye. 
  • ACDSee and Luminar have no Auto Lens Corrections at all; distortion and vignetting both have to be dialed in manually. 
  • Affinity Photo lacked any automatic correction data for the Canon RF15-35mm lens in question, despite the lens being introduced in 2019. I selected the similar Canon EF16-35mm lens instead, as I show above circled in blue. Affinity gets marks off for having an outdated and incomplete lens database. 

WINNERS: Adobe, Darktable, DxO PhotoLab, and ON1 Photo RAW, for full Auto Lens Corrections.

LOSERS: ACDSee and Luminar, for lacking Auto Lens Corrections.


Feature-by-Feature Details โ€” 3. Noise Reduction and Sharpening

Absolutely essential to astrophotography is effective noise reduction, of both grainy โ€œluminanceโ€ noise, as well as colorful speckles and splotches from โ€œchrominanceโ€ noise. Programs should smooth noise without eliminating stars, removing star colors, or adding odd structures and artifacts. 

Conversely, programs should offer a controllable level of sharpening, without introducing dark halos around stars, a sure sign of over-zealous sharpening. 

Closeups of the tracked image comparing noise reduction and star image quality in all 9 programs. Tap or click to download a high-res version for closer inspection to see the pixel-level differences.

I tested noise reduction using the tracked version of my test images, as the pinpoint stars from the 45-megapixel Canon R5 will reveal any star elimination or discoloration. 

  • Adobe Camera Rawโ€™s aging noise reduction routine stood up very well against the new AI competitors. It smoothed noise acceptably, while retaining star colors and Milky Way structures. But turn it up too high, as might be needed for very high ISO shots, and it begins to blur or wipe out stars. AI noise reduction promises to solve this. 

AI-Based Noise Reduction: 

  • DxO PhotoLabโ€™s Prime and DeepPrime AI-based options can also do a good job. But โ€ฆ I find DeepPrime (shown above) and the newer DeepPrimeXD (shown below) can introduce wormy looking artifacts to starfields. The older Prime method might be a better choice. However, the annoyance with DxO PhotoLab is that it is not possible to preview any of its Prime noise reduction results full-screen, only in a tiny preview window, making the best settings a bit of a guess, requiring exporting the image to see the actual results. 
  • ON1 Photo RAWโ€™s NoNoise AI can also do a good job, but has to be backed off a lot from the automatic settings its AI technology applies. Even so, I found it still left large-scale color blotches, a pixel-level mosaic pattern, and worst of all, dark halos around stars, despite me applying no sharpening at all to the image. ON1 continues to over-sharpen under the hood. I criticized it for star halos in my 2017 survey โ€” the 2023 version behaves better, but still leaves stars looking ugly.
  • The other AI program, Luminar Neo with its Noiseless AI extension (an extra-cost option) did a poor job, adding strange artifacts to the background sky and colored halos around stars.
Comparing DxO’s three Prime noise reduction options on the untracked image. DeepPrimeXD is sharper!
Comparing DxO’s three Prime noise reduction methods on the tracked image. DeepPrimeXD is riddled with artifacts.

So beware of AI. As I show above with DxO, because they are not trained on starfields, AI routines can introduce unwanted effects and false structures. What works wonders on high-ISO wildlife or wedding shots can ruin astrophotos. 

For a more complete test of AI programs, such as Topaz DeNoise AI and Noise XTerminator, made specifically for noise reduction, see my review from November 2022, Testing Noise Reduction Programs for Astrophotography

Non AI-Based Noise Reduction: 

  • Capture One smoothed noise very well, but tended to bloat stars and soften fine detail with its Single Pixel control turned up even to one pixel, as here. 
  • Affinity Photo nicely smoothed noise, but also removed star colors, yet added colored rims to some stars, perhaps from poor de-Bayering. Serif Labโ€™s raw engine still has its flaws. 
  • ACDSee Photo Studio also added loads of unacceptable halos to stars, and could not reduce noise well without smoothing details. 
  • Darktable has very good noise reduction, including a panel specifically for Astrophoto Denoise. Great! Pity its routines seemed to wipe out star colors and fine structures in the Milky Way. 
  • Exposure X7 smoothed noise well, but also wiped out details and structures, and its sharpening adds dark halos to stars. 

That said, it might be possible to eke out better results from all these programs with more careful settings. Backing off sharpening or noise reduction can avoid some of the unwanted side effects I saw, but leave more noise. 

Adobe Camera Raw does eliminate most random hot or dead pixels “under the hood.” However, I wish it had an adjustable filter for removing any that still remain (usually from thermal noise) and that can plague the shadows of nightscapes. Single-pixel filters are offered by Capture One, Darktable, DxO, and Exposure X7. Though turning them up too high can ruin image detail. 

WINNERS: Adobe and DxO PhotoLab (if the latter is used cautiously) 

LOSERS: ACDSee, Affinity, Darktable, Exposure X7, and Luminar Neo for unacceptable loss of detail and star colors, while adding in false structures (Neo)


Feature-by-Feature Details โ€” 4. Shadow Recovery

While all programs have exposure and contrast adjustments, the key to making a Milky Way nightscape look good is being able to boost the shadows in the dark starlit ground, while preventing the sky or other areas of the image from becoming overly bright or washed out. 

Comparing Shadow Recovery in two programs (Camera Raw – top – and DxO PhotoLab – middle) that worked quite well, with Darktable (bottom) that did not.

In the three examples above I have applied only white balance and exposure correction, then โ€œliftedโ€ the Shadows. I added some contrast adjustment to Darktable, to help improve it, and Smart Lighting to the DxO image, which was needed here.  

Here are my findings, roughly in order of decreasing image quality, but with Adobe first as the one to match or beat. 

  • Adobe Camera Raw has a very good Shadows slider that truly affects just the dark tonal areas and with a slight touch (turning it up to 100 doesnโ€™t wipe out the image). Some other programsโ€™ Shadows adjustments are too aggressive, affect too wide a range of tones, or just add a grey wash over the image, requiring further tweaks to restore contrast. 
  • Capture One did an excellent job on Shadow recovery under its High Dynamic Range set of sliders. The dark landscape brightened without becoming flat or grey. This is a primary contributor to its excellent image quality. 
  • DxO PhotoLabโ€™s Shadows slider affects a wider tonal range than ACR or Capture One, also brightening mid-tones, though it has a Midtones slider to separately adjust those. On its own, the Shadows slider didnโ€™t work as well as in ACR or Capture One. But DxOโ€™s superb feature is its โ€œSmart Lighting,โ€ which can work wonders on a scene with one click. Another unique adjustment is โ€œClearView Plus,โ€ a form of Dehaze which can snap up contrast, often too aggressively, but it can be backed off in intensity. Those two adjustments alone might be reason enough to use PhotoLab. 
  • ON1 Photo RAWโ€™s Shadows slider affected too wide a range of tonal values, brightening the entire scene and making it look flat. This can be overcome with some tweaks to the Contrast, Blacks and Midtones sliders. It takes more work to make a scene look good. 
  • ACDSeeโ€™s Fill Light and Shadows sliders were also much too broad. But its unique LightEQ panel has options for โ€œStandard” and โ€œAdvancedโ€ settings which each provide an equalizer interface for making more selective tonal adjustments. It worked well, though the image looked too harsh and contrasty, despite me adding no contrast adjustments, the opposite flaw of other programs. 
  • Luminar Neoโ€™s Shadows slider under its DevelopRAW panel was also broad, washing out contrast, requiring a liberal application of its SuperContrast slider to return the image to a better look. But the final result looked fine.
  • Exposure X7โ€™s Shadows slider also lowered overall contrast, requiring boosting Contrast and Blacks to return the image to a pleasing tonal balance. 
  • Affinity Photoโ€™s Shadows slider did a far better job in its new v2 (released in late 2022) than in the original Affinity Photo, which was frankly awful. Even so, I found Affinity Photo 2 still tended to produce flat results, hard to compensate for from within the Develop Persona, as its options are so limited. 
  • Darktableโ€™s Shadows slider (which has several sub-sliders) produced a flat result. Despite the numerous variations of other contrast and level adjustments scattered over various panels, I could not get a pleasing result. It will take a true Darktable fan and expert to exact a good image from its bewildering options, if itโ€™s even possible.

WINNERS: Capture One and DxO PhotoLab, plus Adobe still works well

LOSERS: Affinity Photo and Darktable


Feature-by-Feature Details โ€” 5. Local Adjustments and Masking

This is the area where programs have made major improvements in the five years since my last survey of raw developers. Thus I devote a major section to the feature. 

With accurate and easy masking it is now easier to apply adjustments to just selected areas of a raw image. We can finish off a raw file to perhaps be publication ready, without having to use a layer-based program like Photoshop to perform those same types of local adjustments. Adobe Camera RAW, Luminar Neo, and ON1 Photo Raw are leaders in this type of advanced AI masking. But other programs have good non-AI methods of masking โ€“ and making โ€“ local adjustments. 

  • Adobe Camera Raw (and Adobe Lightroom) now has far better masking than in older versions that used the awkward method of applying multiple โ€œpins.โ€ Masks now occupy separate layers, and AI masks can be created in one-click for the sky (and ground by inverting the Sky mask) and for key subjects in the image. Other non-AI masks can be created with brushes (with an Auto Mask option for edge detection) and gradient overlays, and with the option of luminance and color range masks. The AI-created Sky masks proved the most accurate compared to other programsโ€™ AI selections, though they can intrude into the ground at times. But the sky masks do include the stars. In all, Camera Raw (or Lightroom) has the most powerful masking tools of the group, though they can be tricky to master. 
  • ACDSee Photo Studio allows up to eight different brushed-on mask areas, each with its own adjustments, in addition to gradient masks. There is no edge detection as such, though the brushes can be limited to selecting areas of similar brightness and color. The โ€œMagicโ€ brush option didnโ€™t help in selecting just the sky and stars. Local adjustments are possible to only Exposure, Saturation, Fill Light, Contrast, and Clarity. So no local color adjustments are possible. In all, local adjustments are limited. 
  • Affinity Photo has, in its Develop Persona, what it calls Overlays, where for each Overlay, or layer, you can brush on separate sets of adjustments using all the sliders in the Develop Persona. Oddly, there is no option for decreasing the opacity of a brush, only its size and feathering. While there is an Edge Aware option, it did a poor job on the test image detecting the boundary between land and sky, despite the edge being sharply defined. So local adjustments require a lot of manual brushing and erasing to get an accurate mask. The red mask Overlay, useful at times, has to be turned on and off manually. Other programs (ACR and Capture One) have the option of the colored overlay appearing automatically just when you are brushing. 
  • Capture One offers adjustment layers for each mask required. The only โ€œsmartโ€ brush is the Magic Brush which affects areas across the entire image with similar luminosity. There isnโ€™t any edge detection option as such, so creating masks for the sky and ground is still largely a manual process requiring careful brushing. Separate layers can be added for healing and retouching. While Capture Oneโ€™s local adjustments can work well, they require a lot more manual work than do programs equipped with AI-driven selection tools. 
  • DxO PhotoLab allows multiple local adjustments, with the option of an Auto Mask brush that nicely detects edges, though the mask overlay itself (as shown above on the sky) doesnโ€™t accurately show the area being affected. Strange. Masks can also be added with what are called Control Points to affect just areas of similar luminance within a wide circle, often requiring multiple Control Points to create an adjustment across a large region. Masks can also be created with adjustable brushes. Each masked area is then adjusted using a set of equalizer-like mini-controls, rather than in the main panels. In all, itโ€™s a quirky interface, but it can work quite well once you get used to it. 
  • Exposure X7 offers adjustment layers with options to add a gradient, or to draw or brush on an area to make a selection. There is no edge detection, only a color range mask option, so creating a sky or ground mask can require lots of hand painting. I found the preview sluggish, making it a bit of a trial-and-error exercise to make fine adjustments. However, the full range of tone and color adjustments can be applied to any local mask, a plus compared to ACDSee for example. 
  • Luminar was first out with AI masks to automatically select the sky, and various landscape elements it detects. In all it does a good job, making it easy to add local adjustments. There are also gradient tools and normal brushes, but oddly, considering the amount of AI Luminar relies on, there is no edge detection (at least, as of early 2023). So brushing to create a mask requires a lot of finicky painting and erasing to refine the mask edge. The strong point is that masks can be added to any of Luminarโ€™s many filters and adjustment panels, allowing for lots of options for tweaking the appearance of selected areas, such as adding special effects like glows to the sky or landscape. However, most of those filters and effects are added to the image after it is developed, and not to the original raw file. 
ON1’s AI Sky mask does not include the stars.
  • ON1 Photo RAW has always offered good local adjustments, with each occupying its own layer. Photo RAW 2023 added its new โ€œSuper Selectโ€ AI tools to compete with Adobe. But they are problematic. The select Sky AI masking fails to include stars, leaving a sky mask filled with black holes, requiring lots of hand painting to eliminate. You might as well have created the mask by hand to begin with. Plus in the test image, selecting โ€œMountainโ€ to create a ground mask just locked up the program, requiring a Force Quit to exit it. However, ON1โ€™s conventional masks and adjustments work well, with a wide choice of brush options. The Perfect Brush detects areas of similar color, not edges per se. 

WINNERS: Adobe and Luminar for accurate AI masks

LOSER: Darktableโ€” it has no Local Adjustments at all


Feature-by-Feature Details โ€” 6. Overall Finished Image Quality 

I provide each of the finished images for the untracked star trail example below, under Program-by-Program Results. But hereโ€™s a summary, in what I admit is a subjective call. One program would excel in one area, but be deficient in another. But who produced the best looking end result? 

Overall, I think Capture One came closest to matching or exceeding Adobe Camera Raw for image quality. Its main drawback is the difficulty in creating precise local adjustment masks.

DxO PhotoLab also produced a fine result, but still looking a little flat compared to ACR and Capture One. But it does have good AI noise reduction.

In the middle of the ranking are the group of ACDSee Photo Studio, Exposure X7, and ON1 Photo RAW. Their results look acceptable, but closer examination reveals the flaws such as haloed stars and loss of fine detail. So they rank from Fair to Good, depending on how much you pixel peep! 

Luminar Neo did a good job, though achieving those results required going beyond what its DevelopRAW panel can do, to apply Neoโ€™s other filters and effects. So in Neoโ€™s case, I did more to the image than what was possible with just raw edits. But with Luminar, the distinction between raw developer and layer-based editor is fuzzy indeed. It operates quite differently than other programs tested here, perhaps refreshingly so. 

For example, with the more conventionally structured workflow of Affinity Photo, I could have exacted better results from it had I taken the developed raw image into its Photo Persona to apply more adjustments farther down the workflow. The same might be said of ON1 Photo RAW.

But the point of this review was to test how well programs could do just at the raw-image stage. Due to the unique way it operates, Iโ€™ll admit Luminar Neo did get the advantage in this raw developer test. Though it failed on several key points. 

WINNERS: Adobe and Capture One, with DxO a respectable second

LOSER: Darktableโ€” it was just plain poor 


Feature-by-Feature Details โ€” 7. Copy & Paste Settings 

Getting one image looking great is just the first step. Even when shooting nightscape stills we often take several images to stack later. 

As such, we want to be able to process just one image, then copy and paste its settings to all the others in one fell swoop. And then we need to be able to inspect those images in thumbnails to be sure they all look good, as some might need individual tweaking.

While itโ€™s a useful feature for images destined for a still-image composite, Copy & Paste Settings is an absolutely essential feature for processing a set for a time-lapse movie or a star trail stack. 

The Copy and Paste Settings panels from the 8 programs that offer this feature.

I tested the programs on the set of 360 time-lapse frames of the Perseid meteor shower used next for the Batch Export test. 

  • Adobe Bridge makes it easy to copy and paste Camera Raw settings to identically process all the files in a folder. Lightroom has a similar function. Adobe also has adaptive masks, where a sky mask created for one image will adapt to all others, even if the framing or composition changes, as it would in a motion-control time-lapse sequence or panorama set. Applying settings to several hundred images is fairly quick, though Bridge can be slow at rendering the resulting thumbnails. 
  • ON1 Photo RAW can also copy and paste AI masks adaptively, so a Sky mask created for one image will adapt to match another image, even if the framing is different. However, applying all the settings to a large number of images and rendering the new previews proved achingly slow. And itโ€™s a pity it doesnโ€™t create a better sky mask to begin with.
  • Capture One has a single Copy and Apply Adjustments command where you develop one image, select it plus all the other undeveloped images in the set to sync settings from the processed image to all the others. But the adjustment layers and their masks copy identically; there is no adaptive masking because there are no AI-generated masks. However, applying new settings to hundreds of images and rendering their thumbnails is very fast, better than other programs.
  • DxO PhotoLabโ€™s Control Point masks and local adjustments also copy identically. Copying adjustments from one image to the rest in the set of 360 test images was also very fast. 
  • ACDSee Photo Studio and Exposure X7 also allow copying and pasting all or selected settings, including local adjustment masks. ACDSee was slow, but Exposure X7 was quite quick to apply settings to a large batch of images, such as the 360 test images. 
  • Darktableโ€™s function is under the History Stack panel where you can copy and paste all or selected settings, but all are global โ€” there are no local adjustments or masks.
  • Luminar Neo allows only copying and pasting of all settings, not a selected set. When testing it on the set of 360 time-lapse frames, Neo proved unworkably slow, taking as much as an hour to apply settings and render the resulting thumbnails in its Catalog view, during which time my M1 MacBook Pro warned the application was running out of memory, taking up 110 Gb! I had to Force Quit it.
  • Affinity Photo is capable of editing only one image at a time. There is no easy or obvious way to copy the Develop Persona settings from one raw image, open another, then paste in those settings. You can only save Presets for each Develop Persona panel, making transferring settings from one image to even just one other image a tedious process. 

Affinity Photo with several raw images stacked and identically processed with the method below.

Affinity Workaround

But โ€ฆ there is a non-obvious and unintuitive method in Affinity which works for stacking and processing a few raw files for a blend: 

  1. Process one raw image and then click Develop so it moves into the Photo Persona, as a โ€œRAW Layer (Embedded),” a new feature in Affinity Photo 2. 
  2. Find the other raw image files (they wonโ€™t have any settings applied) and simply drag them onto the Photo Persona screen.
  3. Use the Move tool to align the resulting new layers with the original image. 
  4. Select all the image layers (but only the first will have any settings applied) and hit the Develop Persona button. 
  5. Then hit the Develop button โ€” this will apply the settings from the first image to all the others in the layer stack. Itโ€™s the best Affinity can do for a โ€œcopy and pasteโ€ function. 
  6. Change the blend mode or add masks to each layer to create a composite or star trail stack. 
  7. Each layer can be re-opened in the Develop Persona if needed to adjust its settings.
  8. Itโ€™s all a bit of a kludge, but it does work.

WINNERS: Capture One for blazing speed; Adobe and ON1 for adaptive masks

LOSER: Affinity Photo, for lacking this feature entirely, except for a method that is not at all obvious and limited in its use. 


Feature-by-Feature Details โ€” 8. Batch Export 

Once you develop a folder of raw images with โ€œCopy & Paste,โ€ you now have to export them with all those settings โ€œbaked intoโ€ the exported files. 

This step creates an intermediate set of TIFFs or JPGs to either assemble into a movie with programs such as TimeLapse DeFlicker, or to stack into a star trail composite using software such as StarStaX

The Batch Export panels from all 9 programs.

To test the Batch Export function, I used each program to export the same set of 360 developed raw files taken with a 20-megapixel Canon R6, shot for a meteor shower time-lapse, exporting them into full-resolution, low-compression JPGs.

While all programs can do the task, some are much better than others. 

Adobe Bridge has a configurable Export panel (though it can be buggy at times), as does Lightroom. Its speed is good, but is beaten by several of the competitors. 

Even Affinity Photo can do a batch export, done through its โ€œNew Batch Job” function. As with its other image selection operations, Affinity depends on your operating systemโ€™s Open dialog box to pick images. Exporting worked well, though without being able to develop a batch of raw files, Iโ€™m not sure why you would have cause to use this batch function to export them. I had to test it with undeveloped raws. Oddly, Affinityโ€™s exported JPGs (at 5496 x 3664 pixels) were slightly larger than the size of the original raws (which were 5472 x 3648 pixels). No other program did this. 

Most programs allow saving combinations of Export settings as frequently used presets. An exception is Exposure X7 where separate presets have to be saved and loaded for each option in its Export panel, awkward. And Luminar Neoโ€™s batch export is basic, with no option for saving Export presets at all. 

In the export of the 360 test images, each program took:

  • Adobe Bridge 15 minutes (after 3 attempts to get it to actually work!)
  • ACDSee Photo Studio 33 minutes 
  • Affinity Photo 2 32 minutes
  • Capture One 23   6 minutes
  • Darktable 4 16 minutes
  • DxO PhotoLab 6   8 minutes
  • Exposure X7   5 minutes 30 seconds
  • Luminar Neo 8.5 hours (!)
  • ON1 Photo RAW 2023 1.4 hours

This was on my M1 Max MacBook Pro. Your mileage will vary! The clear winners in the export race were Exposure X7, Capture One, and DxO. ON1 was way behind the pack. Luminar was impossibly slow. It is not a program for working with lots of images.


ON1โ€™s Time-Lapse Function

Unique among these programs, ON1 Photo RAW provides a Time-Lapse function that allows directly exporting developed raw files to a final movie, without the need to export an intermediate JPG set. That sounds like a great time saver. Only Adobe After Effects can do the same. 

However โ€ฆ ON1โ€™s options are limited: up to a maximum DCI 4K size, in H264 or Apple ProRes codecs, and with a choice of just three frame rates: 24, 25, or 30 frames per second. A dedicated assembly program such as TimeLapse DeFlicker can do a much better job, and faster, with more options such as frame blending, and up to 8K movie sizes. 

And oddly, ON1โ€™s Time-Lapse panel provides no option for where to save the movie or what to name it โ€” it defaults to saving the movie to the original folder with the images, and with the name of one of the images. I had to search for it to locate it. 

WINNERS: Exposure X7 and Capture One for sheer speed 

LOSER: Luminar Neo for being unusably slow   


Feature-by-Feature Details โ€” 9. Advanced Features 

Here Iโ€™ve noted what programs offer what features, but I tested only the panorama stitching function. For a panorama test I used a set of seven images shot with the Canon R5 and RF15-35mm lens at Peyto Lake, Banff. 

The Panorama options from 4 programs. ON1 (lower left) failed to stitch 2 of the 7 segments).
  • Adobe Camera Raw (and Lightroom) offers HDR Merge and Panorama stitching plus, uniquely, the ability to merge multi-exposure HDR panoramas. But it has no Focus Stack option (thatโ€™s in Photoshop). For panoramas, ACR offers a choice of projection geometries, and the very excellent Boundary Warp function for filling in blank areas, as well as content-aware Fill Edges. The result is a raw DNG file. 
  • Capture One has HDR Merge and Panorama stitching, but no Focus Stack option. Like ACR, Capture Oneโ€™s panorama mode offers a choice of projection geometries and results in a raw DNG file for further editing at the raw level. It worked well on the test set, though lacks anything equivalent to ACR’s content-aware Fill Edges and Boundary Warp options. 
  • ON1 Photo RAW offers HDR Merge, Focus Stack, and Panorama stitching of raw files. Using the same seven images that ACR and Capture One succeeded with, ON1 failed to stitch two of the segments, leaving a partial pano. It does offer a limited choice of projection methods and, like ACR, has the option to warp the image to fill blank areas. It creates a raw DNG file. 
  • Affinity Photo also offers HDR Merge, Focus Stack, and Panorama stitching, all from raw files. However, the panorama function is quite basic, with no options for projection geometry or content-aware fill. But it did a good job blending all segments of the test set seamlessly. The result is a raw file that can be further processed in the Develop Persona. 
  • ACDSee Photo Studio for Mac lacks any HDR, Focus Stack, or Panorama stitching. Those functions are available in the Windows versions (Pro and Ultimate), but I did not test them. 
  • Luminar Neo offers HDR Merge and Focus Stack through two extra-cost extensions. As of this writing it does not offer Panorama stitching, but more extensions (yet to be identified!) will be released in 2023. 
  • Darktable offers just HDR Merge, but no Focus Stack or Panorama functions. 
  • DxO PhotoLab 6 lacks any HDR, Focus Stack or Panorama functions. Ditto for Exposure X7. Those are serious deficiencies, as we have a need for all those functions when processing nightscapes. You would have to develop the raw files in DxO or Exposure, then export TIFFs to merge or stitch them using another program such as Affinity Photo. 

WINNERS: Adobe and Capture One

LOSER: DxO for missing key functions expected in a premium โ€œAdobe killerโ€


Program-by-Program Summary

I could end the review here, but I feel itโ€™s important to present the evidence, in the form of the final images, as best I could process them with each of the programs. I rate their overall image quality and performance on a subjective scale of Poor / Fair / Good / Excellent, with additional remarks about the Pros and Cons of each program, as I see them. 

Adobe Camera Raw (also applies to Adobe Lightroom) 

IMAGE QUALITY: Excellent 

PROS: ACR has excellent selective shadow recovery and good noise reduction which, while not up to the level of new AI methods, doesnโ€™t introduce any weird AI artifacts. Its panels and sliders are fairly easy to use, with a clean user interface. Its new AI masking and local adjustments are superb, though take some practice to master.

CONS: It is available only by monthly or annual subscription, and lacks the more advanced AI noise reduction, sharpening, and one-click special effects of some competitors. Using the Adobe suite requires moving between different Adobe programs to perform all functions. Adobe Bridge, a central program in my workflow, tends to be neglected by Adobe, and suffers from bugs and deficiencies that go uncorrected. 

ACDSee Photo Studio (for Mac)

IMAGE QUALITY: Fair 

PROS: Photo Studio in its various versions offers good image management functions, making it suitable as a non-subscription Lightroom alternative. It offers an advanced array of tonal and color adjustments in an easy-to-use interface. 

CONS: It produced badly haloed stars and had poor noise reduction. Its local adjustments are limited and lag behind the competition with no AI functions. It has no panorama stitching or HDR merging functions in the Mac version โ€” the Windows versions get much more love and attention from ACDSee. 

Affinity Photo 2

IMAGE QUALITY: Fair (for its Develop Persona) / Good to Excellent (as a Photoshop replacement)

PROS: Affinity Photo is certainly the best alternative to Photoshop for anyone looking to avoid Adobe. It is an excellent layer-based program (far better than GIMP) with unique features for astrophotographers such as stacking and gradient removal. With v2, it is now possible to transfer a raw file from the Develop Persona to the Photo Persona non-destructively, allowing re-opening the raw file for re-editing, similar to Adobeโ€™s Camera Raw Smart Objects. 

CONS: Affinity Photoโ€™s Develop Persona for raw files is basic, with limited adjustments and producing average results at best. Transferring settings from one raw file to others is difficult, if not impossible. Affinity Photo is designed for editing single images only. 

Capture One 23

IMAGE QUALITY: Excellent 

PROS: Capture One has excellent shadow recovery and color adjustment controls. Local adjustments are easy to add and edit, though lack edge detection and AI selection. It has excellent cataloging functions, and overall superb image quality. Itโ€™s a good Lightroom alternative. 

CONS: Itโ€™s costly to purchase, and more expensive than Adobeโ€™s Creative Cloud to subscribe to. It can easily soften stars if not careful. It lacks AI masking, and overall the program tends to lag behind competitors by a few years for advanced features โ€” Capture One added panorama stitching only a couple of versions back. I found the program also tended to litter my drive with Capture One folders. 

Darktable

IMAGE QUALITY: Poor 

PROS: Itโ€™s free! And it offers many adjustments and intricate options not found elsewhere that the technically minded will enjoy experimenting with. 

CONS: Darktableโ€™s community of developers has added a bewildering array of panels in a confusing interface, making Darktable not for beginners nor the feint of heart. I struggled with it, all for poor results. Just finding the Export function was a challenge. Darktable is a program designed by programmers for use by other programmers who love to play with image data, and who care little for a user interface friendly to โ€œthe rest of us!โ€

DxO PhotoLab 6

IMAGE QUALITY: Excellent 

PROS: Along with Capture One, I found DxO PhotoLab capable of producing a good-looking image, the equal of or perhaps better than Camera Raw, partly because of DxOโ€™s ClearView and Smart Lighting options. It has lots of downloadable camera and lens modules for automatic lens corrections. Its noise reduction was excellent, though its DeepPrime and DeepPrimeXD options can add AI artifacts.

CONS: There are no adjustment layers or masks as such. Local adjustments are done through DxOโ€™s quirky Control Point interface which isnโ€™t as visually intuitive nor as precise as masks and layers. As of PhotoLab 6, DxO has yet to offer panorama or HDR merging, lagging far behind the competition. 

Exposure X7

IMAGE QUALITY: Fair 

PROS: Exposure has a full set of tonal and color adjustments, and essential image management functions. It has good local adjustment layers, though with no AI or smart brushes to automatically detect edges. It produced acceptable final results, though still looking a little flat. 

CONS: Exposure lacks any panorama stitching or HDR merging functions. Its noise reduction can wipe out stars and image details, and its sharpening adds dark halos to stars. It often crashed during my testing, by simply quitting unexpectedly. Annoying.

Luminar Neo

IMAGE QUALITY: Good to Excellent

PROS: Luminar has a clean, fresh interface with many powerful AI-driven functions and effects unique to Luminar and that are easy to apply. The final result looks fine. Its AI masks work quite well. Neo also works as a plug-in for Photoshop or Lightroom. 

CONS: Luminar is expensive to purchase outright with all the Extensions, with a subscription the most economical method of acquiring, and maintaining, the full package. Its Noiseless AI didnโ€™t handle starfields well. Neo lacks a useable cataloging function, and the version tested had numerous serious bugs. It is best for editing just single images. 

ON1 Photo RAW 2023

IMAGE QUALITY: Good 

PROS: ON1 Photo RAW is the only program of the set that can: catalog images, develop raw files, and then layer and stack images, performing all that Lightroom and Photoshop can do. It can serve as a one-program solution, and has excellent Effects and NoNoise AI, also available as plug-ins for Adobe software. It offers layer-based editing as well. 

CONS: ON1 consistently produces dark halos around stars from over-sharpening in its raw engine. These cannot be eliminated. Its AI selection routines are flawed. Its AI noise reduction can leave artifacts if applied too aggressively, which is the default setting. Opening images from the Browse module as layers in the Edit module can be slow. It offers no stack modes (present in Photoshop and Affinity) for easy noise smoothing or star trail stacking, and the alternative โ€” changing layer Blend modes โ€” has to be done one at a time for each layer, a tedious process for a large image stack.


Why Didnโ€™t I Test โ€ฆ? 

โ€ฆ [Insert your favorite program here!] No doubt itโ€™s one you consider badly neglected by all the worldโ€™s photographers! 

But โ€ฆ as I stated at the outset, I tested only programs offered for both MacOS and Windows. I tested the MacOS versions โ€” and for nightscapes, which are more demanding than normal daytime scenes.

Icons for the programs not tested. How many can you identify? Hint: They are in alphabetical order.

I did not test:

  • Adobe Photoshop Elements โ€”Effectively Photoshop โ€œLite,โ€ Elements is available for $99 as a one-time purchase with a perpetual license, for both MacOS and Windows. Optional annual updates cost about $80. While it offers image and adjustment layers, and can open .PSD files, Elements cannot do much with 16-bit images, and has limited functions for developing raw files, in its version of Camera Raw โ€œLite.โ€ And its Lightroom-like Organizer module does not not have any Copy & Paste Settings or batch export functions, making it unsuitable for batch editing or time-lapse production. 

Like Appleโ€™s Photos and other free photo apps, I donโ€™t consider Elements to be a serious option for nightscape and time-lapse work. A Creative Cloud Photo subscription doesnโ€™t cost much more per year, yet gets you far, far more in Adobeโ€™s professional-level software.

  • Corel PaintShop โ€” As with ACDSeeโ€™s product suite, Corelโ€™s PaintShop is available in Pro and Pro Ultimate versions, both updated for 2023, and each with extensive raw and layer-based editing features. But they are only for Windows. If you are a PC user, PaintShop is certainly worth testing out. Their neglected MacOS program (also available for Windows and Linux) is the raw developer AfterShot Pro 3 (currently at v3.7.0.446). It is labeled as being from 2017, and last received a minor bug fix update in January 2021. I included it in my 2017 survey, but could not this year as it refused to recognize the CR3 raw files from my Canon R5 and R6 cameras. 
  • Darkroom and Acorn are two Mac-only apps wth just basic features. There are no doubt numerous other similar Windows-only apps that I am not familiar with. 
  • GIMP โ€” Being free, it has its loyal fans. But it is not a raw developer, so it is not tested here. It is favorite of some astrophotographers as a no-cost substitute for Adobe Photoshop or Affinity Photo. Itโ€™s available for MacOS and Windows. 
  • Iridient Developer โ€” Its anachronistic, text-only website looks like it comes from 1995, giving the impression that this raw developer should be free, open-source software. It isnโ€™t; it costs $99. It is a basic raw developer but only for MacOS. It is updated frequently, and a trial copy is available. 
  • Pixelmator Pro โ€” While it is a very capable and well-supported program with some excellent features, it too is available only for MacOS. Like Affinity Photo, it seems to be primarily for editing individual raw images, and lacks any image management functions, notably Copy & Paste Settings.
  • PixInsight โ€” This specialized astrophoto program is designed for deep-sky image processing and bringing out the most subtle structures in faint nebulas and galaxies. For those it works wonders. But it is not suitable for nightscapes. Examples Iโ€™ve seen from PI fans who have used it for nightscapes, including images Iโ€™ve sent them for their expert processing, have not impressed me. 
  • RawTherapee โ€” As of early January 2023 when I completed my testing, the latest version of this free open-source program, v5.9, was available only for Windows and Linux. The MacOS version was still back at v5.8 from February 2020, a version that was unable to open the Canon CR3 raw files I was using in my tests. While the CR3 format has been out for several years, RawTherapee was still not supporting it, a hazard of open-source software dependent on the priorities of volunteer programmers who mostly use Windows. Like Darktable, RawTherapee is an incredibly complex program to use, with programmers adding every possible panel, slider and checkbox they could think of.ย [UPDATE MARCH 2023: RawTherapee 5.9 for MacOS is now available and opens Canon .CR3 files. Mac users might certainly want to try it. And Windows users, too!]
  • Topaz Studio โ€” While Topaz Labs has been busy introducing some fine AI specialty programs, such as DeNoise AI, their main photo editor, Topaz Studio, has been neglected for years and, as of late 2022, was not even listed as a product for sale. Itโ€™s gone. 

What About? โ€” To prevent the number of programs tested from growing even larger, I did not include a few other little-known and seldom-used programs such as Cyberlink PhotoDirector and Picktorial, though Iโ€™m sure they have their fans. 

I also did not test any camera manufacturer programs, such as Canonโ€™s Digital Photo Professional, Nikonโ€™s CaptureNX, or Sonyโ€™s ImagingEdge. They will open raw images only from their own cameras. Few photographers use them unless forced to, perhaps to open new raw files not yet supported by Adobe, DxO, et al, or to access files created by special camera functions such as Pixel Shift or Raw Burst Mode. 


Recommendations

Having used Adobe software for decades, Iโ€™m used to its workings and the look it provides images. Iโ€™ve yet to see any of the competitors produce results so much better that they warrant me switching programs. At best, the competitors produce results as good as Adobe, at least for nightscape astrophotos, though with some offering unique and attractive features. 

For example, the AI noise reduction routines in DxO PhotoLab and ON1 Photo RAW can outperform Adobe Camera Raw and Lightroom. Adobe needs to update its raw editing software with more advanced noise reduction and sharpening. Even so, the AI routines in the competitors are prone to creating odd artifacts, so have to be applied carefully to astrophotos. 

A possible workflow: DxO PhotoLab or Capture One into Affinity Photo

As I recommended in 2017, for those who refuse to use Adobe โ€” or any software by subscription โ€” a possible combination for the best astrophoto image quality might be DxO PhotoLab 6 for raw developing and basic time-lapse processing, paired with Affinity Photo 2 for stacking and compositing still images, from finished TIFF files exported out of DxO then opened and layered with Affinity. 

An example of images developed in Capture One and then layered and masked in Affinity Photo.

The pairing of Capture One with Affinity could work just as well, though is more costly. And anyone who hates software by subscription in principle might want to avoid Capture One as they are pushing customers toward buying only by subscription, as is ON1.

For a single-program solution, Iโ€™d recommend ON1 Photo RAW more highly, if only it produced better star image quality. Its raw engine continues to over-sharpen, and its AI masking functions are flawed, though will likely improve. I routinely use ON1โ€™s Effects plug-in from Photoshop, as it has some excellent โ€œfinishing-touchโ€ filters such as Dynamic Contrast. I find ON1โ€™s NoNoise AI plug-in also very useful. 

The same applies to Luminar Neo. While I canโ€™t see using it as a principle processing program, it works very well as a Photoshop plug-in for adding special effects, some with its powerful and innovative AI routines. 


Finally โ€” Download Trials and Test! 

But donโ€™t take my word for all of this. Please test for yourself! 

With the exception of Luminar Neo, all the programs I tested (and others I didnโ€™t, but you might be interested in) are available as free trial copies. Try them out on your images and workflow. You might find you like one program much better than any of the others or what you are using now. 

Often, having more than one program is useful, if only for use as a plug-in from within Lightroom or Photoshop. Some plug-ins made for Photoshop also work from within Affinity Photo, though it is hit-and-miss what plug-ins will actually work. (In my testing, plug-ins from DxO/Nik Collection, Exposure X7, ON1, RC-Astro, and Topaz all work; ones from Skylum/Luminar install but fail to run.)

LRTimelapse working on the meteor shower time-lapse frames.

While I was impressed with Capture One and DxO PhotoLab, for me the need to use the program LRTimelapse (shown above) for processing about 80 percent of all the time-lapse sequences I shoot means the question is settled. LRTimelapse works only with Adobe software, and the combination works great and improves wth every update of LRTimelapse.

Even for still images, the ease of working within Adobeโ€™s ecosystem to sort, develop, layer, stack, and catalog images makes me reluctant to migrate to a mix of programs from different companies, especially when the cost of upgrading many of those programs is not much less than, or even more costly, than an Adobe Photo plan subscription. 

However โ€ฆ if itโ€™s just a good raw developer you are after for astro work, without paying for a subscription, try Capture One 2023 or DxO PhotoLab 6. Try Affinity Photo if you want a good Photoshop replacement. 

Clear skies!  And thanks for reading this!

โ€” Alan, January 2023 / ยฉ 2023 Alan Dyer / AmazingSky.com 

A Showing of STEVE


On August 7, 2022 we were treated to a fine aurora and a superb showing of the anomalous STEVE arc across the sky.

Where I live in southern Alberta we are well positioned to see a variety of so-called “sub-auroral” phenomena โ€” effects in the upper atmosphere associated with auroras but that appear south of the main auroral arc, thus the term “sub-auroral.”

An arc of a Kp-5 aurora early in the evening just starting a show, but with a fading display of noctilucent clouds low in the north as well.

The main auroral band typically lies over Northern Canada, at latitudes 58ยฐ to 66ยฐ, though it can move south when auroral activity increases. However, on August 7, the Kp Index was predicted to reach Kp5, on the Kp 0 to 9 scale, so moderately active, but not so active it would bring the aurora right over me at latitude 51ยฐ N, and certainly not down over the northern U.S., which normally requires Kp6 or higher levels.

An arc of a Kp-5 aurora over a wheatfield from home in southern Alberta. The panorama takes in the northern stars, from the Big Dipper and Ursa Major at left, to the W of Cassiopeia at top right of centre, with Perseus below Cassiopeia, and Andromeda and Pegasus at right.

So with Kp5, the aurora always appeared in my sky this night to the north, though certainly in a fine display, as I show above.

However, at Kp5, the amount of energy being pumped into the magnetosphere and atmosphere around Earth is high enough to trigger (through mechanisms only beginning to be understood) some of the unique phenomena that occur south of the main aurora. These often appear right over me. That was the case on August 7.

This is a telephoto lens panorama of a low and late-season display of noctilucent clouds in the north on August 7, 2022. This was the latest I had seen NLCs from my latitude of 51ยฐ N.

I captured the above panoramas of the aurora early in the night, when we also were treated to a late season display of noctilucent clouds low in the north. These are high altitude water-vapour clouds up almost as high as the aurora. They are common in June and July from here (we are also in an ideal latitude for seeing them). But early August was the latest I had ever sighted NLCs.

A display of a Kp-5 aurora near its peak of activity on August 7, 2022, taken from home in southern Alberta, over the wheatfield next to my acreage. STEVE appeared later this night. Moonlight from the waxing gibbous Moon low in the southwest illuminates the scene.

As the NLCs faded, the auroral arc brightened, promising a good show, in line with the predictions (which don’t always come true!). The main aurora reached a peak in activity about 11:30 pm MDT, when it was bright and moving along the northern and northeastern horizon. It then subsided in brightness and structure, giving the impression the show was over.

But that’s exactly when STEVE can โ€” and this night did! โ€” appear.

A portrait of the infamous STEVE arc of hot flowing gas associated with an active aurora, here showing his distinctive pink colour and the fleeting appearance of the green picket fence fingers that often show up hanging down from the main arc.

Sure enough, about 12:15 am, a faint arc appeared in the east, which slowly extended to cross the sky, passing straight overhead. This was STEVE, short for Strong Thermal Emission Velocity Enhancement.

STEVE is not an aurora per se, which is caused by electrons raining down from the magnetosphere. STEVE is a ribbon of hot (~3000ยฐ) gas flowing east to west. STEVE typically appears for no more than an hour, often less, before he fades from view.

A fish-eye view looking straight up. On this night the green fingers lasted no more than two minutes.

At his peak, STEVE is often accompanied by green “picket-fence” fingers hanging down from the main pink band, which also have a westward rippling motion. These do seem to be caused by vertically moving electrons.

This night I shot with three cameras, with lenses from 21mm to 7.5mm, including two fish-eye lenses needed to capture the full extent of sky-spanning STEVE. I shot still, time-lapses, and real-time videos, compiled below.

Amateur photos like mine have been used to determine the height of STEVE, which seems to be 250 to 300 km, higher than the main components of a normal aurora. Indeed, previous images of mine have formed parts of the data sets for two research papers, with me credited as a citizen scientist co-author.

A closeup of the STEVE arc of hot flowing gas associated with an active aurora.

STEVE is a unique example of citizen scientists working with the professional researchers to solve a mystery that anyone who looks up at the right time and from the right place can see. August 7-8, 2022 and my backyard in Alberta was such a time and place.

A dim Perseid meteor (at top) streaking near the Milky Way on the night of Aug 7-8, 2022, taken as part of a time-lapse set for the STEVE auroral arc in frame as the pink band.

As a bonus, a few frames recorded Perseid meteors, with the annual shower becoming active.

For a video compilation of some of my stills and videos from the night, see this Vimeo video.

A 2.5-minute music video of stills, time-lapses, and real-time videos of STEVE from August 7-8, 2022.

Thanks! Clear skies!

โ€” Alan Dyer, amazingsky.com

Testing the Canon R6 for Astrophotography


In an extensive technical blog, I put the Canon R6 mirrorless camera through its paces for the demands of astrophotography. 

Every major camera manufacturer, with the lone exception of stalwart Pentax, has moved from producing digital lens reflex (DSLR) cameras, to digital single lens mirrorless (DSLM) cameras. The reflex mirror is gone, allowing for a more compact camera, better movie capabilities, and enhanced auto-focus functions, among other benefits. 

But what about for astrophotography? I reviewed the Sony a7III and Nikon Z6 mirrorless cameras here on my blog and, except for a couple of points, found them excellent for the demands of most astrophotography. 

For the last two years Iโ€™ve primarily used Canonโ€™s astro-friendly and red-sensitive EOS Ra mirrorless, a model sadly discontinued in September 2021 after just two years on the market. I reviewed that camera in the April 2020 issue of Sky & Telescope magazine, with a quick first look here on my blog

The superb performance of the Ra has prompted me to stay with the Canon mirrorless R system for future camera purchases. Here I test the mid-priced R6, introduced in August 2020.


NOTE: In early November 2022 Canon announced the EOS R6 MkII, which one assumes will eventually replace the original R6 once stock of that camera runs out. The MkII has a 24 Mp sensor for slightly better resolution, and offers longer battery life. But the main improvements over the R6 is to autofocus accuracy, a function of little use to astrophotographers. Only real-world testing will tell if the R6 MkII has better or worse noise levels than the R6, or has eliminated the R6’s amp glow, reported on below.


CLICK or TAP on an image to bring it up full screen for closer inspection. All images are ยฉ 2021 by Alan Dyer/AmazingSky.com. Use without permission is prohibited.

M31, the spiral galaxy in Andromeda, with the Canon R6 mirrorless camera. It is a stack of 8 x 8-minute exposures at ISO 800, blended with a stack of 8 x 2-minute exposures at ISO 400 for the core, to prevent it from overexposing too much, all with a SharpStar 76mm apo refractor at f/4.5 with its field flattener/reducer.

TL;DR SUMMARY

The Canon R6 has proven excellent for astrophotography, exhibiting better dynamic range and shadow recovery than most Canon DSLRs, due to the ISO invariant design of the R6 sensor. It is on par with the low-light performance of Nikon and Sony mirrorless cameras. 

The preview image is sensitive enough to allow easy framing and focusing at night. The movie mode produces usable quality up to ISO 51,200, making 4K movies of auroras possible. Canon DSLRs cannot do this. 

Marring the superb performance are annoying deficiencies in the design, and one flaw in the image quality โ€“ an amp glow โ€“ that particularly impacts deep-sky imaging.

R6 pros

The Canon R6 is superb for its:

  • Low noise, though not exceptionally so
  • ISO invariant sensor performance for good shadow recovery 
  • Sensitive live view display with ultra-high ISO boost in Movie mode 
  • Relatively low noise Movie mode with full frame 4K video
  • Low light auto focus and accurate manual focus assist  
  • Good battery life 

R6 cons

The Canon R6 is not so superb for its:

Design Deficiencies 

  • Lack of a top LCD screen
  • Bright timer display in Bulb on the rear screen
  • No battery level indication when shooting 
  • Low grade R3-style remote jack, same as on entry-level Canon DSLRs 

Image Quality Flaw

  • Magenta edge โ€œamp glowโ€ in long exposures 
The Canon Ra on the left with the 28-70mm f/2 RF lens and the Canon R6 on the right with the 70-200mm f/2/8 RF lens, two superb but costly zooms for the R system cameras.

CHOOSING THE R6

Canonโ€™s first full-frame mirrorless camera, the 30-megapixel EOS R, was introduced in late 2018 to compete with Sony. As of late-2021 the main choices in a Canon DSLM for astrophotography are either the original R, the 20-megapixel R6, the 26-megapixel Rp, or the 45-megapixel R5. 

The new 24-megapixel Canon R3, while it has impressive low-noise performance, is designed primarily for high-speed sports and news photography. It is difficult to justify its $6,000 cost for astro work. 

I have not tested Canonโ€™s entry-level, but full-frame Rp. While the Rpโ€™s image quality is likely quite good, its small battery and short lifetime on a single charge will be limiting factors for astrophotography. 

Nor have I tested the higher-end R5. Friends who use the R5 for nightscape work love it, but with smaller pixels the R5 will be noisier than the R6, which lab tests at sites such as DPReview.com seem to confirm. 

Meanwhile, the original EOS R, while having excellent image quality and features, is surely destined for replacement in the near future โ€“ with a Canon EOS R Mark II? The Rโ€™s successor might be a great astrophoto camera, but with the Ra gone, I feel the R6 is currently the prime choice from Canon, especially for nightscapes.

I tested an R6 purchased in June 2021 and updated in August with firmware v1.4. Iโ€™ll go through its performance and functions with astrophotography in mind. Iโ€™ve ignored praised R6 features such as eye tracking autofocus, in-body image stabilization, and high speed burst rates. They are of limited or no value for astrophotography. 

Along the way, I also offer a selection of user tips, some of which are applicable to other cameras. 

LIVE VIEW FOCUSING AND FRAMING

“Back-of-the-camera” views of the R6 in its normal Live View mode (upper left) and its highly-sensitive Movie Mode (upper right), compared to views with four other cameras. Note the Milky Way visible with the R6 in its Movie mode, similar to the Sony in Bright Monitoring mode.

The first difference you will see when using any new mirrorless camera, compared to even a high-end DSLR, is how much brighter the โ€œLive Viewโ€ image is when shooting at night. DSLM cameras are always in Live View โ€“ even the eye-level viewfinder presents a digital image supplied by the sensor. 

As such, whether on the rear screen on in the viewfinder, you see an image that closely matches the photo you are about to take, because it is the image you are about to take. 

To a limit. DSLMs can do only so much to simulate what a long 30-second exposure will look like. But the R6, like many DSLMs, goes a long way in providing a preview image bright enough to frame a dark scene and focus on bright stars. Turn on Exposure Simulation to brighten the live image, and open the lens as wide as possible. 

The Canon R6 in its Movie Mode at ISO 204,800 and with a lens wide open.

But the R6 has a trick up its sleeve for framing nightscapes. Switch the Mode dial to Movie, and set the ISO up to 204,800 (or at night just dial in Auto ISO), and with the lens wide open and shutter on 1/8 second (as above), the preview image will brighten enough to show the Milky Way and dark foreground, albeit in a noisy image. But itโ€™s just for aiming and framing.

This is similar to the excellent, but well-hidden Bright Monitoring mode on Sony Alphas. This high-ISO Movie mode makes it a pleasure using the R6 for nightscapes. The EOS R and Ra do not have this ability. While their live view screens are good, they are not as sensitive as the R6โ€™s, with the R and Ra’s Movie modes able to go up to only ISO 12,800. The R5 can go up to “only” ISO 51,200 in its Movie mode, good but not quite high enough for live framing on dark nights. 

Comparing Manual vs. Auto Focus results with the R6.

The R6 will also autofocus down to a claimed EV -6.5, allowing it to focus in dim light for nightscapes, a feat impossible in most cameras. In practice with the Canon RF 15-35mm lens at f/2.8, I found the R6 canโ€™t autofocus on the actual dark landscape, but it can autofocus on bright stars and planets (provided, of course, the camera is fitted with an autofocus lens). 

Autofocusing on bright stars proved very accurate. By comparison, while the Ra can autofocus on distant bright lights, it fails on bright stars or planets. 

Turning on Focus Peaking makes stars turn red, yellow or blue (your choice of colours) when they are in focus, as a reassuring confirmation. 

The Focus Peaking and Focus Guide menu.
The R6 live view display with Focus Guide arrows on and focused on a star, Antares.

In manual focus, an additional Focus Aid overlay provides arrows that close up and turn green when in focus on a bright star or planet. Or you can zoom in by 5x or 10x to focus by eye the old way by examining the star image. I wish the R6 had a 15x or 20x magnification; 5x and 10x have long been the Canon standards. Only the Ra offered 30x for ultra-precise focusing on stars. 

In all, the ease of framing and focusing will be the major improvement youโ€™ll enjoy by moving to any mirrorless, especially if your old camera is a cropped-frame Canon Rebel or T3i! But the R6 particularly excels at ease of focusing and framing. 

NOISE PERFORMANCE

The key camera characteristic for astrophoto use is noise. I feel it is more important than resolution. Thereโ€™s little point in having lots of fine detail if it is lost in a blizzard of high-ISO noise. And for astro work, we are almost always shooting at high ISOs.

Comparing the R6’s noise at increasingly higher ISO speeds on a starlit nightscape.

With just 20 megapixels, low by todayโ€™s standards, the R6 has individual pixels, or more correctly โ€œphotosites,โ€ that are each 6.6 microns in size, the โ€œpixel pitch.โ€ 

By comparison, the 30-megapixel R (and Ra) has a pixel pitch of 5.4 microns, the 45-megapixel R5โ€™s pixel pitch is 4.4 microns, while the acclaimed low-light champion in the camera world, the 12-megapixel Sony a7sIII, has large 8.5-micron photosites. 

The bigger the photosites (i.e. the larger the pixel pitch), the more photons each photosite can collect in a given amount of time โ€“ and the more photons they can collect, period, before they overfill and clip highlights. More photons equals more signal, and therefore a better signal-to-noise ratio, while the greater โ€œfull-well depthโ€ yields higher dynamic range. 

Each generation of camera also improves the signal-to-noise ratio by suppressing noise via its sensor design and improved signal processing hardware and firmware. The R6 uses Canonโ€™s latest DIGIC X processor shared by the companyโ€™s other mirrorless cameras. 

Comparing the R6 noise with the 6D MkII and EOS Ra on a deep-sky subject, galaxies.

In noise tests comparing the R6 against the Ra and Canon 6D Mark II, all three cameras showed a similar level of noise at ISO settings from 400 up to 12,800. But the 6D Mark II performed well only when properly exposed. Both the R6 and Ra performed much better for shadow recovery in underexposed scenes. 

Comparing the R6 noise with with the 6D MkII and EOS Ra on a shadowed nightscape.
Comparing the R6 noise with the EOS Ra on the Andromeda Galaxy at typical deep-sky ISO speeds.

In nightscapes and deep-sky images the R6 and Ra looked nearly identical at each of their ISO settings. This was surprising considering the Raโ€™s smaller photosites, which perhaps attests to the low noise of the astronomical โ€œaโ€ model. 

Or it could be that the R6 isnโ€™t as low noise as it should be for a 20 megapixel camera. But it is as good as it gets for Canon cameras, and thatโ€™s very good indeed.

I saw no โ€œmagic ISOโ€ setting where the R6 performed better than at other settings. Noise increased in proportion to the ISO speed. It proved perfectly usable up to ISO 6400, with ISO 12,800 acceptable for stills when necessary. 

ISO INVARIANCY

The flaw in many Canon DSLRs, one documented in my 2017 review of the 6D Mark II, was their poor dynamic range due to the lack of an ISO invariant sensor design. 

The R6, as with Canonโ€™s other R-series cameras, has largely addressed this weakness. The sensor in the R6 appears to be nicely ISO invariant and performs as well as the Sony and Nikon cameras I have used and tested, models praised for their ISO invariant behaviour. 

Where this trait shows itself to advantage is on nightscapes where the starlit foreground is often dark and underexposed. Bringing out detail in the shadows in raw files requires a lot of Shadow Recovery or increasing the Exposure slider. Images from an ISO invariant sensor can withstand the brightening โ€œin postโ€ far better, with minimal noise increase or degradations such as a loss of contrast, added banding, or horrible discolourations. 

Comparing the R6 for ISO Invariancy on a starlit nightscape.

To test the R6, I shot sets of images at the same shutter speed, one well-exposed at a high ISO, then several at successively lower ISOs to underexpose by 1 to 5 stops. I then brightened the underexposed images by increasing the Exposure in Camera Raw by the same 1 to 5 stops. In an ideal ISO invariant sensor, all the images should look the same. 

The R6 did very well in images underexposed by up to 4 stops. Images underexposed by 5 stops started to fall apart, but Iโ€™ve seen that in Sony and Nikon images as well. 

Comparing the R6 for ISO Invariancy on a moonlit nightscape.

This behaviour applies to images underexposed by using lower ISOs than what a โ€œnormalโ€ exposure might require. Underexposing with lower ISOs can help maintain dynamic range and avoid highlight clipping. But with nightscapes, foregrounds can often be too dark even when shot at an ISO high enough to be suitable for the sky. Foregrounds are almost always underexposed, so good shadow recovery is essential for nightscapes, and especially time-lapses, when blending in separate longer exposures for the ground is not practical.

With its improved ISO invariant sensor, the R6 will be a fine camera for nightscape and time-lapse use, which was not true of the 6D Mark II. 

For those interested in more technical tests and charts, I refer you to DxOMarkโ€™s report on the Canon R6.  

Comparing R6 images underexposed in 1-stop increments by using shorter shutter speeds.
Comparing R6 images underexposed in 1-stop increments by using smaller apertures.

However, to be clear, ISO invariant behaviour doesnโ€™t help you as much if you underexpose by using too short a shutter speed or too small a lens aperture. I tested the R6 in series of images underexposed by keeping ISO the same but decreasing the shutter speed then the aperture in one-stop increments. 

The underexposed images fell apart in quality much sooner, when underexposed more than 3 stops. Again, this is behaviour similar to what Iโ€™ve seen in Sonys and Nikons. For the best image quality I feel it is always a best practice to expose well at the camera. Donโ€™t count on saving images in post. 

An in-camera image fairly well exposed with an ETTR histogram.

TIP: Underexposing by using too short an exposure time is the major mistake astrophotographers make, who then wonder why their images are riddled with odd artifacts and patten noise. Always Expose to the Right (ETTR), even with ISO invariant cameras. The best way to avoid noise is to give your sensor more signal, by using longer exposures or wider apertures. Use settings that push the histogram to the right. 

LONG EXPOSURE NOISE REDUCTION

All cameras will exhibit thermal noise in long exposures, especially on warm nights. This form of noise peppers the shadows with hot pixels, often brightly coloured. 

This is not the same as the shot and read noise that adds graininess to high-ISO images and that noise reduction software can smooth out. This is a common misunderstanding, even among professional photographers who should know better! 

Thermal noise is more insidious and harder to eliminate in post without harming the image. However, Monika Deviat offers a clever method here at her website

The standard Canon LENR menu.

Long Exposure Noise Reduction (LENR) eliminates this thermal noise by taking a โ€œdark frameโ€ and subtracting it in-camera to yield a raw file free of hot pixels. 

And yes, LENR does apply to raw files, another fact even many professional photographers donโ€™t realize. It is High ISO Noise Reduction that applies only to JPGs, along with Color Space and Picture Styles.

Comparing a dark nightscape without and with LENR on a warm night. Hot pixels are mostly gone at right.

The LENR option on the R6 did eliminate most hot pixels, though sometimes still left, or added, a few. LENR is needed more on warm nights, and with longer exposures at higher ISOs. So the extent of thermal noise in any camera can vary a lot from shoot to shoot.

When LENR is active, the R6โ€™s rear screen lights up with โ€œBusy,โ€ which is annoyingly bright. To hide this display, the only option is to close the screen. 

As with the EOS Ra, and all mirrorless cameras, the R6 has no โ€œdark frame bufferโ€ that allows several exposures to be taken in quick succession even with LENR on. Canonโ€™s full-frame DSLRs have this little-known buffer that allows 3, 4, or 5 โ€œlight framesโ€ to be taken in a row before the LENR dark frame kicks in a locks up the camera on Busy. 

Comparing long exposure images with the lens cap on (dark frames), to show just thermal noise. The right edge of the frame is shown, blown up, to reveal the amp glow, which LENR removes.

With all Canon R cameras, and most other DSLRs, turning on LENR forces the camera to take a dark frame after every light frame, doubling the time it takes to finish every exposure. Thatโ€™s a price many photographers arenโ€™t willing to pay, but on warm nights it can be necessary, and a best practice, for the reward of cleaner images.

The standard Canon Sensor Cleaning menu.

TIP: If you find hot pixels are becoming more obvious over time, try this trick: turn on the Clean Manually routine for 30 seconds to a minute. In some cameras this can remap the hot pixels so the camera can better eliminate them.  

STAR QUALITY 

Using LENR with the R6 did not introduce any oddities such as oddly-coloured, green or wiped-out stars. Even without LENR I saw no evidence of green stars, a flaw that plagues some Sony cameras at all times, or Nikons when using LENR. 

Comparing the R6 for noise and star colours at typical deep-sky ISOs and exposure times.

Canons have always been known for their good star colours, and the R6 is no exception. According to DPReview the R6 has a low-pass anti-alias filter in front of its sensor. Cameras which lack such a sensor filter do produce sharper images, but stars that occupy only one or two pixels might not de-Bayer properly into the correct colours. Thatโ€™s not an issue with the R6.

I also saw no โ€œstar-eating,โ€ a flaw Nikons and Sonys have been accused of over the years, due to aggressive in-camera noise reduction even on raw files. Canons have always escaped charges of star-eating. 

VIGNETTING/SHADOWING

DSLRs are prone to vignetting along the top and bottom of the frame from shadowing by the upraised mirror and mirror box. Not having a mirror, and a sensor not deeply recessed in the body, largely eliminates this edge vignetting in mirrorless cameras. 

This illustrates the lack of edge shadows but magenta edge glows in a single Raw file boosted for contrast.

That is certainly true of the R6. Images boosted a lot in contrast, as we do with deep-sky photos, show not the slightest trace of vignetting along the top or bottom edges There were no odd clips or metal bits intruding into the light path, unlike in the Sony a7III I tested in 2018. 

The full frame of the R6 can be used without need for cropping or ad hoc edge brightening in post. Except โ€ฆ

EDGE ARTIFACTS/AMP GLOWS

The R6 did exhibit one serious and annoying flaw in long-exposure high-ISO images โ€“ a magenta glow along the edges, especially the right edge and lower right corner. 

Comparing a close-up of a nightscape, without and with LENR, to show the edge glow gone with LENR on.

Whether this is the true cause or not, it looks like โ€œamplifier glow,โ€ an effect caused by heat from circuitry illuminating the sensor with infra-red light. It shows itself when images are boosted in contrast and brightness in processing. Itโ€™s the sort of flaw revealed only when testing for the demands of astrophotography. It was present in images I took through a telescope, so it is not IR leakage from an auto-focus lens. 

I saw this type of amp glow with the Sony a7III, a flaw eventually eliminated in a firmware update that, I presume, turned off unneeded electronics in long exposures. 

Amp glow is something I have not seen in Canon cameras for many years. In a premium camera like the R6 it should not be there. Period. Canon needs to fix this with a firmware update.

UPDATE AUGUST 1, 2022: As of v1.6 of the R6 firmware, released in July 2022, the amp glow issue remains and has not been fixed. It may never be at this point.

It is the R6โ€™s only serious image flaw, but itโ€™s surprising to see it at all. Turning on LENR eliminates the amp glow, as it should, but using LENR is not always practical, such as in time-lapses and star trails.

For deep-sky photography high-ISO images are pushed to extremes of contrast, revealing any non-uniform illumination or colour. The usual practice of taking and applying calibration dark frames should also eliminate the amp glow. But Iโ€™d rather it not be there in the first place!

RED SENSITIVITY

The R6 I bought was a stock โ€œoff-the-shelfโ€ model. It is Canonโ€™s now-discontinued EOS Ra model that is (or was) โ€œfilter-modifiedโ€ to record a greater level of the deep red wavelength from red nebulas in the Milky Way. Compared to the Ra, the R6 did well, but could not record the depth of nebulosity the Ra can, to be expected for a stock camera. 

Comparing the stock R6 with the filter-modified Ra on Cygnus nebulosity.

In wide-field images of the Milky Way, the R6 picked up a respectable level of red nebulosity, especially when shooting through a broadband light pollution reduction filter, and with careful processing. 

Comparing the stock R6 with the filter-modified Ra on the Swan Nebula with a telescope with minimal processing to the Raw images.
Comparing the stock R6 with the filter-modified Ra on the Swan Nebula with a telescope with a dual narrowband filter and with colour correction applied to the single Raw images.

However, when going after faint nebulas through a telescope, even the use of a narrowband filter did not help bring out the target. Indeed, attempting to correct the extreme colour shift introduced by such a filter resulted in a muddy mess and accentuated edge glows with the R6, but worked well with the Ra. 

While the R6 could be modified by a third party, the edge amp glow might spoil images, as a filter modification can make a sensor even more sensitive to IR light, potentially flooding the image with unwanted glows. 

TIP: Buying a used Canon Ra (if you can find one) might be one choice for a filter-modified mirrorless camera, one much cheaper than a full frame cooled CMOS camera such as a ZWO ASI2400MC. Or Spencerโ€™s Camera sells modified versions of all the R series cameras with a choice of sensor filters. But I have not used any of their modded cameras.

RESOLUTION 

A concern of prospective buyers is whether the R6โ€™s relatively low 20-megapixel sensor will be sharp enough for their purposes. R6 images are 5472 by 3648 pixels, much less than the 8000+ pixel-wide images from high-resolution cameras like the Canon R5, Nikon Z7II or Sony a1.

Unless you sell your astrophotos as very large prints, Iโ€™d say donโ€™t worry. In comparisons with the 30-megapixel Ra I found it difficult to see a difference in resolution between the two cameras. Stars were nearly as well resolved in the R6, and only under the highest pixel-peeping magnification did stars look a bit more pixelated in the R6 than in the Ra. Faint stars were equally well recorded. 

Comparing resolution of the R6 vs. Ra with a blow-up of wide-field 85mm images
Comparing resolution of the R6 vs. Ra on blow-ups of the Andromeda Galaxy with a 76mm apo refractor. The R6 is more pixellated but it takes pixel peeping to see it!

The difference between 20 and 30 megapixels is not as great as you might think for arc-second-per-pixel plate scale. I think it would take going to the R5 with its 45 megapixel sensor to provide enough of a difference in resolution over the R6 to be obvious in nightscape scenes, or when shooting small, detailed deep-sky subjects such as globular clusters. 

If landscape or wildlife photography by day is your passion, with astrophotography a secondary purpose, then the more costly but highly regarded R5 might be the better choice. 

Super Resolution menu in Adobe Lightroom.

TIP: Adobe now offers (in Lightroom and in Camera Raw) a Super Resolution option, that users might think (judging by the rave reviews on-line) would be the answer to adding resolution to astro images from โ€œlow-resโ€ cameras like the R6. 

Comparing a normal R6 image with the same image upscaled with Super Resolution.

Sorry! In my tests on astrophotos Iโ€™ve found Super Resolution results unsatisfactory. Yes, stars were less pixelated, but they became oddly coloured in the AI-driven up-scaling. Green stars appeared! The sky background also became mottled and uneven. 

I would not count on such โ€œsmart upscalingโ€ options to add more pixels to astro-images from the R6. Then again, I donโ€™t think thereโ€™s a need to. 

RAW vs. cRAW

Canon now offers the option of shooting either RAW or cRAW files, the latter being the same megapixel count but compressed in file size by almost a factor of two. This allows shooting twice as many images before card space runs out, perhaps useful for shooting lots of time-lapses on extended trips away from a computer. 

The R6 Image Quality menu with the cRAW Option.
Comparing an R6 cRAW with a RAW image.

However, the compression is not lossless. In high-ISO test images purposely underexposed, then brightened in post, I could see a slight degradation in cRAW images โ€“ the noise background looked less uniform and exhibited a blocky look, like JPG artifacts. 

The R6’s dual SD card slots.

TIP: With two SD card slots in the R6 (the second card can be set to record either a backup of images on card one, or serve as an overflow card) and the economy of large SD cards, thereโ€™s not the need to conserve card space as there once was. I would suggest always shooting in the full RAW format. Why accept any compression and loss of image quality? 

BATTERY LIFE

The R6 uses a new version of Canonโ€™s standard LP-E6 battery, the LP-E6NH, that supports charging through the USB-C port and has a higher 2130mAh capacity than the 1800mAh LP-E6 batteries. However, the R6 is compatible with older batteries.

On warm nights, I found the R6 ran fine on one battery for the 3 to 4 hours needed to shoot a time-lapse sequence, with power to spare. However, as noted below, the lack of a top LCD screen means thereโ€™s no ongoing display of battery level, a deficiency for time-lapse and deep-sky work. 

For demanding applications, especially in winter, the R6 can be powered by an outboard USB power bank that has โ€œPower Deliveryโ€ capability. Thatโ€™s a handy feature. Thereโ€™s no need to install a dummy battery leading out to a specialized power source. 

The R6’s Connection menu with Airplane mode to turn off battery-eating WiFi and Bluetooth.

TIP: Putting the camera into Airplane mode (to turn off WiFi and Bluetooth), turning off the viewfinder, and either switching off or closing the rear screen all helps conserve power. The R6 does not have GPS built in. Tagging images with location data requires connecting to your phone.

VIDEO USE

A major selling point for me was the R6โ€™s low-light video capability. It replaces my Sony A7III, which had been my โ€œgo toโ€ camera for real-time 4K movies of auroras. 

As best I can tell (from the dimmer auroras Iโ€™ve shot to date), the R6 performs equally as well as the Sony. It is able to record good quality (i.e. acceptably noise-free) 4K movies at ISO 25,600 to ISO 51,200. While it can shoot at up to ISO 204,800, the excessive noise makes the top ISO an emergency-use only setting. 

The R6’s Movie size and quality options, with 4K and Full HD formats and frame rates.
Comparing the R6 on a dim aurora at various high ISO speeds. Narrated at the camera โ€” excuse the wind noise! Switch to HD mode for the best video playback quality. This was shot in 4K but WordPress plays back only in HD.

The R6 can shoot at a dragged shutter speed as slow as 1/8-second โ€“ good, though not as slow as the Sonyโ€™s 1/4-second slowest shutter speed in movie mode. That 1/8-second shutter speed and a fast f/1.4 to f/2 lens are the keys to shooting movies of the night sky. Only when auroras get shadow-casting bright can we shoot at the normal 1/30-second shutter speed and at lower ISOs.

As with Nikons (but not Sonys), the Canon R6 saves its movie settings separately from its still settings. When switching to Movie mode you donโ€™t have to re-adjust the ISO, for example, to set it higher than it might have been for stills, very handy for taking both stills and movies of an active aurora, where quick switching is often required. 

Unlike the R and Rp, the R6 captures 4K movies from the full width of the sensor, preserving the field of view of wide-angle lenses. This is excellent for aurora shooting. 

The R6’s Movie Cropping menu option
A 4K movie of the Moon in full-frame and copped-frame modes, narrated at the camera. Again, this was shot in 4K but WordPress plays back only in HD.
Comparing blow-ups of frame-grabbed stills from a full-frame 4K vs. Cropped frame 4K. The latter is less pixellated.

However, the R6 offers the option of a โ€œMovie Cropโ€ mode. Rather than taking the 4K movie downsampled from the entire sensor, this crop mode records from a central 1:1 sampled area of the sensor. That mode can be useful for high-magnification lunar and planetary imaging, for ensuring no loss of resolution. It worked well, producing videos with less pixelated fine details in test movies of the Moon. 

Though of course I have yet to test it on one, the R6 should be excellent for movies of total solar eclipses. It can shoot 4K up to 60 frames per second in both full frame and cropped frame. It cannot shoot 6K (buy the R3!) or 8K (buy the R5!). 

The R6’s Canon Log settings menu for video files.

Shooting in the R6โ€™s Canon cLog3 profile records internally in 10-bit, preserving more dynamic range in movies, up to 12 stops. During eclipses, that will be a benefit for recording totality, with the vast range of brightness in the Sunโ€™s corona. It should also aid in shooting auroras which can vary over a huge range in brightness. 

Grading a cLog format movie in Final Cut under Camera LUT.

TIP: Processing cLog movies, which look flat out of camera, requires applying a cLog3 Look Up Table, or LUT, to the movie clips in editing, a step called โ€œcolour grading.โ€ This is available from Canon, from third-party vendors or, as it was with my copy of Final Cut Pro, might be already installed in your video editing software. When shooting, turn on View Assist so the preview looks close to what the final graded movie will look like.

EXPOSURE TRACKING IN TIME-LAPSES

In one test, I shot a time-lapse from twilight to darkness with the R6 in Aperture Priority auto-exposure mode, of a fading display of noctilucent clouds. I just let the camera lengthen the shutter speed on its own. It tracked the darkening sky very well, right down to the camera’s maximum exposure time of 30 seconds, using a fish-eye lens at f/2.8. This demonstrated that the light meter in the R6 was sensitive enough to work well in dim light.

Other cameras I have used cannot do this. The meter fails at some point and the exposure stalls at 5 or 6 seconds long, resulting in most frames after that being underexposed. By contrast, the R6 showed excellent performance, negating the need for special bulb ramping intervalometers for some “holy grail” scenes. Here’s the resulting movie.

A time-lapse of 450 frames from 0.4 seconds to 30 seconds, with the R6 in Av mode. Set to 1080P for the best view!
A screenshot from LRTimelapse showing the smoothness of the exposure tracking (the blue line) through the sequence,

In addition, the R6’s exposure meter tracked the darkening sky superbly, with nary a flicker or variation. Again, few cameras can do this. Nikons have an Exposure Smoothing option in their Interval Timers which works well.

The R6 has no such option but doesn’t seem to need it. The exposure did fail at the very end, when the shutter reached its maximum of 30 seconds. If I had the camera on Auto ISO, it might have started to ramp up the ISO to compensate, a test I have yet to try. Even so, this is impressive time-lapse performance in auto-exposure.

MISSING FEATURES

The R6, like the low-end Rp, lacks a top LCD screen for display of camera settings and battery level. In its place we get a traditional Mode dial, which some daytime photographers will prefer. But for astrophotography, a backlit top LCD screen provides useful information during long exposures. 

The R6 top and back of camera view.

Without it, the R6 provides no indication of battery level while a shoot is in progress, for example, during a time-lapse. A top screen is also useful for checking ISO and other settings by looking down at the camera, as is usually the case when itโ€™s on a tripod or telescope. 

The lack of a top screen is an inconvenience for astrophotography. We are forced to rely on looking at the brighter rear screen for all information. It is a flip-out screen, so can be angled up for convenient viewing on a telescope.

The R6’s flip screen, similar to most other new Canon cameras.

The R6 has a remote shutter port for an external intervalometer, or control via a time-lapse motion controller. Thatโ€™s good! 

However, the port is Canonโ€™s low-grade 2.5mm jack. It works, and is a standard connector, but is not as sturdy as the three-pronged N3-style jack used on Canonโ€™s 5D and 6D DSLRs, and on the R3 and R5. Considering the cost of the R6, I would have expected a better, more durable port. The On/Off switch also seems a bit flimsy and easily breakable under hard use. 

The R6’s side ports, including the remote shutter/intervalometer port.

These deficiencies provide the impression of Canon unnecessarily โ€œcheaping outโ€ on the R6. You can forgive them with the Rp, but not with a semi-professional camera like the R6.

INTERVAL TIMER

Unlike the Canon R and Ra (which still mysteriously lack a built-in interval timer, despite firmware updates), the R6 has one in its firmware. Hurray! This can be used to set up a time-lapse sequence, but on exposures only up to the maximum of 30 seconds allowed by the cameraโ€™s shutter speed settings, true of most in-camera intervalometers. 

The Interval Timer menu page.

For 30-second exposures taken in succession as quickly as possible the interval on the R6 has to be set to 34 seconds. The reason is that the 30-second exposure is actually 32 seconds, true of all cameras. With the R6, having a minimum gap in time between shots requires an Interval not of 33 seconds as with some cameras, but 34 seconds. Until you realize this, setting the intervalometer correctly can be confusing. 

Like all Canon cameras, the R6 can be set to take only up to 99 frames, not 999. That seems a dumb deficiency. Almost all time-lapse sequences require at least 200 to 300 frames. What could it possibly take in the firmware to add an extra digit to the menu box? Itโ€™s there at in the Time-lapse Movie function that assembles a movie in camera, but not here where the camera shoots and saves individual frames. Itโ€™s another example where you just canโ€™t fathom Canonโ€™s software decisions.

Setting the Interval Timer for rapid sequence shots with a 30-second exposure.

TIP: If you want to shoot 100 or more frames, set the Number of Frames to 00, so it will shoot until you tell the camera to stop. But awkwardly, Canon says the way to stop an interval shoot is to turn off the camera! Thatโ€™s crude, as doing so can force you to refocus if you are using a Canon RF lens. Switching the Mode dial to Bulb will stop an interval shoot, an undocumented feature. 

BULB TIMER

As with most recent Canon DSLRs and DSLMs, the menu also includes a Bulb Timer. This allows setting an exposure of any length (many minutes or hours) when the camera is in Bulb mode. This is handy for single long shots at night. 

The Bulb Timer menu page. Bulb Timer only becomes an active choice when the camera is on Bulb.

However, it cannot be used in conjunction with the Interval Timer to program a series of multi-minute exposures, a pity. Instead, a separate outboard intervalometer has to be used for taking an automatic set of any exposures longer than 30 seconds, true of all Canons. 

In Bulb and Bulb Timer mode, the R6โ€™s rear screen lights up with a bright Timer readout. While the information is useful, the display is too bright at night and cannot be dimmed, nor turned red for night use, exactly when you are likely to use Bulb. The power-saving Eco mode has no effect on this display, precisely when you would want it to dim or turn off displays to prolong battery life, another odd deficiency in Canonโ€™s firmware. 

The Bulb Timer screen active during a Bulb exposure. At night it is bright!

The Timer display can only be turned off by closing the flip-out screen, but now the viewfinder activates with the same display. Either way, a display is on draining power during long exposures. And the Timer readout lacks any indication of battery level, a vital piece of information during long shoots. The Canon R, R3 and R5, with their top LCD screens, do not have this annoying โ€œfeature.โ€ 

TIP: End a Bulb Timer shoot prematurely by hitting the Shutter button. That feature is documented. 

IN-CAMERA IMAGE STACKING

The R6 offers a menu option present on many recent Canon cameras: Multiple Exposure. The camera can take and internally stack up to 9 images, stacking them by using either Average (best for reducing noise) or Bright mode (best for star trails). An Additive mode also works for star trails, but stacking 9 images requires reducing the exposure of each image by 3 stops, say from ISO 1600 to ISO 200, as I did in the example below. 

The Multiple Exposure menu page.

The result of the internal stacking is a raw file, with the option of also saving the component raws. While the options work very well, in all the cameras Iโ€™ve owned that offer such functions, Iโ€™ve never used them. I prefer to do any stacking needed later at the computer. 

Comparing a single image with a stack of 9 exposures with 3 in-camera stacking methods.

TIP: The in-camera image stacking options are good for beginners wanting to get advanced stacking results with a minimum of processing fuss later. Use Average to stack ground images for smoother noise. Use Bright for stacking sky images for star trails. Activate one of those modes, then control the camera with a separate intervalometer to automatically shoot and internally stack several multi-minute exposures. 

SHUTTER OPERATION

Being a mirrorless camera, there is no reflex mirror to introduce vibration, and so no need for a mirror lockup function. The shutter can operate purely mechanically, with physical metal curtains opening and closing to start and end the exposure. 

However, the default โ€œout of the boxโ€ setting is Electronic First Curtain, where the actual exposure, even when on Bulb, is initiated electronically, but ended by the mechanical shutter. Thatโ€™s good for reducing vibration, perhaps when shooting the Moon or planets through a telescope at high magnification. 

R6 Shutter Mode options.

In Mechanical, the physical curtains both start and end the exposure. Itโ€™s the mode I usually prefer, as I like to hear the reassuring click of the shutter opening. Iโ€™ve never found shutter vibration a problem when shooting deep sky images on a telescope mount of any quality. 

In Mechanical mode the shutter can fire at up to 12 frames a second, or up to 20 frames a second in Electronic mode where both the start and end of the exposure happen without the mechanical shutter. That makes for very quiet operation, good for weddings and golf tournaments! 

Electronic Shutter Mode is for fastest burst rates but has limitations.

Being vibration free, Electronic shutter might be great during total solar eclipses for rapid-fire bursts at second and third contacts when shooting through telescopes. Maximum exposure time is 1/2 second in this mode, more than long enough for capturing fleeting diamond rings.

Longer exposures needed for the corona will require Mechanical or Electronic First Curtain shutter. Combinations of shutter modes, drive rates (single or continuous), and exposure bracketing can all be programmed into the three Custom Function settings (C1, C2 and C3) on the Mode dial, for quick switching at an eclipse. It might not be until April 8, 2024 until I have a chance to test these features. And by then the R6 Mark II will be out! 

TIP: While the R6โ€™s manual doesnโ€™t state it, some reviews mention (including at DPReview) that when the shutter is in fully Electronic mode the R6โ€™s image quality drops from 14-bit to 12-bit, true of most other mirrorless cameras. This reduces dynamic range. I would suggest not using Electronic shutter for most astrophotography, even for exposures under 1/2 second. For longer exposures, itโ€™s a moot point as it cannot be used. 

The menu option that fouls up all astrophotographers using an R-series camera.

TIP: The R6 has the same odd menu item that befuddles many a new R-series owner, found on Camera Settings: Page 4. โ€œRelease Shutter w/o Lensโ€ defaults to OFF, which means the camera will not work if it is attached to a manual lens or telescope it cannot connect to electronically. Turn it ON and all will be solved. This is a troublesome menu option that Canon should eliminate or default to ON. 

OTHER MENU FEATURES

The rear screen is fully touch sensitive, allowing all settings to be changed on-screen if desired, as well as by scrolling with the joystick and scroll wheels. I find going back to an older camera without a touchscreen annoying โ€“ I keep tapping the screen expecting it to do something! 

The Multi-Function Button brings up an array of 5 settings to adjust. This is ISO.

The little Multi-Function (M-Fn) button is a worth getting used to, as it allows quick access to a choice of five important functions such as ISO, drive mode and exposure compensation. However, the ISO, aperture and shutter speed are all changeable by the three scroll wheels. 

The Q button brings up the Quick Menu for displaying and adjusting key functions.

Thereโ€™s also the Quick menu activated by the Q button. While the content of the Quick menu screen canโ€™t be edited, it does contain a good array of useful functions, adjustable with a few taps. 

Under Custom settings, the Dials and Buttons can be re-assigned to other functions.

Unlike Sonys, the R6 has no dedicated Custom buttons per se. However, it does offer a good degree of customization of its buttons, by allowing users to re-assign them to other functions they might find more useful than the defaults. For example โ€ฆ.

This shows the AF Point button being re-assigned to the Maximize Screen Brightness (Temporary) command.
  • Iโ€™ve taken the AF Point button and assigned it to the Maximize Screen Brightness function, to temporarily boost the rear screen to full brightness for ease of framing. 
  • The AE Lock button I assigned to switch the Focus Peaking indicators on and off, to aid manual focusing when needed. 
  • The Depth of Field Preview button I assigned to switching between the rear screen and viewfinder, through that switch does happen automatically as you put your eye to the viewfinder.
  • The Set button I assigned to turning off the Rear Display, though that doesnโ€™t have any effect when the Bulb Timer readout is running, a nuisance. 

While the physical buttons are not illuminated, having a touch screen makes it less necessary to access buttons in the dark. Itโ€™s a pity the conveniently positioned but mostly unused Rate button canโ€™t be re-programmed to more useful functions. Itโ€™s a waste of a button. 

Set up the Screen Info as you like it by turning on and off screen pages and deciding what each should show.

TIP: The shooting screens, accessed by the Info button (one you do need to find in the dark!), can be customized to show a little, a lot, or no information, as you prefer. Take the time to set them up to show just the information you need over a minimum of screen pages. 

LENS AND FILTER COMPATIBILITY

The new wider RF mount accepts only Canon and third-party RF lenses. However, all Canon and third-party EF mount lenses (those made for DSLRs) will fit on RF-mount bodies with the aid of the $100 Canon EF-to-RF lens adapter. 

The Canon ER-to-RF lens adapter will be needed to attach R cameras to most telescope camera adapters and Canon T-rings made for older DSLR cameras.

This adapter will be necessary to attach any Canon R camera to a telescope equipped with a standard Canon T-ring. Thatโ€™s especially true for telescopes with field flatterers where maintaining the standard 55mm distance between the flattener and sensor is critical for optimum optical performance. 

The shallower โ€œflange distanceโ€ between lens and sensor in all mirrorless cameras means an additional adapter is needed not just for the mechanical connection to the new style of lens mount, but also for the correct scope-to-sensor spacing. 

The extra spacing provided by a mirrorless camera has the benefit of allowing a filter drawer to be inserted into the light path. Canon offers a $300 lens adapter with slide-in filters, though the choice of filters useful for astronomy that fit Canonโ€™s adapter is limited. AstroHutech offers a few IDAS nebula filters.

Clip-in filters made for the EOS R, such as those offered by Astronomik, will also fit the R6. Though, again, most narrowband filters will not work well with an unmodified camera.

The AstroHutech adapter allows inserting filters into the light path on telescopes.

TIP: Alternatively, AstroHutech also offers its own lens adapter/filter drawer that goes from a Canon EF mount to the RF mount, and accepts standard 52mm or 48mm filters. It is a great way to add interchangeable filters to any telescope when using an R-series camera, while maintaining the correct back-focus spacing. I use an AstroHutech drawer with my Ra, where the modified camera works very well with narrowband filters. Using such filters with a stock R6 wonโ€™t be as worthwhile, as I showed above. 

A trio of Canon RF zooms โ€” all superb but quite costly.

As of this writing, the selection of third-party lenses for the Canon RF mount is limited, as neither Canon or Nikon have โ€œopened upโ€ their system to other lens makers, unlike Sony with their E-mount system. For example, we have yet to see much-anticipated RF-mount lenses from Sigma, Tamron and Tokina. 

A trio of third party RF lenses โ€” L to R: the TTArtisan 7.5mm f/2 and 11mm f/2.8 fish-eyes and the Samyang/Rokinon AF 85mm f/1.4.

Samyang offers 14mm and 85mm auto-focus RF lenses, but now only under their Rokinon branding. I tested the Samyang RF 85mm f/1.4 here at AstroGearToday

The few third-party lenses that are available, from TTArtisan, Venus Optics and other boutique Chinese lens companies, are usually manual focus lenses with reverse-engineered RF mounts offering no electrical contact with the camera. Some of these wide-angle lenses are quite good and affordable. (I tested the TTArtisan 11mm fish-eye here.)

Until other lens makers are โ€œallowed in,โ€ if you want lenses with auto-focus and camera metadata connections, you almost have to buy Canon. Their RF lenses are superb, surpassing the quality of their older EF-mount equivalents. But they are costly. I sold off a lot of my older lenses and cameras to help pay for the new Canon glass! 

I also have reviews of the superb Canon RF 15-35mm f/2.8, as well as the unique Canon RF 28-70mm f/2 and popular Canon RF 70-200mm f/2.8 lenses (a trio making up the  โ€œholy trinityโ€ of zooms) at AstroGearToday.com.

CONTROL COMPATIBILITY 

Astrophotographers often like to operate their cameras at the telescope using computers running specialized control software. I tested the R6 with two popular Windows programs for controlling DSLR and now mirrorless cameras, BackyardEOS (v3.2.2) and AstroPhotographyTool (v3.88). Both recognized and connected to the R6 via its USB port. 

Both programs recognized the Canon R6.

Another popular option is the ASIair WiFi controller from ZWO. It controls cameras via one of the ASIairโ€™s USB ports, and not (confusingly) through the Airโ€™s remote shutter jack marked DSLR. Under version 1.7 of its mobile app, the ASIair now controls Canon R cameras and connected to the R6 just fine, allowing images to be saved both to the camera and to the Airโ€™s own MicroSD card. 

With an update in 2021, the ZWO ASIair now operates Canon R-series cameras.

The ASIair is an excellent solution for both camera control and autoguiding, with operation via a mobile device that is easier to use and power in the field than a laptop. Iโ€™ve not tried other hardware and software controllers with the R6. 

TIP: While the R6, like many Canon cameras, can be controlled remotely with a smartphone via the CanonConnect mobile app, the connection process is complex and the connection can be unreliable. The Canon app offers no redeeming features for astrophotography, and maintaining the connection via WiFi or Bluetooth consumes battery power. 

A dim red and green aurora from Dinosaur Provincial Park, Alberta, on August 29/30, 2021. This is a stack of 4 exposures for the ground to smooth noise and one exposure for the sky, all 30 seconds at f/2.8 with the Canon 15-35mm RF lens at 25mm and the Canon R6 at ISO 4000.

SUGGESTIONS TO CANON

To summarize, in firmware updates, Canon should:

  • Fix the low-level amp glow. No camera should have amp glow. 
  • Allow either dimming the Timer readout, turning it red, or just turning it off!
  • Add a battery display to the Timer readout. 
  • Expand the Interval Timer to allow up to 999 frames, as in the Time-Lapse Movie. 
  • Allow the Rate button to be re-assigned to more functions.
  • Default the Release Shutter w/o Lens function to ON.
  • Revise the manual to correctly describe how to stop an Interval Timer shoot.
  • Allow programming multiple long exposures by combining Interval and Bulb Timer, or by expanding the shutter speed range to longer than 30 seconds, as some Nikons can do.
The Zodiacal Light in the dawn sky, September 14, 2021, from home in Alberta, with the winter sky rising. This is a stack of 4 x 30-second exposures for the ground to smooth noise, and a single 30-second exposure for the sky, all with the TTArtisan 7.5mm fish-eye lens at f/2 and on the Canon R6 at ISO 1600.

CONCLUSION

The extended red sensitivity of the Canon EOS Ra makes it better suited for deep-sky imaging. But with it now out of production (Canon traditionally never kept its astronomical โ€œaโ€ cameras in production for more than two years), I think the R6 is now Canonโ€™s best camera (mirrorless or DSLR) for all types of astrophotography, both stills and movies. 

However, I cannot say how well it will work when filter-modified by a third-party. But such a modification is necessary only for recording red nebulas in the Milky Way. It is not needed for other celestial targets and forms of astrophotography. 

A composite showing about three dozen Perseid meteors accumulated over 3 hours of time, compressed into one image showing the radiant point of the meteor shower in Perseus. All frames were with the Canon R6 at ISO 6400 and with the TTArtisan 11mm fish-eye lens at f/2.8.

The low noise and ISO invariant sensor of the R6 makes it superb for nightscapes, apart from the nagging amp glow. That glow will also add an annoying edge gradient to deep-sky images, best dealt with when shooting by the use of LENR or dark frames. 

As the image of the Andromeda Galaxy, M31, at the top of the blog attests, with careful processing it is certainly possible to get fine deep-sky images with the R6. 

For low-light movies the R6 is Canonโ€™s answer to the Sony alphas. No other Canon camera can do night sky movies as well as the R6. For me, it was the prime feature that made the R6 the camera of choice to complement the Ra. 

โ€” Alan, September 22, 2021 / ยฉ 2021 Alan Dyer / AmazingSky.com  

Tracks of the Geosats


This short video, below, captures time-lapses of the trails of geostationary satellites through southern Orion. It demonstrates the โ€œcrowded skyโ€ we now have above us.ย 

If you have tried photographing the Orion Nebula and Sword of Orion area with long tracked exposures you have no doubt seen these trails in your photos. Here I shot to purposely capture them in a time-lapse, for demonstration purposes. 

Please note, these are not Starlink satellites. So do not blame Elon Musk for these!ย 

These are the much more established geostationary or โ€œgeosynchronousโ€ satellites that orbit 35,785 kilometres above Earth and so take 24 hours to orbit the planet. As such they remain apparently motionless over the same spot on Earth, allowing fixed dish antennas to aim at them.

(For more about geosats see the Wikipedia page.)

So why are they moving here?

The camera is on a mount that is tracking the sky as it turns from east to west, so the stars are staying still. What would normally be satellites fixed in one spot in the sky (after all, they are called โ€œgeostationaryโ€ for a reason) instead trail into short streaks traveling from west to east (right to left) in the frame. But in reality, it is the stars that are in motion behind the satellites. 

The region of sky in Orion below the Orion Nebula (the object at top) lies south of the line that bisects the sky into northern and southern halves called the โ€œcelestial equator.โ€ Most geostationary satellites also orbit in Earthโ€™s equatorial plane and so appear along a belt near the celestial equator in the sky.ย 

This chart from SkySafari shows the belt of geosats through southern Orion with the satellites identified. The green box is the field of view of the telescope (shown below) that I used to take the time-lapses.

In this video, however, they appear about 5ยฐ to 7ยฐ south of the celestial equator (which runs through the famous Belt of Orion off frame at top). Thatโ€™s because I live north of the equator of the Earth, at a latitude of 51ยฐ north. So parallax makes the geosat belt appears south of the celestial equator in my sky. From a site in the southern hemisphere the geosat belt would appear north of the celestial equator.

Youโ€™ll notice some satellites travelling diagonally โ€” they are not geosats. Youโ€™ll also see some flashing or pulsing satellites โ€” they are likely tumbling objects, perhaps spent rocket boosters.

The satellites are visible because they are high enough to reflect sunlight even in the middle of the night, as the sequences each end about 11:30 to midnight local time.

But in this video the satellites are not flaring โ€” this is their normal brightness. During flare season around the two equinoxes geosats can become bright enough to be seen with the unaided eye. For a video of that phenomenon see my video shot in October 2020, below.ย 


TECH DETAILS FOR “TRACKS OF THE GEOSATS” VIDEO:

The video at top contains time-lapses shot on two nights: January 18 and 20, 2021. Both are made from hundreds of frames taken through a William Optics RedCat astrograph at f/5 with a 250mm focal length. The field of view is 8ยฐ by 5.5ยฐ.ย 

The William Optics RedCat 51mm f/5 astrographic refactor.

Each exposure is 30 seconds long, taken at a one second interval. The camera was a Canon 6D MkII at ISO 3200 on January 18 and ISO 1600 on January 20 in the brighter moonlight that night. 

In the first sequence from January 18 the equatorial mount, an Astro-Physics Mach1, is left to track on its own and is unguided. So the stars wobble back and forth slightly due to periodic error in the mount. The field also drifts north due to slight misalignment on the pole. Clouds pass through the field during the shoot. 

In the second clip from January 20, taken with a quarter Moon lighting the sky, the mount was autoguided, using an MGEN3 auto-guider. So the stars remained better fixed over the 5.5 hours of shooting. A slight glitch appears near the end where I swapped camera batteries, and the camera turned ever so slightly causing the stars to enlarge a bit for a moment. 

LRTimelapse at work processing the second sequence, deflickering some of the oddly exposed frames.

The frames were processed in Adobe Camera Raw and LRTimelapse

TimeLapse DeFlicker at work assembling the video, showing its All Frames + Lighten blend mode for the Accumulating version of clip #2.

I then assembled exported JPGs with TimeLapseDeFlicker, using a 3-frame Lighten blend mode to lengthen the trails. The final version was assembled with TLDFโ€™s All Frames mode (shown above) where every frame gets stacked for an accumulated total, to show the busy sky traffic!ย 

Thanks! 

โ€” Alan, ยฉ 2021 / AmazingSky.comย 

The Rising of the Harvest Moon


On two clear evenings the Harvest Moon rose red and and large over the Alberta prairie.

I present a short music video (linked to below) of time-lapse sequences of the Harvest Moon of 2020 rising. I shot the sequences through a small telescope to zoom in on the Moon’s disk as it rose over the flat horizon of the prairie near where I live. I love being able to see the horizon!

Note the effects of atmospheric refraction squishing the Moon’s disk close to the horizon. The Moon becomes more normal and spherical as it rose higher.

People sometimes think the refraction effect is responsible for making the Full Moon appear large on the horizon, but the atmosphere has nothing to do with it. The effect is strictly an optical illusion. The Moon is no bigger on the horizon than when it is higher in the sky.

The photo below shows a composite of images taken September 30, 2020.

The rising of the nearly Full Moon, the Harvest Moon of 2020, on September 30, from a site near home in Alberta, looking just south of due east this night. Refraction distorts the disk and atmospheric absorption reddens the disk toward the horizon. This is a multiple exposure composite of 6 images with the Canon 6D MkII through the 80mm A&M apo refractor at f/6 without field flattener. Taken as part of a time-lapse sequence with images every 2 seconds. The frames for this blend were taken 2 minutes apart, so selected from every 60 frames out of the sequence. All were at 1/8 second at ISO 100. Images stacked in Photoshop and blended with Lighten mode. The ground comes from the first image.

Note in the image below, from October 1, how much redder the Moon appears. That’s the effect of atmospheric absorption, in this case from dust and smoke in the air dimming and reddening the Moon (the same happens to the rising or setting Sun). At times this evening it looked like the Moon was in a total eclipse.

The Harvest Moon (the Full Moon of October 1, 2020) rising almost due east at the end of a country road in southern Alberta, near home. The horizon was smoky or dusty, so the Moon was very red as it rose, and looking almost like a totally eclipsed Moon. This is a blend of 6 exposures, all 1/2-second with the A&M 80mm f/6 apo refractor (for 480mm focal length) and Canon 6D MkII at ISO 400, taken as part of a 460-frame time-lapse sequence, with shots every 2 seconds. For this composite I choose 6 images at 2-minute intervals, so the Moon rose its own diameter between frames. The ground comes from the first image in the sequence when the lighting was brightest. The Moon rose at 7:35 pm this night, about 30 minutes after sunset. A mild Orton glow effect added to the ground with Luminar 4.

Below is the link to the time-lapse music video on Vimeo. It is in 4K. I used Adobe Camera Raw, Adobe Bridge, and LRTimelapse to process the component images as raw files for the time-lapse sequences, as per tutorials in my Nightscape and Time-Lapse ebook, above.

Thanks for looking! Clear skies!

โ€” Alan / ยฉ 2020 www.amazingsky.com

Ten Tips for Taking Time-Lapses


Selfie at Grasslands National Park

I present my top 10 tips for capturing time-lapses of the moving sky.ย 

If you can take one well-exposed image of a nightscape, you can take 300. Thereโ€™s little extra work required, just your time. But if you have the patience, the result can be an impressive time-lapse movie of the night sky sweeping over a scenic landscape. Itโ€™s that simple.ย 

Or is it?ย 

Here are my tips for taking time-lapses, in a series of โ€œDoโ€™sโ€ and โ€œDonโ€™tsโ€ that Iโ€™ve found effective for ensuring great results.ย 

But before you attempt a time-lapse, be sure you can first capture well-exposed and sharply focused still shots. Shooting hundreds of frames for a time-lapse will be a disappointing waste of your time if all the images are dark and blurry.ย 

For that reason many of my tips apply equally well to shooting still images. But taking time-lapses does require some specialized gear, techniques, planning, and software. First, the equipment.ย 

NOTE: This article appeared originally in Issue #9 of Dark Sky Travels e-magazine.


SELECTING EQUIPMENT

Camera on Tripod
Essential Gear
Time-lapse photography requires just the camera and lens you might already own, but on a solid tripod (a carbon-fibre Manfrotto with an Acratech ball-head is shown here), and with an intervalometer.ย 

TIP 1 โ€” DO: ย Use a solid tripodย 

A lightweight travel tripod that might suffice for still images on the road will likely be insufficient for time-lapses. Not only does the camera have to remain rock steady for the length of the exposure, it has to do so for the length of the entire shoot, which could be several hours. Wind canโ€™t move it, nor any camera handling you might need to do mid-shoot, such as swapping out a battery.ย 

The tripod neednโ€™t be massive. For hiking into scenic sites youโ€™ll want a lightweight but sturdy tripod. While a carbon fibre unit is costly, youโ€™ll appreciate its low weight and good strength every night in the field. Similarly, donโ€™t scrimp on the tripod head.ย 

TIP 2 โ€” DO: ย Use a fast lens

Csmera on Ball Head
The All-Important Lens
A fast lens is especially critical for time-lapses to allow capturing good sky and ground detail in each exposure, as compositing later wonโ€™t be feasible. This is the Sigma 20mm f/1.4 Art lens.

As with nightscape stills, the single best purchase you can make to improve your images of dark sky scenes is not buying a new camera (at least not at first), but buying a fast, wide-angle lens.ย 

Ditch the slow kit zoom and go for at least an f/2.8, if not f/2, lens with 10mm to 24mm focal length. This becomes especially critical for time-lapses, as the fast aperture allows using short shutter speeds, which in turn allows capturing more frames in a given period of time. That makes for a smoother, slower time-lapse, and a shoot you can finish sooner if desired.ย 

TIP 3 โ€” DO: ย Use an intervalometer

3A-Intervalometer-Canon
Canon intervalometer functions

3B-Intervalometer-Nikon
Nikon intervalometer functions

Intervalometer Trio
Automating the Camera
The intervalometer is also key. For cameras without an internal intervalometer (screens from a Canon and a Nikon are shown above), an outboard unit like one of these, is essential. Be sure to get the model that fits your cameraโ€™s remote control jack.

Time-lapses demand the use of an intervalometer to automatically fire the shutter for at least 200 to 300 images for a typical time-lapse. Many cameras have an intervalometer function built into their firmware. The shutter speed is set by using the camera in Manual mode.ย 

Just be aware that a cameraโ€™s 15-second exposure really lasts 16 seconds, while a 30-second shot set in Manual is really a 32-second exposure.ย 

So in setting the interval to provide one second between shots, as I advise below, you have to set the cameraโ€™s internal intervalometer for an interval of 17 seconds (for a shutter speed of 15 seconds) or 33 seconds (for a shutter speed of 30 seconds). Itโ€™s an odd quirk Iโ€™ve found true of every brand of camera I use or have tested.ย 

Alternatively, you can set the camera to Bulb and then use an outboard hardware intervalometer (they sell for $60 on up) to control the exposure and fire the shutter. Test your unit. Its interval might need to be set to only one second, or to the exposure time + one second.ย 

How intervalometers define โ€œIntervalโ€ varies annoyingly from brand to brand. Setting the interval incorrectly can result in every other frame being missed and a ruined sequence.


SETTING YOUR CAMERA

TIP 4 โ€” DONโ€™T: ย Underexpose

4-Histogram Example
Expose to the Right
When shooting, choose settings that will yield a histogram that is not slammed to the left, but is shifted to the right to minimize noise and lift details in the shadows.

As with still images, the best way to beat noise is to give the camera signal. Use a wider aperture, a longer shutter speed, or a higher ISO (or all of the above) to ensure the image is well exposed with a histogram pushed to the right.ย 

If you try to boost the image brightness later in processing youโ€™ll introduce not only the very noise you were trying to avoid, but also odd artifacts in the shadows such as banding and purple discolouration.ย 

With still images we have the option of taking shorter, untrailed images for the sky, and longer exposures for the dark ground to reveal details in the landscape, to composite later. With time-lapses we donโ€™t have that luxury. Each and every frame has to capture the entire scene well.ย 

At dark sky sites, expose for the dark ground as much as you can, even if that makes the sky overly bright. Unless you outright clip the highlights in the Milky Way or in light polluted horizon glows, youโ€™ll be able to recover highlight details later in processing.ย 

After poor focus, underexposure, resulting in overly noisy images, is the single biggest mistake I see beginners make.

TIP 5 โ€” DONโ€™T: ย Worry about 500 or “NPF” Exposure Rules

Milky Way and ISS over Waterton Lakes
Stills from a Sequence
A stack of single frames from a time-lapse sequence can often make a good still image, such as this scene of the Space Station rising over Waterton Lakes National Park. The 30-second exposures were just within the “500 Rule” for the 15mm lens used here, but minor star trailing wonโ€™t be that noticeable in a final movie.

While still images might have to adhere to the โ€œ500 Ruleโ€ or the stricter โ€œNPF Ruleโ€ to avoid star trailing, time-lapses are not so critical. Slight trailing of stars in each frame wonโ€™t be noticeable in the final movie when the stars are moving anyway.ย 

So go for rule-breaking, longer exposures if needed, for example if the aperture needs to be stopped down for increased depth of field and foreground focus. Again, with time-lapses we canโ€™t shoot separate exposures for focus stacking later.ย 

Just be aware that the longer each exposure is, the longer it will take to shoot 300 of them.ย 

Why 300? I find 300 frames is a good number to aim for. When assembled into a movie at 30 frames per second (a typical frame rate) your 300-frame clip will last 10 seconds, a decent length of time in a final movie.ย 

You can use a slower frame rate (24 fps works fine), but below 24 the movie will look jerky unless you employ advanced frame blending techniques. I do that for auroras.

5B-PhotoPills Calculator
PhotoPills Calculator
Apps such as PhotoPills offer handy calculators for juggling exposure time vs. the number of frames to yield the length of the time-lapse shoot.

Bonus Tip

How long it will take to acquire the needed 300 frames will depend on how long each exposure is and the interval between them. An app such as PhotoPills (via its Time lapse function) is handy in the field for calculating exposure time vs. frame count vs. shoot length, and providing a timer to let you know when the shoot is done.ย 

TIP 6 โ€” DO: ย Use short intervals

6A-Intervals-No Gaps

6B-Intervals-Gaps
Mind the Gap!
At night use intervals as short as possible to avoid gaps in time, simulated here (at top) by stacking several time-lapse frames taken at a one-second interval into one image. Using too long an interval, as demonstrated just above, yields gaps in time and jumps in the star motion, simulated here by stacking only every other frame in a sequence.ย 

At night, the interval between exposures should be no more than one or two seconds. By โ€œinterval,โ€ I mean the time between when the shutter closes and when it opens again for the next frame.ย 

Not all intervalometers define โ€œInterval” that way. But itโ€™s what you expect it means. If you use too long an interval then the stars will appear to jump across the sky, ruining the smooth motion you are after.ย 

In practice, intervals of four to five seconds are sometimes needed to accommodate the movement of motorized โ€œmotion controlโ€ devices that turn or slide the camera between each shot. But Iโ€™m not covering the use of those advanced units here. I cover those options and much, much more in 400 pages of tips, techniques and tutorials in my Nightscapes ebook, linked to above.

However, during the day or in twilight, intervals can be, and indeed need to be, much longer than the exposures. Itโ€™s at night with stars in the sky that you want the shutter to be closed as little as possible.ย 

TIP 7 โ€” DO: ย Shoot Raw

7-Camera Raw Comparison
The Power of Raw
Shooting raw, even for time-lapse frames that will eventually be turned into JPGs, allows for maximum control of shadows, highlights, colour balance, and noise reduction. “Before” is what came out of the camera; “After” is with the development settings shown applied in Camera Raw.

This advice also applies to still images where shooting raw files is essential for professional results. But you likely knew that.

However, with time-lapses some cameras offer a mode that will shoot time-lapse frames and assemble them into a movie right in the camera. Donโ€™t use it. It gives you a finished, pre-baked movie with no ability to process each frame later, an essential step for good night time-lapses. And raw files provide the most data to work with.

So even with time-lapses, shoot raw not JPGs.ย 

If you are confident the frames will be used only for a time-lapse, you might choose to shoot in a smaller S-Raw or compressed C-Raw mode, for smaller files, in order to fit more frames onto a card.ย 

But I prefer not to shrink or compress the original raw files in the camera, as some of them might make for an excellent stacked and layered still image where I want the best quality originals (such as for the ISS over Waterton Lakes example above).ย 

To get you through a long field shoot away from your computer buy more and larger memory cards. You donโ€™t need costly, superfast cards for most time-lapse work.ย 


PLANNING AND COMPOSITION

TIP 8 โ€” DO: ย Use planning apps to frameย 

8A-TPE Screen
Planning the Shoot
Apps such as The Photographerโ€™s Ephemeris (shown here set for the authorโ€™s Waterton Lakes site for moonrise) help in planning where the Sun, Moon and Milky Way will be from your site during the shoot.

8B-TPE 3D Demo
Simulating the Shoot
The companion app to The Photographerโ€™s Ephemeris, TPE 3D, shown above in the inset, exactly matches the real scene for the mountain skyline, placement of the Milky Way, and lighting from the rising Moon.ย 

All nightscape photography benefits from using one of the excellent apps we now have to assist us in planning a shoot. They are particularly useful for time-lapses.ย 

Apps such as PhotoPills and The Photographerโ€™s Ephemeris are great. I like the latter as it links to its companion TPE 3D app to preview what the sky and lighting will look like over the actual topographic horizon from your site. You can scrub through time to see the motion of the Milky Way over the scenery. The Augmented Reality “AR” modes of these apps are also useful, but only once you are on site during the day.

For planning a time-lapse at home I always turn to a โ€œplanetariumโ€ program to simulate the motion of the sky (albeit over a generic landscape), with the ability to add in โ€œfield of viewโ€ indicators to show the view your lens will capture.ย 

You can step ahead in time to see how the sky will move across your camera frame during the length of the shoot. Indeed, such simulations help you plan how long the shoot needs to last until, for example, the galactic core or Orion sets.

Planetarium software helps ensure you frame the scene properly, not only for the beginning of the shoot (thatโ€™s easy โ€” you can see that!), but also for the end of the shoot, which you can only predict.ย 

8C-Stellarium Start

8D-Stellarium End
Planetarium Planning
An alternative is to use a planetarium program such as the free Stellarium, shown above, which can display lens fields of view. These scenes show the simulated vs. real images (insets) for the start (top) and end (bottom) of the Waterton Lakes time-lapse with a 35mm lens frame, outlined in red.ย 

To save you from guessing wrong, try the free Stellarium (stellarium.org), or the paid Starry Night (starrynight.com) or SkySafari (skysafariastronomy.com). I use Starry Night.ย 

Bonus Tip

If your shoot will last as long as three hours, do plan to check the battery level and swap batteries before three hours is up. Most cameras, even new mirrorless models, will now last for three hours on a full battery, but likely not any longer. If itโ€™s a cold winter night, expect only one or two hours of life from a single battery.


PROCESSING

TIP 9 โ€” DO: ย Develop one raw frame and apply settings to all

9A-Bridge-Copy

9B-Bridge-Paste
Copy and Paste Settings
Most raw developers or photo library programs (Adobe Bridge is shown here) offer the essential ability to copy settings from one image and paste them onto hundreds of others in a folder, developing all the time-lapse frames in a snap.

Processing the raw files takes the same steps and settings as you would use to process still images.ย 

With time-lapses, however, you have to do all the processing required within your favourite raw developer software. You canโ€™t count on bringing multiple exposures into a layer-based processor such as Photoshop to stack and blend images. That works for a single image, but not for 300.ย 

I use Adobe Camera Raw out of Adobe Bridge to do all my time-lapse processing. But many photographers use Lightroom, which offers all the same settings and non-destructive functions as Adobe Camera Raw.ย 

For those who wish to โ€œavoid Adobeโ€ there are other choices, but for time-lapse work an essential feature is the ability to develop one frame, then copy and paste its settings (or โ€œsyncโ€ settings) to all the other frames in the set.ย 

Not all programs allow that. Affinity Photo does not. Luminar doesnโ€™t do it very well. DxO PhotoLab, ON1 Photo RAW, and the free Raw Therapee, among others, all work fine.ย 

HOW TO ASSEMBLE A TIME-LAPSE

Once you have a set of raws all developed, the usual workflow is to export all those frames out as high-quality JPGs which is what movie assembly programs need. Your raw developing software has to allow batch exporting to JPGs โ€” most do.ย 

9C-Image Processor Screen
Photoshop Batch Export
Raw developers usually have a batch export function. So does Photoshop, via its Image Processor utility, shown here (found under File>Scripts>Image Processor) that can export a folder of raws into JPGs or TIFFs, and re-size them, often needed for final 4K or HD movies.ย 

However, none of the programs above (except Photoshop and Adobeโ€™s After Effects) will create the final movie, whether it be from those JPGs or from the raws.ย 

9D-TLDF Screen
Assembling JPGs
The authorโ€™s favourite assembly program is TimeLapse DeFlicker (TLDF). It can turn a folder of JPGs into movies as large as 8K and with ProRes codecs for the highest quality.

So for assembling the intermediate JPGs into a movie, I often use a low-cost program called TLDF (TimeLapse DeFlicker) available for MacOS and Windows (timelapsedeflicker.com). It offers advanced functions such as deflickering (i.e. smoothing slight frame-to-frame brightness fluctuations) and frame blending (useful to smooth aurora motions or to purposely add star trails).

While there are many choices for time-lapse assembly, I suggest using a program dedicated to the task and not, as many do, a movie editing program. For most sequences, the latter makes assembly unnecessarily difficult and harder to set key parameters such as frame rates.ย 

TIP 10 โ€” DO: ย Try LRTimelapse for more advanced processing

10A-LRT-Bridge Keyframes
Working on Keyframes
The advanced processing program LRTimelapse creates several keyframes through the sequence (seven are shown here in Adobe Bridge) which you develop so each looks its best. During this sequence, the Moon rose changing the lighting toward the end of the shoot (in the last three keyfames).ย 

Get serious about time-lapse shooting and you will want โ€” indeed, you will need โ€” the program LRTimelapse (LRTimelapse.com). A free but limited trial version is available.ย 

This powerful program is for sequences where one setting will not work for all the frames. One size does not fit all.

Instead, LRTimelapse allows you to process a few keyframes throughout a sequence, say at the start, middle, and end. It then interpolates all the settings between those keyframes to automatically process the entire set of images to smooth (or โ€œrampโ€) and deflicker the transitions from frame to frame.ย 

10B-LRT-Final Screen
LRTimelapse Ramping
LRTimelapse reads your developed keyframe data and applies smooth transitions of all settings to each of the raw files between the keyframes. The result is a seamless and smooth final movie. The pink curve shows how the scene brightened at moonrise. The blue diamonds on the yellow line mark the seven keyframes.ย 

This is essential for sequences where the lighting changes during the shoot (say, the Moon rises or sets), and for so-called โ€œholy grails.โ€ Those are advanced sequences that track from daylight or twilight to darkness, or vice versa, over a wide range of camera settings.

However, LRTimelapse works only with Adobe Lightroom or the Adobe Camera Raw/Bridge combination. So for advanced time-lapse work Adobe software is essential.ย 

A Final Bonus Tip

Keep it simple. You might aspire to emulate the advanced sequences you see on the web, where the camera pans and dollies during the movie. I suggest avoiding complex motion control gear at first to concentrate on getting well-exposed time-lapses with just a static camera. That alone is a rewarding achievement.

But before that, first learn to shoot still images successfully. All the settings and skills you need for a great looking still image are needed for a time-lapse. Then move onto capturing the moving sky.ย 

I end with a link to an example music video, shot using the techniques I’ve outlined. Thanks for reading and watching. Clear skies!

The Beauty of the Milky Way from Alan Dyer on Vimeo.


ยฉ 2019 Alan Dyer

Alan Dyer is author of the comprehensive ebook How to Photograph and Process Nightscapes and Time-Lapses. His website is www.amazingsky.comย 

For a channel of his time-lapse movies, music videos, and tutorials on Vimeo see https://vimeo.com/channels/amazingskyย 

 

The Great Transit Expedition of 2019


Blog Title

On November 11, I traveled to the near-flung corners of my backyard to observe the rare transit of Mercury across the Sun.

History is replete with tales of astronomers traveling to the far corners of the Earth to watch dark objects pass in front of the Sun โ€” the Moon in eclipses, and Mercury and Venus in transits.

On November 11, to take in the last transit of Mercury until 2032, I had planned a trip to a location more likely to have clear skies in November than at home. A 3-day drive to southern Arizona was the plan.

But to attend to work and priorities at home I cancelled my plans. Instead, I decided to stay home and take my chances with the Alberta weather, perhaps making a run for it a day’s drive away if needed to chase into clear skies.

Transit of Mercury Selfie with Sun

As it turned out, none of that was necessary. The forecast for clear, if cold, skies held true and we could not have had a finer day for the transit. Even the -20ยฐ C temperatures were no problem, with no wind, and of course sunshine!

Plus being only steps from home and a warming coffee helped!

As it turned out, the site in Arizona I had booked to stay was clouded out for the entire event. So I was happy with my decision!

For my site in Alberta, as for all of western North America, the Sun rose with the transit in progress. But as soon as the Sun cleared the horizon there was Mercury, as a small, if fuzzy, black dot on the Sun.

Low Sun with Mercury in Transit

As the Sun rose the view became sharper, and was remarkable indeed โ€” of a jet black dot of a tiny planet silhouetted on the Sun.

The Transit of Mercury Across the Sun (10 am MST)

I shot through two telescopes, my 4-inch and 5-inch refractors, both equipped with solar filters of course. I viewed through two other telescopes, for white-light and hydrogen-alpha filtered views.

I was able to follow the transit for three hours, for a little more than half the transit, until Mercury exited the Sun just after 11 a.m. MST. The view below is from moments before Mercury’s exit, or “egress.”

The Transit of Mercury Across the Sun (11 am MST)

I shot still frames every 15 seconds with each of the two cameras and telescopes, for a time-lapse, plus I shot real-time videos.

Mercury at Mid-Transit (November 11, 2019)

At this transit Mercury passed closer to the centre of the Sun’s disk than it will for any other transit in the 21st century, making this event all the more remarkable. That point is recorded above, from a shot taken at 8:19 a.m. MST.

Stacking a selection of the time-lapse frames, ones taken 1-minute intervals, produced this composite of the transit, from just before mid-transit until Mercury’s egress.

Transit of Mercury Composite Across the Sun v2

I assembled all the best images and 4K videos together into a movie, which I narrated live at the telescope as the transit was happening. I hope this provides a sense of what it was like to view this rare event.

The Transit of Mercury from Alan Dyer on Vimeo.

We won’t see another until 2032, but not from North America. The next transit of Mercury viewable from here at home is not until 2049! This was likely my last transit, certainly for a while!

Transit of Mercury Trophy Shot

This was my trophy shot! Bagged the transit!

P.S.: For my video of the previous transit of Mercury in May 2016, see my blog post which includes a similar compilation video.

P.P.S.: And for tech details on the images and videos in this blog, please click through to Vimeo and the video description I have there of cameras, scopes, and settings.

Clear skies!

โ€” Alan, November 17, 2019 / ยฉ 2019 Alan Dyer / amazingsky.com

 

The Northern Lights of Yellowknife


Aurora over Prince of Wales Museum, YellowknifeIt was a fabulous week of clear skies and dancing auroras in and around Yellowknife in Canada’s North.

For the second year in a row I traveled due north from home in Alberta to visit Yellowknife, capitol of Canada’s Northwest Territories. At a latitude of 62ยฐ North, Yellowknife lies directly under the auroral oval and so enjoys views of the Northern Lights on almost every clear night.

During my 8-night stay from September 3 to 10 almost every night was clear and filled with auroras.

Somba K’e Park

The Lights can be seen even from within the downtown core, as the opening image shows, taken from the urban Sombe K’e Park looking over Frame Lake and the Prince of Wales Museum.

The Museum is lit with rippling bands of coloured light that emulate the aurora borealis.

Pilot’s Monument

A favourite urban site for viewing the Lights is the Pilot’s Monument lookout in the middle of Yellowknife’s Oldtown district. This panorama sweeps from northeast at left to west at far right, looking mostly south over the downtown core.

This night even the urban lights were not enough to wash out the Lights as they brightened during a brief substorm.

Panorama of the Aurora Dancing over Yellowknife
This is a 300ยฐ panorama of the Northern Lights over Yellowknife, NWT on the night of Sept 6-7, 2019, during a sub-storm outbreak at 12:45 a.m. when the sky went wild with aurora. This is a 9-segment panorama with the 15mm Laowa lens at f/2 and Sony a7III at ISO 800, for 10 seconds each.

Rotary Park

Another good urban site that gets you away from immediate lights is the open spaces of Rotary Park overlooking the houseboats anchored in Yellowknife Bay. This panorama again sweeps from east to west, looking toward to the waxing Moon low in the south.

Again, despite the urban lights and moonlight, the Lights were spectacular.

Aurora Panorama from Rotary Park, Yellowknife
A 240ยฐ panorama of the Northern Lights from the Boardwalk in the urban Rotary Park in Yellowknife, NWT, on Sept 10, 2019. A waxing gibbous Moon is bright to the south and lights the sky and landscape. This is a 7-segment panorama, each segment 8 seconds at f/2 with the Venus Optics 15mm lens and Sony a7III at ISO 1600. Stitched with Adobe Camera Raw.

Prosperous Lake

The main viewing sites for the Northern Lights are down Highway 4, the Ingraham Trail east of the city away from urban lights.. One of the closest stops is a parking lot on the shore of a backwater bay of Prosperous Lake. It’s where many tourist buses stop and unload their passengers, mostly to get their selfies under the Lights.

But with patience you can get your own photos unencumbered by other lights and people, as I show below.

Aurora Tourists at Prosperous Lake (Sept 5-6, 2019)
A group of aurora tourists take their aurora selfies at Prosperous Lake, near Yellowknife, NWT, a popular spot on the Ingraham Trail for aurora watching. This was about 1:15 a.m. MDT. This is a single 5-second exposure with the 20mm Sigma Art lens at f/2 and Nikon D750 at ISO800.

Aurora over Prosperous Lake, Yellowknife (Sept 5-6, 2019)
The Northern Lights over the end of Prosperous Lake, on the Ingraham Trail near Yellowknife, NWT, a popular spot for aurora watching in the area. This is a single 8-second exposure with the Sigma 20mm lens at f/2 and Nikon D750 at ISO 800.

On one of my nights I stopped at Prosperous on the way to sites farther down Ingraham Trail to catch the twilight colours in the stunningly clear sky.

Sunset Twilight at Prosperous Lake
Twilight at Prosperous Lake on the Ingraham Trail, near Yellowknife, NWT, Sept. 7, 2019. The colours are accentuated by volcanic ash in the atmosphere.

Madeline Lake

This small lake and picnic site farther along the Trail serves as a great place to shoot the Lights reflected in the calm waters and looking north. I spent one of my nights at Madeline Lake, a popular spot for local residents to have a campfire under the Lights.

Campfire Under the Aurora #2
Enjoying a campfire on a fine September Saturday night under the brightening Northern Lights, at Madeline Lake on the Ingraham Trail near Yellowknife. This is a single 10-second exposure with the 20mm Sigma lens at f/2 and Nikon D750 at ISO 800.

And it’s popular for tour buses, whose headlights shine out across the lake as they arrive through the night, in this case casting my long shadow across the misty lake.

Selfie Shadow at Madeline Lake with Aurora
A novelty shot of the shadow of me and my tripod projected across a misty Madeline Lake by car headlights from arriving aurora tourists at this popular spot on the Ingraham Trail near Yellowknife. This was September 7, 2019. A single exposure.

Aurora Tourists at Madeline Lake
A group of aurora tourists take in the show at Madeline Lake, on the Ingraham Trail near Yellowknife, NWT, a popular spot for the busloads of visitors being shuttled around each night. The Big Dipper is at centre. This is a single exposure, 6 seconds at ISO 3200 with the Laowa 15mm lens at f/2 and Sony a7III.

However, again with patience it is possible to get clean images of the aurora and its reflections in the lake.

Aurora over Madeline Lake Panorama (Sept 7, 2019)
The Northern Lights in a subtle but colourful display over the still waters of Madeline Lake on the Ingraham Trail near Yellowknife, NWT. This was the night of September 7-8, 2019. This is a 4-segment panorama, each 13 seconds at ISO 1600 with the Venus Optics 15mm lens at f/2 and Sony a7III camera.

The Ramparts

Farther down the Trail is a spot the tour buses will not go to as a visit to the Ramparts waterfall on the Cameron River requires a hike down a wooded trail, in the dark with bears about. Luckily, my astrophoto colleague, amateur astronomer, and local resident Stephen Bedingfield joined me for a superb shoot with us the only ones present at this stunning location.

Photographer at Cameron River Ramparts
Photographer Stephen Bedingfield is shooting the Northern Lights at the Ramparts waterfalls on the Cameron River, September 8, 2019. This is a single 8-second exposure with the Laowa 15mm lens at f/2 and Sony a7III at ISO 3200.

Aurora over Cameron River Ramparts
The Northern Lights over the waterfalls known as the Ramparts on the Cameron River east of Yellowknife, NWT, on September 8, 2019. This is a single exposure of 20 seconds with the 15mm Laowa lens at f/2 and Sony a7III at ISO 1600, blended with two light painted exposures of the same duration but with the water illuminated to make it more white.

The view looking the other way north over the river was equally wonderful. What a place for viewing the Northern Lights!

Aurora over Cameron River with Autumn Colours
The Northern Lights in an arc across the northern sky over the Cameron River, downriver from the Ramparts Falls. This was September 8, 2019 with the trees turning in their fall colours. The Big Dipper at top centre. This is a two-segment panorama, each 25 seconds at f/2 with the Laowa 15mm lens and Sony a7III at ISO 800. Stitched with ACR.

The view from a viewpoint early on the trail down to the Ramparts and overlooking the Cameron River yielded a superb scene with the low Moon and twilight providing the illumination as the Lights kicked up early in the evening.

Aurora over Cameron River in Moonlight
The curtains of an early evening aurora starting to dance in the twilight and with the western sky lit by moonlight from the waxing gibbous Moon low in the sky and off-frame to the right. This is from the Cameron River viewpoint off the Ramparts falls trail on the Ingraham trail near Yellowknife. This is a single 15-second exposure with the 15mm Laowa lens at f/2 and Sony a7III at ISO 1600.

Prelude Lake

A favourite spot is the major camping and boat launch area of Prelude Lake Territorial Park. But to avoid the crowds down by the shoreline, Stephen and I hiked up to the overlook above the lake looking north. A few other ardent photographers joined us. This was another spectacular and perfect night.

Aurora in Twilight over Prelude Lake
An arc of Northern Lights appears in the evening twilight over Prelude Lake near Yellowknife, NWT, on September 9, 2019. This is a single 25-second exposure at f/2 with the Venus Optics 15mm lens and Sony a7III at ISO 800.

September is a superb time to visit as the lakes are still open and the autumn colours make for a good contrast with the sky colours.

The panorama below takes in the Big Dipper at left, Capella at centre, and with the Pleiades and Hyades rising at right of centre.

Auroral Arc in the Twilight at Prelude Lake
The arc of Northern Lights starting a show in the deep twilight over Prelude Lake on the Ingraham Trail near Yellowknife, NWT. This was September 9, 2019. Light from the waxing gibbous Moon behind the camera also illuminates the scene. This is a 5-segment panorama with the 15mm Laowa lens at f/2 and Sony a7III at ISO 800 and all at 25 seconds. Stitched with PTGui, as ACR and Photoshop refused to joint the left segments.

I used the 8mm fish-eye lens to capture the entire sky, the only way you can really take in the whole scene on camera. When the Lights fill the sky you don’t know which way to look or aim your camera!

There are many other scenic spots along the Trail, such as Pontoon Lake, Reid Lake, and Tibbitt Lake at the very end of Ingraham Trail. For images and movies I shot last year at Tibbitt Lake, see my blog post atย Aurora Reflections in Yellowknife.

But in my 8 nights in Yellowknife this year I managed to hit many of the key aurora spots for photography and viewing. I recommend a visit, especially in September before autumn clouds roll in later in the season, and while the lakes are not frozen and nighttime temperatures are mild.

Here’s a 3-minute music video of clips I shot from all these sites showing the motion of the Lights as it appeared to the eye in “real-time,” not sped up or in time-lapse.

The Northern Lights of Yellowknife from Alan Dyer on Vimeo.

It’s in 4K on Vimeo. Enjoy!

I’ve made my bookings for next year in September!

โ€” Alan / October 6, 2019 / ยฉ 2019 AmazingSky.com

 

Testing the MSM Tracker


MSM Test Title

A new low-cost sky tracker promises to simplify not only tracking the sky but also taking time-lapses panning along the horizon. It works but โ€ฆ

If you are an active nightscape photographer chances are your social media feeds have been punctuated with ads for this new low-cost tracker from MoveShootMove.com.ย 

For $200, much less than popular trackers from Sky-Watcher and iOptron, the SiFo unit (as it is labelled) offers the ability track the sky, avoiding any star trails. That alone would make it a bargain, and useful for nightscape and deep-sky photographers.ย 

But it also has a function for panning horizontally, moving incrementally between exposures, thus the Move-Shoot-Move designation. The result is a time-lapse movie that pans along the horizon, but with each frame with the ground sharp, as the camera moves only between exposures, not during them.ย 

 

MSM Polar Aligned Side V1
The Move-Shoot-Move Tracker
The $200 MSM can be polar aligned using the optional laser, shown here, or an optical polar scope to allow to follow the sky. The ball head is user supplied.ย 

Again, for $200 this is an excellent feature lacking in trackers like the Sky-Watcher Star Adventurer or iOptron SkyTracker. The Sky-Watcher Star Adventurer Mini does, however, offer both tracking and “move-shoot-move” time-lapse functions, but at a cost of $300 to $400 U.S., depending on accessories.ย 

All these functions are provided in a unit that is light (weighing 700 grams with a tripod plate and the laser) and compact (taking up less space in your camera bag than most lenses). By comparison, the Star Adventurer Mini weighs 900 grams with the polar scope, while the original larger Star Adventurer is 1.4 kg, double the MSMโ€™s weight.ย 

Note, that the MSMโ€™s advertised weight of 445 grams does not include the laser or a tripod plate, two items you need to use it. So 700 grams is a more realistic figure, still light, but not lighter than the competition by as much as you might be led to believe.ย 

Nevertheless, the MSMโ€™s small size and weight make it attractive for travel, especially for flights to remote sites. Construction is solid and all-metal. This is not a cheap plastic toy.

But does it work? Yes, but with several important caveats that might be a concern for some buyers.ย 

What I Tested

I purchased the Basic Kit B package for $220 U.S., which includes a small case, a laser pointer and bracket for polar alignment (and with a small charger for the laserโ€™s single 3.7-volt battery), and with the camera sync cable needed for time-lapse shooting.ย 

I also purchased the new โ€œbuttonโ€ model, not the older version that used a knob to set various tracking rates.ย 

 

MSM with Canon 6D MkII
MSM Fitted Out
Keep in mind that to use any tracker like the MSM you will need a solid tripod with a head good enough to hold the tracker and camera steady when tipped over when polar aligned, and another ball head on the tracker itself.

The ball head needed to go on top of the tracker is something you supply. The kit does come with two 3/8-inch stud bolts and a 3/8-to1/4-inch bushing adapter, for placing the tracker on tripods in the various mounting configurations I show below.ย 

The first units were labelled as โ€˜SiFo,โ€ but current units now carry the Gauda brand name. Iโ€™ll just call it the MSM.ย 

I purchased the gear from the MSM website, and had my order fulfilled and shipped to me in Canada from China with no problems.ย 

Tracking the Sky in Nightscapes

The attraction is its tracking function, allowing a camera to follow the sky and take exposures longer than any dictated by โ€œ500โ€ or โ€œNPFโ€ Rules to avoid any star trailing.ย 

Exposures can be a minute or more to record much more depth and detail in the Milky Way, though the ground will blur. But blending tracked sky exposures with untracked ground exposures gets around that, and with the MSM itโ€™s easy to turn on and off the tracking motor, something not possible with the low-cost wind-up Mini Track from Omegon.ย 

MSM Polar Aligned Side V2
Mounting on the Side
The MSM is shown in illustrations and instructions mounted by its side panel bolt hole. This works, but produced problems with the gears not meshing well and the MSM not tracking at all for initial exposures.ย 

The illustrations and instructions (in a PDF well-hidden off the MSM Buy page) show the MSM mounted using the 1/4-20 bolt hole on the side of the unit opposite the LED-illuminated control panel. While this seems to be the preferredย  method, in the first unit I tested I found it produced serious mis-tracking problems.ย 

MSM Test (On Side) 1 minute 50mm
50mm Lens Set, Mounted on the Side
A set of five consecutive 1-minute exposures taken with the original SiFo-branded MSM mounted by its side bolt hole showed the MSMโ€™s habit of taking several minutes for the gears to mesh and to begin tracking.ย Tap or click to download full-res version.

With a Canon 6D MkII and 50mm f/1.4 lens (not a particularly heavy combination), the MSMโ€™s gears would not engage and start tracking until after about 5 minutes. The first exposures were useless. This was also the case whenever I moved the camera to a new position to re-frame the scene or sky. Again, the first few minutes produced no or poor tracking until the gears finally engaged.ย 

This would be a problem when taking tracked/untracked sets for nightscapes, as images need to be taken in quick succession. Itโ€™s also just plain annoying.

However, see the UPDATE at the end for the performance of a new Gauda-branded unit that was sent to me.ย 

Sagittarius - Red Enhancer Filter
50mm Nightscape
With patience and persistence you can get well-tracked nightscapes with the MSM. This is a single 1-minute exposure with a 50mm lens. Tap or click to download full-res version.

Mounting Options

The solution was to mount the MSM using the 3/8-inch bolt hole on the back plate of the tracker, using the 1/4-20 adapter ring to allow it to attach to my tripod head. This still allowed me to tip the unit up to polar align it.ย 

MSM Polar Aligned Back V1
Mounting on the Back
Mounting the MSM using its back plate produced more reliable tracking results, though requires swapping mounting bolts and 3/8-1/4-inch adapter rings from the preferred method of mounting the MSM for time-lapse work.ย 

Tracking was now much more consistent, with only the first exposure usually badly trailed. But subsequent exposures all tracked, but with varying degrees of accuracy as I show below.ย 

When used as a tracker, you need to control the cameraโ€™s exposure time with an external intervalometer you supply, to allow setting exposures over 30 seconds long.ย 

The MSM offers a N and S setting, the latter for use in the Southern Hemisphere. A 1/2-speed setting turns the tracker at half the normal sidereal rate, useful for nightscapes as a compromise speed to provide some tracking while minimizing ground blurring.ย 

Polar Alignment

For any tracker to track, its rotation axis has to be aimed at the Celestial Pole, near Polaris in the Northern Hemisphere, and near Sigma Octantis in the Southern Hemisphere.ย 

MSM Tracker with Laser Pointer (Red Light Version)
Polar Aligning on Polaris
The MSMโ€™s bright laser pointer is useful for aiming the tracker at the North Celestial Pole, located about a degree away from Polaris in the direction of Alkaid, the end star in the Handle of the Big Dipper or Plough.ย 

I chose the laser pointer option for this, rather than the polar alignment scope. The laser attaches to the side of the MSM using a small screw-on metal bracket so that it points up along the axis of rotation, the polar axis.ย 

The laser is labeled as a 1mw unit, but it is far brighter than any 1mw Iโ€™ve used. This does make it bright, allowing the beam to show up even when the sky is not dark. The battery is rechargeable and a small charger comes with the laser. Considering the laser is just a $15 option, itโ€™s a bargain.ย But ….


UPDATE ADDED SEPTEMBER 1

Since I published the review, I have had the laser professionally tested, and it measured as having an output of 45 milliwatts. Yet it is labeled as being under 1 milliwatt. This is serious misrepresentation of the specs, done I can only assume to circumvent import restrictions. In Canada it is now illegal to import, own, or use any green laser over 5 milliwatts, a power level that would be sufficient for the intended use of polar aligning. 45mw is outright illegal.ย 


So be warned, use of this laser will be illegal in some areas. And use of any green laser will be illegal close to airports, and outlawed entirely in some jurisdictions such as Australia, a fact the MSM website mentions.ย 

The legal alternative is the optical polar alignment scope. I already have several of those, but my expectation that I could use one I had with the same bracket supplied with the laser were dashed by the fact that the bracketโ€™s hole is too narrow to accept any of the other polar alignment scopes I have, which are all standard items. I you want a polar scope, buy theirs for $70.ย 

However, if you can use it where you live, the laser works well enough, allowing you to aim the tracker at the Pole just by eye. For the wide lenses the tracker is intended to be used with, eyeball alignment proved good enough.

Just be very, very careful not to accidentally look down the beam. Seriously. It is far too easy to do by mistake, but doing so could damage your eye in moments.ย 

Tracking the Sky in Deep-Sky Images

How well does the MSM actually track? In tests of the original SiFo unit I bought, and in sets of exposures with 35mm, 50mm, and 135mm lenses, and with the tracker mounted on the back, I found that 25% to 50% of the images showed mis-tracking. Gear errors still produced slightly trailed stars. This gear error shows itself more as you shoot with longer focal lengths.ย 

MSM Test (On Back) 2 min 35mm
35mm Lens Set, Mounted on the Back
A set of 2-minute exposures with the MSM mounted by its back plate showed better tracking with quicker gear meshing, though still with some frames showing trailing. Tap or click to download full-res version.

The MSM is best for what it is advertised as โ€” as a tracker for nightscapes with forgiving wide-angle lenses in the 14mm to 24mm range. With longer lenses, expect to throw away a good number of exposures as unusable. Take twice as many as you think you might need.

MSM Test (On Back) 1 min 135mm
135mm Telephoto Lens Set
A set of 20 one-minute exposures with a 135mm lens showed more than half with unusable amounts of mis-tracking. But enough worked to be usable! Tap or click to download full-res version.

With a 135mm lens taking Milky Way closeups, more than half the shots were badly trailed. Really badly trailed. This is not from poor polar alignment, which produces a gradual drift of the frame, but from errors in the drive gears, and random errors at that, not periodic errors.ย 

To be fair, this is often the case with other trackers as well. People always want to weight them down with heavy and demanding telephotos for deep-sky portraits, but thatโ€™s rarely a good idea with any tracker. They are best with wide lenses.

That said, I found the MSMโ€™s error rate and amount to be much worse than with other trackers. With the Star Adventurer models and a 135mm lens for example, I can expect only 20% to 25% of the images to be trailed, and even then rarely as badly as what the MSM exhibited.

See the UPDATE at the end for the performance of the replacement Gauda-branded unit sent to me with the promise of much improved tracking accuracy.ย 

The Arrow, Dumbbell, and Coathanger
Sagitta and Area with the 135mm
The result of the above set was a stack of 8 of the best for a fine portrait of the Milky Way area in Sagitta, showing the Dumbbell Nebula and Coathanger asterism. Each sub-frame was 1 minute at f/2 and ISO 1600. Tap or click to download full-res version.

Yes, enough shots worked to be usable, but it took using a fast f/2 lens to keep exposure times down to a minute to provide that yield. Users of slow f/5.6 kit-zoom lenses will struggle trying to take deep-sky images with the MSM.ย 

In short, this is a low-cost tracker and it shows. It does work, but not as well as the higher-cost competitors. But restrict it to wide-angle lenses and youโ€™ll be fine.ย 

Panning the Groundย 

The other mode the MSM can be used in is as a time-lapse motion controller. Here you mount the MSM horizontally so the camera turns parallel to the horizon (or it can be mounted vertically for vertical panning, a mode I rarely use and did not test).ย 

MSM Tracker Taking Time-Lapse in Moonlight
The MSM at Work
I performed all the time-lapse testing from my rural backyard on nights in mid-August 2019 with a waning Moon lighting the sky.ย 

This is where the Move-Shoot-Move function comes in.ย 

The supplied Sync cable goes from the cameraโ€™s flash hot shoe to the MSMโ€™s camera jack. What happens is that when the camera finishes an exposure it sends a pulse to the MSM, which then quickly moves while the shutter is closed by the increment you set.

There is a choice of 4 speeds, marked in degrees-per-move: 0.05ยฐ, 0.2ยฐ, 0.5ยฐ, and 1.0ยฐ. For example, as the movie below shows, taking 360 frames at the 1ยฐ speed results in a complete 360ยฐ turn.

 

MSM Control Panel CU
Time-Lapse Speeds
The control panel offers a choice of N and S rotation directions, a 1/2-speed rate for partially tracked nightscapes, and Move-Shoot-Move rates per move of 0.05ยฐ, 0.2ยฐ, 0.5ยฐ and a very fast 1ยฐ setting.ย The Sync cable plugs into the jack on the MSM. The other jack is for connecting to a motion controlย slider, a function Iย didn’t test.

The MSM does the moving, but all the shutter speed control and intervals must be set using a separate intervalometer, either one built into the camera, or an outboard hardware unit. The MSM does not control the camera shutter. In fact, the camera controls the MSM.

Intervals should be set to be about 2 seconds longer than the shutter speed, to allow the MSM to perform its move and settle.ย 

This connection between the MSM and camera worked very well. It is unconventional, but simple and effective.

MSM Time-Lapse Correct
Mounting for Time-Lapse
The preferred method of mounting the MSM for time-lapses is to do so โ€œupside-downโ€ with its rotating top plate at bottom attached to the tripod. Thus the whole MSM and camera turns, preventing the Sync cable from winding up during a turn.ย 

Too Slow or Too Fast

The issue is the limited choice of move speeds. I found the 0.5ยฐ and 1ยฐ speeds much too fast for night use, except perhaps for special effects in urban cityscapes. Even in daytime use, when exposure times are very short, the results are dizzying, as I show below.ย 

Even the 0.2ยฐ-per-move speed I feel is too fast for most nightscape work. Over the 300 exposures one typically takes for a time-lapse movie, that speed will turn the MSM (300 x 0.2ยฐ) = 60 degrees. Thatโ€™s a lot of motion for 300 shots, which will usually be rendered out at 24 or 30 frames per second for a clip that lasts 10 to 12 seconds. The scene will turn a lot in that time.

On the other hand, the 0.05ยฐ-per-move setting is rather slow, producing a turn of (300 x 0.05ยฐ) = 15ยฐ during the 300 shots.ย 

That works, but with all the motion controllers Iโ€™ve used โ€” units that can run at whatever speed they need to get from the start point to the end point you set โ€” I find a rate of about 0.1ยฐ per move is what works best for a movie that provides the right amount of motion. Not too slow. Not too fast. Just right.ย 

MSM Time-Lapse Correct CU
Inverted Control Panel
When mounted as recommended for time-lapses, the control panel does end up upside-down.ย 


UPDATE ADDED DECEMBER 21, 2019

From product photos on the MoveShootMove.com website now it appears that the tracker is now labeled MSM, as it should have been all along.

Most critically, perhaps in response to this review and my comments here, the time-lapse speeds have been changed to 0.05, 0.075, 0.1 and 0.125 degrees per move, adding the 0.1ยฐ/move speed I requested below and deleting the overly fast 0.5ยฐ and 1.0ยฐ speeds.

Plus it appears the new units have the panel labels printed the other way around so they are not upside down for most mounting situations.

I have not tested this new version, but these speeds sound much more usable for panning time-lapses. Bravo to MSM for listening!ย 

MSM Rotator 2019


Following the Sky in a Time-Lapse

The additional complication is trying to get the MSM to also turn at the right rate to follow the sky โ€” for example, to keep the galaxy core in frame during the time-lapse clip. I think doing so produces one of the most effective time-lapse sequences.ย 

But to do that with any device requires turning at a rate of 15ยฐ per hour, the rate the sky moves from east to west.

Because the MSM provides only set fixed speeds, the only way you have of controlling how much it moves over a given amount of time, such as an hour, is to vary the shutter speed.ย 

I found that to get the MSM to follow the Milky Way in a time-lapse using the 0.05ยฐ rate and shooting 300 frames required shooting at a shutter speed of 12 seconds. No more, no less.ย 

MSM Time-Lapse Top Plate
Top Plate Display
When mounted โ€œupside-downโ€ for a time-lapse the top surface provides the N-S direction arrows (N movesย clockwise) and a small, handy bubble level.

Do the Math

Where does that number come from?ย 

At its rate of 0.05ยฐ/move, the MSM will turn 15ยฐ over 300 shots. The sky moves 15ยฐ in one hour, or 3600 seconds. So to fit 300 shots into 3600 seconds means each shot has to be no longer than (3600/300) = 12 seconds long.ย 

The result works, as I show in the sampler movie.ย 

But 12 seconds is a rather short shutter speed on a dark, moonless night with the Milky Way.ย 

For properly exposed images you would need to shoot at very fast apertures (f/1.4 to f/2) and/or high and noisy ISO speeds. Neither are optimal. But they are forced upon you by the MSMโ€™s restricted rates.ย 

Using the faster 0.2ยฐ rate (of the original model) yields a turn of 60ยฐ over 300 shots. Thatโ€™s four hours of sky motion. So each exposure now has to be 48 seconds long for the camera to follow the sky, four times longer because the drive rate is now four times faster.ย 

A shutter speed of 48 seconds is a little too long in my opinion. Stars in each frame will trail. Plus a turn of 60ยฐ over 300 shots is quite a lot, producing a movie that turns too quickly.ย 

MSM Time-Lapse Inverted
Alternative Time-Lapse Configuration
The other option is to mount the MSM so the control panel is right-side-up and the top turn-table (the part that turns and that the camera is attached to) is on top. Now only the camera turns; the MSM does not. This works but the Sync cable can wrap around and bind in long turns. For short turns of 30ยฐ to 60ยฐ it is fine.ย 

By far the best speed for motion control time-lapses would be 0.1ยฐ per move. That would allow 24-second exposures to follow the sky, allowing a stop less in aperture or ISO speed.ย  (DECEMBER 21 UPDATE:ย That speed seems to now be offered.)

Yes, having only a limited number of pre-wired speeds does make the MSM much easier to program than devices like the Star Adventurer Mini or SYRP Genie Mini that use wireless apps to set their functions. No question, the MSM is better suited to beginners who donโ€™t want to fuss with lots of parameters.ย 

As it is, getting a decent result requires some math and juggling of camera settings to make up for the MSMโ€™s limited choices of speeds.ย 

Time-Lapse Movie Examples

This compilation shows examples of daytime time-lapses taken at the fastest and dizzying 0.5ยฐ and 1.0ยฐ speeds, and night time-lapses taken at the slower speeds. The final clip is taken at 0.05ยฐ/move and with 12-second exposures, a combination that allowed the camera to nicely follow the Milky Way, albeit at a slow pace. Taking more than the 300 frames used here would have produced a clip that turned at the same rate, but lasted longer.ย 

Battery Life

The MSM is powered off an internal rechargeable battery, which can be charged from any 5-volt charger you have from a mobile phone.ย 

The MSM uses a USB-C jack for the power cable, but a USB-A to USB-C cord is supplied, handy as you might not have one if you donโ€™t have other USB-C devices.ย 

The battery lasted for half a dozen or more 300-shot time-lapses, enough to get you through at least 2 or 3 nights of shooting. However, my testing was done on warm summer nights. In winter battery life will be less.ย 

While the built-in battery is handy, in the field should you find battery level low (the N and S switches blink as a warning) you canโ€™t just swap in fresh batteries. Just remember to charge up before heading out. Alternatively, it can be charged from an external 5V battery pack such as used to prolong cell phone life.ย 

Hercules and Corona Borealis (50mm 6D)
The constellations of Hercules and Corona Borealis in the northern spring and summer sky. This is a stack of 3 x 2-minute exposures with the 50mm Sigma lens at f/2.8 and Canon 6D at ISO 800, plus an additional 2 min exposure through the Kenko Softon filter to add the star glows. All tracked on the original MSM SiFo Tracker from China. Tap or click to download full-res version.

Other Caveats

The MSM does not offer, nor does it promise, any form of automated panorama shooting. This is where the device turns by, say, 15ยฐ to 45ยฐ between shots, to shoot the segments for a still-image panorama. More sophisticated motion controllers from SYRP and Edelkrone offer that function, including the ability to mate two devices for automated multi-tier panoramas.ย 

Nor does the MSM offer the more advanced option of ramping speeds up and down at the start and end of a time-lapse. It moves at a constant rate throughout.ย 

While some of the shortcomings could perhaps be fixed with a firmware update, there is no indication anywhere that its internal firmware can be updated through the USB-C port.ย 

MSM Polar Aligned On Back


UPDATE ADDED OCTOBER 7, 2019

Since I published the review, MSM saw the initial test results and admitted that the earlier units like mine (ordered in June) exhibited large amounts of tracking error. They sent me a replacement unit, now branded with the Gauda label. According to MSM it contains a more powerful motor promised to improve tracking accuracy and making it possible to take images with lenses as long as 135mm.

I’m sorry to report it didn’t.

MSM Gauda-135mm Back-NE
This shows 300% blow-ups of a star field rising in the northeast sky taken with the new Gauda unit and with a 135mm lens, each for 2 minutes in quick succession. Less than 50% of the frames were useable and untrailed. (The first frames were shot through high clouds.)

MSM Gauda-135mm Back-Zenith
Taken the same night as the previous set, this shows 24 shots taken in quick succession with the same 135mm lens for 2 minutes each but with the camera aimed overhead to the zenith. None of the images were usable. All were trailed, most very badly.

In tests with the 135mm lens the new, improved MSM still showed lots of tracking error, to the point that images taken with a lens as long as this were mostly unusable.

Tap or click on the images to download full-res versions.

The short movie above takes the full-frame images from the zenith set of 24 frames taken over 48 minutes and turns them into a little time-lapse. It shows how the mechanism of the MSM seems to be wobbling the camera around in a circle, creating the mis-tracking.

Comparison with the Star Adventurer

As a comparison, the next night I used a Sky-Watcher Star Adventurer (the full-size model not the Mini) to shoot the same fields in the northeast and overhead with the same 135mm lens and with the same ball-head, to ensure the ball-head was not at fault. Here are the results:

Star Adventurer-135mm-NE
The same field looking northeast, with 300% blow-ups of 2-minute exposures with the 135mm lens and Star Adventurer tracker. As is usual with this unit, about 20% of the frames show mis-tracking, but none as badly as the MSM.

Star Adventurer-135mm-Zenith
Aiming the camera to the zenith the Star Adventurer again showed a good success rate with a slightly greater percentage trailed, but again, none as badly as the MSM.

The Star Adventurer performed much better. Most images were well-tracked. Even on those frames that showed trailing, it was slight. The Star Adventurer is a unit you can use to take close-ups of deep-sky fields with telephoto lenses, if that’s your desire.

By contrast, the MSM is best used โ€” indeed, I feel can only be used practically โ€” with wide-angle lenses and with exposures under 2 minutes. Here’s a set taken with a 35mm lens, each for 2 minutes.

MSM Gauda-35mm Side-NE
This is a set of consecutive 2-minute exposures with a 35mm lens and Canon 6D MkII on the MSM tracker, with the tracker mounted using the side 1/4-20 bolt hole. It was aimed to the northeast. About half the images showed significant trailing.

With the more forgiving 35mm lens, while more images worked, the success rate was still only 50%.

What I did not see with the new Gauda unit was the 5-minute delay before the gears meshed and tracking began. That issue has been resolved by the new, more powerful motor. The new Gauda model does start tracking right away.

But it is still prone to significant enough drive errors that stars are often trailed even with a 35mm lens (this was on a full-frame Canon 6D MkII).


UPDATED CONCLUSIONS (December 21, 2019)

The MSM tracker is low-cost, well-built, and compact for easy packing and travel. It performs its advertised functions well enough to allow users to get results, either tracked images of the Milky Way and constellations, or simple motion-control time-lapses.ย 

But it is best used โ€” indeed I would suggest can only be used โ€” with wide-angle lenses for tracked Milky Way nightscapes. Even then, take more shots than you think you need to be sure enough are well-tracked and usable.ย 

It can also be used for simple motion-control time-lapses, provided you do to the math to get it to turn by the amount you want, working around the too-slow or too-fast speeds. The new 0.1ยฐ per move speed (added in models as of December 2019) seems a reasonable rate for most time-lapses.ย 

However, I thinkย aspiring time-lapse photographers will soonย outgrow the MSM’s limitations for motion-control sequences. But it can get you started.ย 

If you really value its compactness and your budget is tight, the MSM will serve you well enough for tracked nightscape shooting with wide-angle lenses.

But if you wish to take close-ups of starfields and deep-sky objects with longer lenses, consider a unit like the Sky-Watcher Star Adventurer for its lower tracking errors.ย Or the Star Adventurer Mini for its better motion-control time-lapse functions.ย 

โ€” Alan Dyer / August 22, 2019 / UPDATED October 7, 2019 / ยฉ 2019 AmazingSky.com

 

Testing the Nikon Z6 for Astrophotography


Nikon Z Title

I put the new Nikon Z6 mirrorless camera through its paces for astrophotography.ย 

Following Sonyโ€™s lead, in late 2018 both Nikon and Canon released their entries to the full-frame mirrorless camera market.ย 

Here I review one of Nikonโ€™s new mirrorless models, the Z6, tested solely with astrophotography in mind. I did not test any of the auto-exposure, auto-focus, image stabilization, nor rapid-fire continuous mode features.ย 

For full specs and details on the Z-series cameras see Nikon USAโ€™s website.

Sony a7III vs Nikon Z6 copy

In my testing I compared the Nikon Z6 (at right above) to two competitive cameras, the relatively new Sony a7III mirrorless (at left above) and 2015-vintage Nikon D750 DSLR.

All three are โ€œentry-levelโ€ full-frame cameras, with 24 megapixels and in a similar $2,000 price league, though the older D750 now often sells at a considerable discount.


Disclosure

I should state at the outset that my conclusions are based on tests conducted over only three weeks in mid-winter 2019 while I had the camera on loan from Nikon Canada’s marketing company.ย 

I don’t own the camera and didn’t have many moonless nights during the loan period to capture a lot of “beauty” shots under the stars with the Z6.

Auroral Arc (January 10, 2019)
An arc of the auroral oval across the northern horizon on the night of January 10-11, 2019. With the Sigma 14mm lens and Nikon Z6 for testing.

However, I think my testing was sufficient to reveal the camera’s main traits of interest โ€” as well as deficiencies it might have โ€” for astrophotography.

I should also point out that I do not participate in โ€œaffiliate links,โ€ so I have no financial motivation to prompt you to buy gear from merchants.ย 

But if you buy my ebook (at right), which features reams of sections on camera and time-lapse gear, I would be very pleased!ย 


TL;DR Conclusions

In short โ€” I found the Nikon Z6 superb for astrophotography.ย 

Nikon Z6 Screens copy

Summary:

โ€ขย It offers as low a noise level as youโ€™ll find in a 24-megapixel full-frame camera, though its noise was not significantly lower than the competitive Sony a7III, nor even the older Nikon D750.ย 

โ€ขย The Z6โ€™s ISO-invariant sensor proved excellent when dealing with the dark underexposed shadows typical of Milky Way nightscapes.

โ€ขย The Live View was bright and easy to enhance to even brighter levels using the Movie mode to aid in framing nightscapes.ย 

โ€ขย When shooting deep-sky images through telescopes using long exposures, the Z6 did not exhibit any odd image artifacts such as edge vignetting or amplifier glows, unlike the Sony a7III. See my review of that camera in my blog from 2018.ย 

Recommendations:ย 

โ€ขย Current owners of Nikon cropped-frame cameras wanting to upgrade to full-frame would do well to consider a Z6 over any current Nikon DSLR.ย 

โ€ขย Anyone wanting a full-frame camera for astrophotography and happy to โ€œgo Nikonโ€ will find the Z6 nearly perfect for their needs.ย 


Nikon Z6 vs. Z7

Nikon Front View copy

I opted to test the Z6 over the more expensive Z7, as the 24-megapixel Z6 has 6-micron pixels resulting in lower noise (according to independent tests) than the 46 megapixel Z7 with its 4.4 micron pixels.ย 

In astrophotography, I feel low noise is critical, with 24-megapixel cameras hitting a sweet spot of noise vs. resolution.

However, if the higher resolution of the Z7 is important for your daytime photography needs, then Iโ€™m sure it will work well at night. The Nikon D850 DSLR, with a sensor similar to the Z7, has been proven by others to be a good astrophotography camera, albeit with higher noise than the lesser megapixel Nikons such as the D750 and Z6.

NOTE: Tap or click on images to download and display them full screen for closer inspection.


High ISO Noise

Comparison - Noise at 3 ISOs
The three 24-megapixel cameras compared at three high ISO levels in a close-up of a dark-sky nightscape.

To test noise in a real-world situation, I shot a dark nightscape scene with the three cameras, using a 24mm Sigma Art lens on the two Nikons, and a 24mm Canon lens on the Sony via a MetaBones adapter. I shot at ISOs from 800 to 12,800, typical of what we use in nightscapes and deep-sky images.ย 

The comparison set above shows performance at the higher ISOs of 3200 to 12,800. I saw very little difference among the trio, with the Nikon Z6 very similar to the Sony a7III, and with the four-year-old Nikon D750 holding up very well against the two new cameras.ย 

The comparison below shows the three cameras on another night and at ISO 3200.

Noise at 3200-3 Cameras
The three cameras compared for noise at properly exposed moonlit scenes at ISO 3200, a typical nightscape setting.

Both the Nikon Z6 and Sony a7III use a backside illuminated or “BSI” sensor, which in theory is promises to provide lower noise than a conventional CMOS sensor used in an older camera such as the D750.ย 

In practice I didnโ€™t see a marked difference, certainly not as much as the one- or even 1/2-stop improvement in noise I might have expected or hoped for.

Nevertheless, the Nikon Z6 provides as low a noise level as youโ€™ll find in a camera offering 24 megapixels, and will perform very well for all forms of astrophotography.ย 


ISO Invariance

Comparison - ISO Invariancy
The three cameras compared for ISO invariance at 0EV (well exposed) and -5EV (5 stops underexposed then brightened in processing).

Nikon and Sony both employ an โ€œISO-invariantโ€ signal flow in their sensor design. You can purposely underexpose by shooting at a lower ISO, then boost the exposure later โ€œin postโ€ and end up with a result similar to an image shot at a high ISO to begin with in the camera.ย 

I find this feature proves its worth when shooting Milky Way nightscapes that often have well-exposed skies but dark foregrounds lit only by starlight. Boosting the brightness of the landscape when developing the raw files reveals details in the scene without unduly introducing noise, banding, or other artifacts such as magenta tints.ย 

Thatโ€™s not true of โ€œISO variantโ€ sensors, such as in most Canon cameras. Such sensors are far less tolerant of underexposure and are prone to noise, banding, and discolouration in the brightened shadows.

See my test of the Canon 6D MkII for its performance under the differing demands of nightscape photography andย deep-sky imaging.

To test the Z6โ€™s ISO invariance (as shown above) I shot a dark nightscape at ISO 3200 for a properly exposed scene, and also at ISO 100 for an image underexposed by a massive 5 stops. I then boosted that image by 5 stops in exposure in Adobe Camera Raw. Thatโ€™s an extreme case to be sure.ย 

I found the Z6 provided very good ISO invariant performance, though with more chrominance specking than the Sony a7III and Nikon D750 at -5 EV.

Below is a less severe test, showing the Z6 properly exposed on a moonlit night and at 1 to 4 EV steps underexposed, then brightened in processing. Even the -4 EV image looks very good.

Comparison-ISO Invariancy in Moonlight
This series taken under moonlight shows that even images underexposed by -4 EV in ISO and boosted later by +4 EV in processing look similar for noise and image quality as an image properly exposed in the camera (at ISO 800 here).

In my testing, even with frames underexposed by -5 EV, I did not see any of the banding effects (due to the phase-detect auto-focus pixels) reported by others.ย 

As such, I judge the Z6 to be an excellent camera for nightscape shooting when we often want to extract detail in the shadows or dark foregrounds.ย 


Compressed vs. Uncompressed / Raw Large vs. Smallย 

Comparison - Z6 Large vs Medium RAW
Comparing Z6 images shot at full resolution and at Medium Raw size. to show resolution and noise differences.

The Z6, as do many Nikons, offers a choice of shooting 12-bit or 14-bit raws, and either compressed or uncompressed.ย 

I shot all my test images as 14-bit uncompressed raws, yielding 46 megabyte files with a resolution of 6048 x 4024 pixels. So I cannot comment on how good 12-bit compressed files are compared to what I shot. Astrophotography demands the best original data.ย 

Z6 Menu - Raw Formats

However, as the menu above shows, Nikon now also offers the option of shooting smaller raw sizes. The Medium Raw setting produces an image 4528 x 3016 pixels and a 18 megabyte file (in the files I shot), but with all the benefits of raw files in processing.

Nikon with Card Slot copy
The Z cameras use the XQD style memory cards and in a single card slot. The fast XQDs are ideal for recording 4K movies at high data rates but are more costly than the more common SD cards.

The Medium Raw option might be attractive when shooting time-lapses, where you might need to fit as many frames onto the single XQD card as possible, yet still have images large enough for final 4K movies.ย 

However, comparing a Large Raw to a Medium Raw did show a loss of resolution, as expected, with little gain in noise reduction.ย 

This is not like โ€œbinning pixelsโ€ in CCD cameras to increase signal-to-noise ratio. I prefer to never throw away information in the camera, to allow the option of creating the best quality still images from time-lapse frames later.ย 

Nevertheless, itโ€™s nice to see Nikon now offer this option on new models, a feature which has long been on Canon cameras.ย 


Star Image Quality

Orion Nebula, M42 and M43, with Nikon Z6
The Orion Nebula with the Nikon Z6

The Orion Nebula in Moonlight
The Orion Nebula with the Nikon D750

Above is the Orion Nebula with the D750 and with the Z6, both shot in moonlightย with the same 105mmย refractor telescope.

I did not find any evidence for โ€œstar-eatingโ€ that Sony mirrorless cameras have been accused of. (However, I did not find the Sony a7III guilty of eating stars either.) Star images looked as good in the Z6 as in the D750.ย 

M42 Blow-up in ACR
A single Orion Nebula image with the Z6 in a 600% blow-up in Adobe Camera Raw, showing clean artifact-free star images with good, natural colours.

Raw developers (Adobe, DxO, ON1, and others) decoded the Z6โ€™s Bayer-array NEF files fine, with no artifacts such as oddly-coloured or misshapen stars, which can arise in cameras lacking an anti-alias filter.ย 


LENR Dark framesย 

Z6 Dark Frame- No LENR
A blank long exposure with no LENR applied – click or tap to open the image full screen

Z6 Dark Frame-With LENR
A blank long exposure with LENR – tap or click to open the image full screen

Above, 8-minute exposures of nothing, taken with the lens cap on at room temperature:ย without LENR, andย with LENR, both boosted a lot in brightness and contrast toย exaggerate the visibility of any thermal noise. These show the reduction in noise speckling with LENR activated, and the clean result with the Z6. At small size you’llย likely see nothing butย black!

For deep-sky imaging a common practice is to shoot โ€œdark frames,โ€ images recording just the thermal noise that can then be subtracted from the image.ย 

The Long Exposure Noise Reduction feature offered by all cameras performs this dark frame subtraction internally and automatically by the camera for any exposures over one second long.ย 

I tested the Z6โ€™s LENR and found it worked well, doing the job to effectively reduce thermal noise (hot pixels) without adding any other artifacts.ย 

Z6 iMenu Screen
The rear screen “i” menu as I had it customized for my testing, with functions for astrophotography such as LENR assigned to the 12 boxes.

NOTE:

Some astrophotographers dismiss LENR and never use it. By contrast, I prefer to use LENR to do dark frame subtraction. Why? Through many comparison tests over the years I have found that separate dark frames taken later at night rarely do as good a job as LENR darks, because those separate darks are taken when the sensor temperature, and therefore the noise levels, are different than they were for the โ€œlightโ€ frames.ย 

I’ve found that dark frames taken later, then subtracted โ€œin postโ€ inevitably show less or little effect compared to images taken with LENR darks. Or worse, they add a myriad of pock-mark black specks to the image, adding noise and making the image look worse.

The benefit of LENR is lower noise. The penalty of LENR is that each image takes twice as long to shoot โ€” the length of the exposure + the length of the dark frame. Because โ€ฆ


As Expected on the Z6 โ€ฆ Thereโ€™s no LENR Dark Frame Buffer

Only Canon full-frame cameras offer this little known but wonderful feature for astrophotography. Turn on LENR and it is possible to shoot three (with the Canon 6D MkII) or four (with the Canon 6D) raw images in quick succession even with LENR turned on. The Canon 5D series also has this feature.ย 

The single dark frame kicks in and locks up the camera only after the series of โ€œlight framesโ€ are taken. This is excellent for taking a set of noise-reduced deep-sky images for later stacking without need for further โ€œimage calibration.โ€ย 

No Nikon has this dark frame buffer, not even the โ€œastronomicalโ€ D810a. And not the Z6.

ANOTHER NOTE:ย 

I have to mention this every time I describe Canonโ€™s dark frame buffer: It works only on full-frame Canons, and thereโ€™s no menu function to activate it. Just turn on LENR, fire the shutter, and when the first exposure is complete fire the shutter again. Then again for a third, and perhaps a fourth exposure. Only then does the LENR dark frame lock up the camera as โ€œBusyโ€ and prevent more exposures. That single dark frame gets applied to each of the previous โ€œlightโ€ frames, greatly reducingย the time it takes to shoot a set of dark-frameย subtracted images.ย 

But do note that Canon’s dark frame buffer will not work if…:

a) You leave Live View on. Don’t do that for any long exposure shooting.

b) You control the camera through the USB port via external software. It works only when controlling the camera via its internal intervalometer or via the shutter port using a hardware intervalometer.


Sensor Illuminationย 

M35 with Z6 & Traveler (4 Minutes)
A single 4-minute exposure of Messier 35 in moonlight at ISO 400 with the Z6 and 105mm apo refractor, with no flat fielding or lens correction applied, showing the clean edges and lack of amp glows. The darkening of the corners is inherent in the telescope optical system and is not from the camera.

With DSLRs deep-sky images shot through telescopes, then boosted for contrast in processing, usually exhibit a darkening along the bottom of the frame. This is caused by the upraised mirror shadowing the sensor slightly, an effect never noticed in normal photography.ย 

Mirrorless cameras should be free of this mirror box shadowing. The Sony a7III, however, still exhibits some edge shadows due to an odd metal mask in front of the sensor. It shouldnโ€™t be there and its edge darkening is a pain to eliminate in the final processing.ย 

As I show in my review of the a7III, the Sony also exhibits a purple edge glow in long-exposure deep-sky images, from an internal light source. Thatโ€™s a serious detriment to its use in deep-sky imaging.

Happily, the Z6 proved to be free of any such artifacts. Images are clean and evenly illuminated to the edges, as they should be. I saw no amp glows or other oddities that can show up under astrophotography use. The Z6 can produce superb deep-sky images.ย 


Red Sensitivity

M97 with Z6 & Traveler (4 Minutes)
Messer 97 planetary nebula and Messier 108 galaxy in a lightly processed single 4-minute exposure at ISO 1600 with the 105mm refractor, again showing a clean field. The glow at top right is from a Big Dipper star just off the edge of the field.

During my short test period, I was not able to shoot red nebulas under moonless conditions. So I canโ€™t say how well the Z6 performs for recording H-alpha regions compared to other โ€œstockโ€ cameras.ย 

However, I would not expect it to be any better, nor worse, than the competitors. Indeed, the stock Nikon D750 I have does a decent job at picking up red nebulas, though nowhere near as well as Nikonโ€™s sadly discontinued D180a. See my blog post from 2015 for an example shot with that camera.ย 

With the D810a gone, if it is deep red nebulosity you are after with a Nikon, then consider buying a filter-modified Z6 or having yours modified.ย 

Both LifePixel and Spencerโ€™s Cameraย offer to modify the Z6 and Z7 models. However, I have not used either of their services, so cannot vouch for them first hand.ย 


Live View Focusing and Framingย 

Z6 Live View Screen
An image of the back of the camera with a scene under moonlight, with the Z6 set to the highest ISO speed in the movie mode, to aid framing the scene at night.

For all astrophotography manually focusing with Live View is essential.ย And with mirrorless cameras there is no optical viewfinder to look through to frame scenes. You are dependent on the liveย electronic image (on the rear LCD screen or in the eye-level electronic viewfinder, or EVF) for seeing anything.

Thankfully, the Z6 presents a bright Live View image making it easy to frame, find, and focus on stars. Maximum zoom for precise focusing is 15x, good but not as good as the D750โ€™s 20x zoom level, but better than Canonโ€™s 10x maximum zoom in Live View.ย 

The Z6 lacks the a7IIIโ€™s wonderful Bright Monitoring function that temporarily ups the ISO to an extreme level, making it much easier to frame a dark night scene. However, something similar can be achieved with the Z6 by switching it temporarily to Movie mode, and having the ISO set to an extreme level.

As with most Nikons (and unlike Sonys), the Z6 remembers separate settings for the still and movie modes, making it easy to switch back and forth, in this case for a temporarily brightened Live View image to aid framing.ย 

Thatโ€™s very handy, and the Z6 works better than the D750 in this regard, providing a brighter Live View image, even with the D750โ€™s well-hidden Exposure Preview option turned on.ย 


Video Capabilityย 

Comparison - Movie Noise Levels
Comparing the three cameras using 1/25-second still frames grabbed from moonlit night movies (HD with the D750 and 4K with the Z6 and a7III) shot at ISO 51200, plus a similarly exposed frame from the a7III shot with a shutter speed of only 1/4 second allowing the slower ISO of 8000.

Where the Z6 pulls far ahead of the otherwise similar D750 is in its movie features.

The Z6 can shoot 4K video (3840 x 2160 pixels) at either 30, 25, or 24 frames per second. Using 24 frames per second and increasing the ISO to between 12,800 to 51,200 (the Z6 can go as high as ISO 204,800!) it is possible to shoot real-time video at night, such as of auroras.

But the auroras will have to be bright, as at 24 fps, the maximum shutter speed is 1/25-second, as you might expect.ย 

The a7III, by comparison, can shoot 4K movies at โ€œdraggedโ€ shutter speeds as slow as 1/4 second, even at 24 fps, making it possible to shoot auroras at lower and less noisy ISO speeds, albeit with some image jerkiness due to the longer exposures per frame.ย 

The D750 shoots only 1080 HD and, as shown above, produces very noisy movies at ISO 25,600 to 51,200.ย It’s barely usable for aurora videos.

The Z6 is much cleaner than the D750 at those high ISOs, no doubt due to far better internal processing of the movie frames. However, if night-sky 4K videos are an important goal, a camera from the Sony a7 series will be a better choice, if only because of the option for slower dragged shutter speeds.

For examples of real-time auroras shot with the Sony a7III see my music videos shot in Yellowknife and in Norway.ย 


Battery Life

Nikon Z6 Battery copy

The Z6 uses the EN-EL15b battery compatible with the battery and charger used for the D750. But the โ€œbโ€ variant allows for in-camera charging via the USB port.ย 

In room temperature tests the Z6 lasted for 1500 exposures, as many as the D750 was able to take in a side-by-side test. That was with the screens off.

At night, in winter temperatures of -10 degrees C (14ยฐ F), the Z6 lasted for three hours worth of continuous shooting, both for long deep-sky exposure sets and for a test time-lapse I shot, shown below.ย 

A time-lapse movie,ย downsized here to HD from the full-size originals, shot with the Z6 and its internal intervalometer, from twilight through to moonrise on a winter night.ย Processed with Camera Raw and LRTimelapse.ย 

However, with any mirrorless camera, you can extend battery life by minimizing use of the LCD screen and eye-level EVF. The Z6 has a handy and dedicated button for shutting off those screens when they arenโ€™t needed during a shoot.

The days of mirrorless cameras needing a handful of batteries just to get through a few hours of shooting are gone.ย 


Lens and Telescope Compatibilityย 

Nikon with Sigma and FTZ copy
A 14mm Sigma Art lens with the Nikon FTZ lens adapter needed to attach any “legacy” F-mount lens to the Z6.

As with all mirrorless cameras, the Nikon Z cameras use a new lens mount, one that is incompatible with the decades-old Nikon F mount.ย 

The Z mount is wider and can accommodate wider-angle and faster lenses than the old F mount ever could, and in a smaller package. While we have yet to see those lenses appear, in theory thatโ€™s the good news.

The bad news is that youโ€™ll need Nikonโ€™s FTZ lens adapter to use any of your existing Nikon F-mount lenses on either the Z6 or Z7. As of this writing, Nikon is supplying an FTZ free with every Z body purchase.ย 

I got an FTZ with my loaner Z6 and it worked very well, allowing even third-party lenses like my Sigma Art lenses to focus at the same point as they normally do (not true of some thIrd-party adapters), preserving the lensโ€™s optical performance. Autofocus functions all worked fine and fast.

Nikon with Scope Adapter and FTZ copy
The FTZ adapter needed to attach the Z6 to a telescope camera adapter (equipped with a standard Nikon T-ring) and field flattener lens for a refractor.

Youโ€™ll also need the FTZ adapter for use on a telescope, as shown above, to go from your telescopeโ€™s camera adapter, with its existing Nikon T-ring, to the Z6 body.ย 

T-rings are becoming available for the Z-mount,ย but even these third-party adapters are actually extension tubes, not just rings.

The reason is that the field flattener or coma corrector lenses often required with telescopes are designed to work best with the longer lens-to-sensor distance of a DSLR body. The FTZ adapter provides the necessary spacing, as do third-party adapters.ย 

Nikon Z6 FTZ Foot copy
The FTZ lens adapter has its own tripod foot, useful for balancing front-heavy lenses like the big Sigma here.

The only drawback to the FTZ is that any tripod plate attached to the camera body itself likely has to come off, and the tripod foot incorporated into the FTZ used instead. I found myself often having to swap locations for the tripod plate, an inconvenience.ย 


Camera Controller Compatibilityย 

Nikon with Ports copy
The port side of the Z6, with the DC2 shutter remote jack at bottom, and HDMI and USB-C ports above. There’s also a mic and headphone jack for video use.

Since it uses the same Nikon-type DC2 shutter port as the D750, the Z6 it should be compatible with most remote hardware releases and time-lapse motion controllers that operate a Nikon through the shutter port. An example are the controllers from SYRP.

On the other hand, time-lapse devices and external intervalometers that run Nikons through the USB port might need to have their firmware or apps updated to work with the Z6.

For example, as of early May 2019, CamRanger lists the Z6 as a supported camera; the Arsenal โ€œsmart controllerโ€ does not. Nor does Alpine Labs for their Radian and Pulse controllers, nor TimeLapse+ for its excellent View bramping intervalometer. Check with your supplier.

For those who like to use laptops to run their camera at the telescope, I found the Windows program Astro Photography Tool (v3.63) worked fine with the Z6, in this case connecting to the cameraโ€™s USB-C port using the USB-C to USB-A cable that comes with the camera. This allows APT to shift not only shutter speed, but also ISO and aperture under scripted sequences.ย 

However, BackyardNikon v2.0, current as of April 2019, does not list the Z6 as a supported camera.ย 


Raw File Compatibilityย 

Z6 Raw open in Raw Therapee
A Z6 Raw NEF file open in Raw Therapee 5.6, showing good star images and de-Bayering.

Inevitably, raw files from brand new cameras cannot be read by any raw developer programs other than the one supplied by the manufacturer, Nikon Capture NX in this case. However, even by the time I did my testing in winter 2019 all the major software suppliers had updated their programs to open Z6 files.ย 

Adobe Lightroom and Photoshop, Affinity Photo, DxO PhotoLab, Luminar 3, ON1 PhotoRAW, and the open-source Raw Therapee all open the Z6โ€™s NEF raw files just fine.ย 

Z6 Raw in PixInsight
PixInsight 1.8.6 failing to open a Z6 raw NEF file.

Specialized programs for processing astronomy images might be another story. For example, as of v1.08.06, PixInsight, a favourite program among astrophotographers, does not open Z6 raw files. Nor does Nebulosity v4. But check with the developers for updates.ย 


Other Features for Astrophotographyย 

Here are other Nikon Z6 features I found of value for astrophotography, and for operating the camera at night.ย 

Nikon with Looking Right copy

Tilting LCD Screenย 

Like the Nikon D750 and Sony A7III, the Z6 offers a tilting LCD screen great for use on a telescope or tripod when aimed up at the sky. However, the screen does not flip out and reverse, a feature useful for vloggers, but seldom needed for astrophotography.ย 

Nikon Z6 Top Screen copy
Showing the top OLED screen and dedicated ISO button that is easy to access in the dark. It works in conjunction with the top dial.

OLED Top Screen (Above)

The Sony doesnโ€™t have one, and Canonโ€™s low-cost mirrorless Rp also lacks one. But the top-mounted OLED screen of the Z6 is a great convenience for astrophotography. It makes it possible to monitor camera status and battery life during a shoot, even with the rear LCD screen turned off to prolong battery life.

Z6 Menu - Quick Menu

Touch Screenย 

Sonyโ€™s implementation of touch-screen functions is limited to just choosing autofocus points. By contrast, the Nikon Z6 offers a full range of touchscreen functions, making it easy to navigate menus and choose settings.ย 

I do wish there was anย option, as there is with Pentax, to tint the menus red for preserving night vision.

Z6 Menu - Intervalometer

Built-in Intervalometer

As with other Nikons, the Z6 offers an internal intervalometer capable of shooting time-lapses, just as long as individual exposures donโ€™t need to be longer than 30 seconds.ย 

In addition, thereโ€™s the Exposure Smoothing option which, as I have found with the D750, is great for smoothing flickering in time-lapses shot using auto exposure.ย 

Sony has only just added an intervalometer to the a7III with their v3 firmware update, but with no exposure smoothing.ย 

Z6 Menu - Silent Shooting

Custom i Menu / Custom Function Buttonsย 

The Sony a7III has four custom function buttons users can assign to commonly used commands, for quick access. For example, I assign one Custom button to the Bright Monitoring function which is otherwise utterly hidden in the menus, but superb for framing nightscapes, if only you know itโ€™s there!ย 

The Nikon Z6 has two custom buttons beside the lens mount. However, I found it easier to use the โ€œiโ€ menu (shown above) by populating it with those functions I use at night for astrophotography. Itโ€™s then easy to call them up and adjust them on the touch screen.

Thankfully, the Z6โ€™s dedicated ISO button is now on top of the camera, making it much easier to find at night than the awkwardly placed ISO button on the back of the D750, which I am always mistaking for the Image Quality button, which you do not want to adjust by mistake.ย 

Nikon Z6-My Menu

My Menuย 

As most cameras do, the Z6 also has a โ€œMy Menuโ€ page which you can also populate with favourite menu commands.ย 

Nikon D750 and Z6 copy
The D750 (left) compared to the smaller and lighter Z6 (right). This shows the wider Z lens mount compared to Nikon’s old F-mount standard.

Lighter Weight / Smaller Size

The Z6 provides similar imaging performance, if not better (for movies) than the D750, and in a smaller and lighter camera, weighing 200 grams (0.44 pounds) less than the D750.ย Being able to downsize my equipment mass is a welcome plus to going mirrorless.

Comparison - Z6 Mech vs Silent Shutter
Extreme 800% blow-ups of the Moon show a slightly sharper image with the Z6 set to Silent Shutter.

Electronic Front Curtain Shutter / Silent Shootingย 

By design, mirrorless cameras lack any vibration from a bouncing mirror. But even the mechanical shutter can impart vibration and blurring to high-magnification images taken through telescopes.ย 

The electronic front curtain shutter (lacking in the D750) helps eliminate this, while the Silent Shooting mode does just that โ€” it makes the Z6 utterly quiet and vibration free when shooting, as all the shutter functions are now electronic. This is great for lunar and planetary imaging.ย 


Whatโ€™s Missing for Astrophotography (not much!)

Bulb Timer for Long Exposures

While the Z6 has a Bulb setting, there is no Bulb Timer as there is with Canonโ€™s recent cameras. A Bulb Timer would allow setting long Bulb exposures of any length in the camera, though Canon’s cannot be combined with the intervalometer.ย 

Instead, the Nikon must be used with an external Intervalometer for any exposures over 30 seconds long. Any number of units are compatible with the Z6, through its shutter port which is the same type DC2 jack used in the D750.

Z6 Menu - Multiple Exposures

In-Camera Image Stackingย to Raws

The Z6 does offer the ability to stack up to 10 images in the camera, a feature also offered by Canon and Pentax. Images can be blended with a Lighten (for star trails) or Average (for noise smoothing) mode.ย 

However, unlike with Canon and Pentax, the result is a compressed JPG not a raw file, making this feature of little value for serious imaging. Plus with a maximum of only 10 exposures of up to 30-seconds each, the ability to stack star trails โ€œin cameraโ€ is limited.ย 

Illuminated Buttonsย 

Unlike the top-end D850, the Z6โ€™s buttons are not illuminated, but then again neither are the Z7โ€™s.


As a bonus โ€” the Nikon 35mm S-Series Lens

Nikkor 35mm Lens Test
The upper left frame corner of a tracked star image shot with the 35mm S lens wide open at f/1.8 and stopped down at third stop increments.

With the Z6 I also received a Nikkor 35mm f/1.8 S lens made for the Z-mount, as the lens perhaps best suited for nightscape imaging out of the native Z-mount lenses from Nikon. See Nikon’s website for the listing.ย 

If thereโ€™s a downside to the Z-series Nikons itโ€™s the limited number of native lenses that are available now from Nikon, and likely in the future from anyone, due to Nikon not making it easy for other lens companies to design for the new Z mount.ย 

In testing the 35mm Nikkor on tracked shots, stars showed excellent on- and off-axis image quality, even wide open at f/1.8. Coma, astigmatism, spherical aberration, and lateral chromatic aberration were all well controlled.ย 

However, as with most lenses now offered for mirrorless cameras, the focus is โ€œby-wireโ€ using a ring that doesnโ€™t mechanically adjust the focus. As a result, the focus ring turns continuously and lacks a focus scale.ย 

So it is not possible to manually preset the lens to an infinity mark, as nightscape photographers often like to do. Focusing must be done each night.ย 

Until there is a greater selection of native lenses for the Z cameras, astrophotographers will need to use the FTZ adapter and their existing Nikon F-mount or third-party Nikon-mount lenses with the Zs.


Recommendationsย 

I was impressed with the Z6.ย 

The Owl Nebula and Messier 108 Galaxy
The Owl Nebula, Messier 97, a planetary nebula in our galaxy, and the edge-on spiral galaxy Messier 108, paired below the Bowl of the Big Dipper in Ursa Major. This is a stack of 5 x 4-minute exposures at ISO 1600 with the Nikon Z6 taken as part of testing. This was through the Astro-Physics Traveler refractor at f/6 with the Hotech field flattener and FTZ adapter.

For any owner of a Nikon cropped-frame DSLR (from the 3000, 5000, or 7000 series for example) wanting to upgrade to full-frame for astrophotography I would suggest moving to the Z6 over choosing a current DSLR.ย 

Mirrorless is the way of the future. And the Z6 will yield lower noise than most, if not all, of Nikonโ€™s cropped-frame cameras.

Nikkor 35mm S Lens copy
The Z6 with the Nikkor 35mm f/1.8 S lens native for the Z mount.

For owners of current Nikon DSLRs, especially a 24-megapixel camera such as the D750, moving to a Z6 will not provide a significant improvement in image quality for still images.ย 

But … it will provide 4K video and much better low-light video performance than older DSLRs. So if it is aurora videos you are after, the Z6 will work well, though not quite as well as a Sony alpha.ย 

In all, thereโ€™s little downside to the Z6 for astrophotography, and some significant advantages: low noise, bright live view, clean artifact-free sensor images, touchscreen convenience, silent shooting, low-light 4K video, all in a lighter weight body than most full-frame DSLRs.ย 

I highly recommend the Nikon Z6.ย 

โ€” Alan, April 30, 2019 / ยฉ 2019 Alan Dyer / AmazingSky.comย 

 

 

Shooting Moonstrikes at Dinosaur Park


Moonlight at Dino Park Title

It was a magical night as the rising Moon lit the Badlands with a golden glow.

When doing nightscape photography it’s often best not to fight the Moon, but to embrace it and use it as your light source.

I did this on a fine night, Easter Sunday, at one of my favourite nightscape spots, Dinosaur Provincial Park.

I set up two cameras to frame different views of the hoodoos as they lit up with the light of the rising waning Moon.

The night started out as a dark moonless evening as twilight ended. Then about 90 minutes after the arrival of darkness, the sky began to brighten again as the Moon rose to illuminate the eroded formations of the Park.

Moonrise Light at Dinosaur Park - West
The formations of Dinosaur Provincial Park, Alberta, lit by the rising gibbous Moon, off camera at left, on April 21/22, 2019. This is looking west, with the stars of the winter sky setting. Procyon is at right. Aphard in Hydra is above the hill. This is a stack of 8 exposures, mean combined to smooth noise, for the ground, and a single exposure for the sky, all with the 24mm Sigma Art lens at f/5.6 and Nikon D750 at ISO 6400, each for 25 seconds. The images were from the end of a sequence shot for a time-lapse using the TimeLapse+ View intervaolometer.ย 

This was a fine example of “bronze hour” illumination, as some have aptly called it.

Photographers know about the “golden hour,” the time just before sunset or just after sunrise when the low Sun lights the landscape with a golden glow.

The Moon does the same thing, with a similar tone, though greatly reduced in intensity.

The low Moon, especially just after Full, casts a yellow or golden tint over the scene. This is caused by our atmosphere absorbing the “cold” blue wavelengths of moonlight, and letting through the “warm” red and yellow tones.

Making use of the rising (or setting) Moon to light a scene is one way to capture a nightscape lit naturally, and not with artificial lights, which are increasingly being frowned upon, if not banned at popular nightscape destinations.

StarryNightImage
A screen shot from the desktop app Starry Night (by Simulation Curriculum) showing the waning gibbous Moon rising in the SE on April 21. Such “planetarium” apps are useful for simulating the sky of a planned shoot.

“Bronze hour” lighting is great in still-image nightscapes. But in time-lapses the effect is more striking โ€” indeed, in time-lapse lingo it is called a “moonstrike” scene.

The dark landscape suddenly lights up as if it were dawn, yet stars remain in the sky.

IMG_4579
A screen shot of a planning app that is a favourite of mine, The Photographer’s Ephemeris, set up to show the scene for moonrise on April 21 from the Park.

The best nights for such a moonstrike are ones with a waning gibbous or last quarter Moon. At these phases the Moon rises after sunset, to re-light a scene after evening twilight has faded.

On April 21 I made use of such a circumstance to shoot moonstrike stills and movies, not only for their own sake, but for use as illustrations in the next edition of my Nightscapes and Time-lapse eBook (at top here).

TimeLapse+View-Day Interval

One camera, the Nikon D750, I coupled with a device called a bramping intervalometer, in this case the TimeLapse+ View, shown above. It works great to automatically shift the shutter and ISO speeds as the sky darkens then brightens again.

Yes, in bright situations the camera’s own Auto Exposure and Auto ISO modes might accomplish this.

But … once the sky gets dark the Auto circuits fail and you’re left with hugely underexposed images.

The TimeLapse+ View, with its more sensitive built-in light meter, can track right through into full darkness, making it possible to shoot so-called “holy grail” time-lapses that go from daylight to darkness, from sunset to the Milky Way, all shot unattended.

Moonrise Light at Dinosaur Park - North
The eroding formations of Dinosaur Provincial Park, Alberta, lit by the rising gibbous Moon, off camera at right, on April 21/22, 2019. This is looking north, with Polaris at upper centre, Capella setting at left, Vega rising at right, and the W of Cassiopeia at lower centre. This is a stack of 8 exposures, mean combined to smooth noise, for the ground, and one exposure from that set for the sky. All with the 15mm Laowa lens at f/2.8 and Sony a7III at ISO 3200, each for 30 seconds. ย 

For the other camera, the Sony a7III (with the Laowa 15mm lens I just reviewed) I set the camera manually, then shifted the ISO and shutter speed a couple of times to accommodate the darkening, then brightening of the scene.

Processing the resulting RAW files in the highly-recommended program LRTimelapse smoothed out all the jumps in brightness to make a seamless transition.

I also used the new intervalometer function that Sony has just added to the a7III with its latest firmware update. Hurray! I complained about the lack of an intervalometer in my original review of the Sony a7III. But that’s been fixed.

Moonrise Star Trails at Dinosaur Park
This is looking north, with the stars of the northern sky pivoting around Polaris. This is a stack of 8 exposures, mean combined to smooth noise, for the ground, and 250 exposures for the sky, blended with Lighten mode to create the stails. However, I used the Advanced Stacker Plus actions in Photoshop to do the stacking, creating the tapering effect in the process. All exposures with the 15mm Laowa lens at f/2.8 and Sony a7III at ISO 3200, each for 30 seconds.ย 

I shot 425 frames with the Sony, which I not only turned into a movie but, as one can with time-lapse frames, I also stacked into a star trail still image, in this case looking north to the circumpolar stars.

To do the stacking I used the Advanced Stacker Plus actions for Photoshop, developed and sold by StarCircleAcademy.

I prefer this action set over dedicated programs such as StarStaX, because it works directly with the developed Raw files. There’s no need to create a set of JPGs to stack, compromising image quality, and departing from the non-destructive workflow I prefer to maintain.

While the still images are very nice, the intended final result was this movie above, a short time-lapse vignette using clips from both cameras. Do watch in HD.

I rendered out the frames from the Sony both as a “normal” time-lapse, and as one with accumulating star trails, again using the Advanced Stacker Plus actions to create the intermediate frames for assembling into the movie.

All these techniques, gear, and apps are explained in tutorials in my eBook, above. However, it’s always great to get a night perfect for putting the methods to work on a real scene.

โ€” Alan, April 27, 2019 / ยฉ 2019 Alan Dyer / AmazingSky.com

 

Auroras at Sea


Aurora from at Sea Near Lofotens #1

As I do a couple of times a year, earlier this month I was cruising the coast of Norway chasing the Northern Lights โ€“ successfully!

One of my “retirement gigs” is to serve as a lecturer for the educational travel company Road Scholar (formerly Elderhostel) on some of their aurora cruises along the Norwegian coast on one of the Hurtigruten ferry ships.

This time, as I was last autumn, I was on Hurtigruten’s flagship coastal ferry, the m/s Trollfjord.

Aurora over the Norwegian Sea #2 (Feb 27, 2019)
The Northern Lights over the Norwegian Sea south of the small fishing village of Oksfjord, from the Hurtigruten ferry ship the m/s Trollfjord on the northbound voyage from Bergen to Kirkenes. This was during a minor geomagnetic storm producing an all-sky aurora with a Kp Index however of no more Kp 3 – 4 this night. A break in the clouds allowed a glimpse of the Lights for about an hour at 11 pm. This is looking north. This is a single 1.6-second exposure at f/2 with the Venus Optics 15mm lens and Sony a7III at ISO 6400. Ship motion inevitably adds some star trailing.

Our tour group was treated to five fine nights with auroras, an unusually good take out of the 12-day round trip cruise from Bergen to Kirkenes and back to Bergen. Our first look, above, was on February 27, but through cloud.

Auroral Swirls over Bรฅtsfjord, Norway
Swirls of auroral curtains over Bรฅtsfjord, Norway while we were in port on the southbound portion of the Hurtigruten coastal cruise on the ms Trollfjord. This was March 1, 2019. The stars of Taurus and the Pleiades are at left; Cassiopeia at upper right. This is a single 0.8-second exposure at f/2 with the 15mm Venus Optics lens and Sony a7III at ISO 1600.

But after we reached the top end at Kirkenes and turned around for the southbound voyage, skies cleared remarkably. We had a wonderful four clear days and nights in a row, all with Northern Lights.

Auroral Swirls Overhed from the ms Trollfjord
Auroral curtains in an overhead coronal burst swirling at the zenith during a fine display on March 1, 2019, as seen from the deck of the Hurtigruten ferry ship the ms Trollfjord, while in port in Bรฅtsfjord, Norway. The Big Dipper is at upper right; Cassiopeia at lower left, and Polaris in the centre amid the aurora. This is a single 1-second exposure at f/2 with the Venus Optics 15mm lens and Sony a7III at ISO 3200. It was taken from port with the ship stationary and amid the port lights.

The best show was March 1, and when we were in port in the northern coastal village of Bรฅtsfjord. The Lights danced overhead in the best show I had seen from Norway.

Aurora over Skjervรธy, Norway
The Northern Lights over the village of Skjervรธy on the northern coast of Norway north of Tromsรธ. Taken from the deck of the Hurtigruten ship the ms Trollfjord while in port, March 2, 2019. Looking west with Cassiopeia at right and the Pleiades at left. This is a blend of two exposures: a long 4-second exposure for the sky and aurora, and a short 0.8-second exposure for the ground and city lights. All at f/2 with the 15mm Venus Optics lens and Sony a7III at ISO 800.

The next night we got a good show while we were in the port of Skjervรธy.

As we continued south we emerged out from under the auroral oval zone, placing the Lights to the north, back in the direction we had come from.

Equally spectacular in my mind were some of the sunsets and twilight skies we enjoyed as we sailed through the Lofoten Islands, including on our visit to the narrow Trollfjord fjord for which the ship is named.

Sunset from the Trollfjord
Sunset in Norway from the ms Trollfjord on the southbound voyage, on March 2, 2019.

Trollfjord at Twilight
The mouth of the Trollfjord in the Lofoten Islands, Norway, at twilight taken from the forward Deck 6 of the ms Trollfjord, the Hurtigruten ferry ship named for the narrow fjord. This is a 4-section handheld panorama with the Venus Optics 15mm lens at f/8 and Sony a7III camera at ISO 100. Stitched with ACR.

Alpenglow and Twilight on the Fjords
A panorama of the Raftsundet Strait at sunset with alpenglow on the peaks and evening twilight colours to the right at the sunset point. This was March 3, 2019 on the southbound voyage on the ms Trollfjord as we approached the Trollfjord itself. This is a 7-section panorama, handheld, with the Venus Optics 15mm lens and Sony a7III, stitched with ACR.

On our aurora nights I mostly shot “real-time” video of the Lights, using the low-light capability and 4K functions of the Sony a7III camera. The result is a music video linked to below.

The Northern Lights At Sea from Alan Dyer on Vimeo.

I hope you enjoy it. Do view it full-screen and at 4K resolution.

For details on this cruise (I’ll be on the October 10 trip this fall) see the Road Scholar page for this Arctic Skies trip. Autumn is a spectacular time in the fjords and along the coast, as the mountainsides are in fall colours.

Join me!

โ€” Alan, March 15, 2019 / ยฉ 2019 Alan Dyer / AmazingSky.com

 

Photographing the Total Eclipse of the Moon


Lunar Eclipse CompositeOn the evening of January 20 for North America, the Full Moon passes through the umbral shadow of the Earth, creating a total eclipse of the Moon.ย 

No, this isnโ€™t a โ€œblood,โ€ โ€œsuper,โ€ nor โ€œwolfโ€ Moon. All those terms are internet fabrications designed to bait clicks.

It is a ย  total ย  lunarย  eclipse ย โ€”ย an event that doesn’t need sensational adjectives to hype, because they are always wonderful sights! And yes, the Full Moon does turn red.

As such, on January 20 the evening and midnight event provides many opportunities for great photos of a reddened Moon in the winter sky.ย 

Hereโ€™s my survey of tips and techniques for capturing the eclipsed Moon.ย 


First โ€ฆ What is a Lunar Eclipse?

As the animation below shows (courtesy NASA/Goddard Space Flight Center), an eclipse of the Moon occurs when the Full Moon (and they can happen only when the Moon is exactly full) travels through the shadow of the Earth.ย 

The Moon does so at least two times each year, though often not as a total eclipse, one where the entire disk of the Moon enters the central umbral shadow. Many lunar eclipses are of the imperceptible penumbral variety, or are only partial eclipses.

Total eclipses of the Moon can often be years apart. The last two were just last year, on January 31 and July 27, 2018. However, the next is not until May 26, 2021.

For a short explanation of the geometry of lunar eclipses see the NASA/Goddard video at https://svs.gsfc.nasa.gov/11516ย 

At any lunar eclipse we see an obvious darkening of the lunar disk only when the Moon begins to enter the umbra. Thatโ€™s when the partial eclipse begins, and we see a dark bite appear on the left edge of the Moon.ย 

While it looks as if Earth’s shadow sweeps across the Moon, it is really the Moon moving into, then out of, our planetโ€™s umbra that causes the eclipse. We are seeing the Moonโ€™s revolution in its orbit around Earth.ย 

At this eclipse the partial phases last 67 minutes before and after totality.ย 

Telescope CU-Stages
This shows the length of the eclipse phases relative to the start of the partial eclipse as the Moon begins to enter the umbra at right. The Moon’s orbital motion takes it through the umbra from right to left (west to east) relative to the background stars. The visible eclipse ends 196 minutes (3 hours and 16 minutes) after it began. Click or tap on the charts to download a high-res version.

Once the Moon is completely immersed in the umbra, totality begins and lasts 62 minutes at this eclipse, a generous length.ย 

The Moon will appear darkest and reddest at mid-eclipse. During totality the lunar disk is illuminated only by red sunlight filtering through Earthโ€™s atmosphere. It is the light of all the sunsets and sunrises going on around our planet.ย 

Andย yes, it is perfectlyย safe to look atย the eclipsed Moon with whatever optics you wish. Binoculars often provide the best view. Do have a pair handy!

Total Lunar Eclipse (December 20/21, 2010)
Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400 for 4 seconds, single exposure, shortly after totality began.

At this eclipse because the Moon passes across the north half of the umbra, the top edge of the Moon will always remain bright, as it did above in 2010, looking like a polar cap on the reddened Moon.

Near the bright edge of the umbra look for subtle green and blue tints the eye can see and that the camera can capture.


Where is the Eclipse?

As the chart below shows, all of the Americas can see the entire eclipse, with the Moon high in the evening or late-night sky. For the record, the Moon will be overhead at mid-eclipse at local midnight from Cuba!

LE2019Jan21T
All of the Americas can see this eclipse. The eclipse gets underway as the Moon sets at dawn over Europe. Diagram courtesy EclipseWise.com

For more details on times see www.EclipseWise.com and the event page at http://www.eclipsewise.com/lunar/LEprime/2001-2100/LE2019Jan21Tprime.htmlย 

I live in Alberta, Canada, at a latitude of 50 degrees North. And so, the sky charts I provide here are for my area, where the Moon enters the umbral shadow at 8:35 p.m. MST with the Moon high in the east. By the end of totality at 10:44 p.m. MST the Moon shines high in the southeast.ย This sample chart is for mid-eclipse at my site.

Framing TL-Mid-Eclipse
The sky at mid-eclipse from my Alberta site. Created with the planetarium software Starry Night, from Simulation Curriculum.

I offer them as examples of the kinds of planning you can do to ensure great photos. I canโ€™t provide charts good for all the continent because exactly where the Moon will be during totality, and the path it will take across your sky will vary with your location.ย 

In general, the farther east and south you live in North America the higher the Moon will appear. But from all sites in North America the Moon will always appear high and generally to the south.ย 

To plan your local shoot, I suggest using planetarium software such as the freeย Stellarium or Starry Night (the software I used to prepare the sky charts in this post), and photo planning apps such as The Photographerโ€™s Ephemeris or PhotoPills.ย 

The latter two apps present the sightlines toward the Moon overlaid on a map of your location, to help you plan where to be to shoot the eclipsed Moon above a suitable foreground, if thatโ€™s your photographic goal.ย 


When is the Eclipse?

While where the Moon is in your sky depends on your site, the various eclipse events happen at the same time for everyone, with differences in hour due only to the time zone you are in.ย 

While all of North America can see the entirety of the partial and total phases of this eclipse (lasting 3 hours and 16 minutes from start to finish), the farther east you live the later the eclipse occurs, making for a long, late night for viewers on the east coast.ย 

Those in western North America can enjoy all of totality and be in bed at or before midnight.

Here are the times for the start and end of the partial and total phases. Because the penumbral phases produce an almost imperceptible darkening, I donโ€™t list the times below for the start and end of the penumbral eclipse.ย 

Eclipse Times Table

PM times are on the evening of January 20.

AM times are after midnight on January 21.

Note that while some sources list this eclipse as occurring on January 21, that is true for Universal Time (Greenwich Time) and for sites in Europe where the eclipse occurs at dawn near moonset.ย 

For North America, if you go out on the evening of January 21 expecting to see the eclipse youโ€™ll be a day late and disappointed!ย 


Pickingย a Photo Technique

Lunar eclipses lend themselves to a wide range of techniques, from a simple camera on a tripod, to a telescope on a tracking mount following the sky.ย 

If this is your first lunar eclipse I suggest keeping it simple! Select just one technique, to focus your attention on only one camera on a cold and late winter night.ย 

Lunar Eclipse Closeup with Stars
The total eclipse of the Moon of September 27, 2015, through a telescope, at mid-totality with the Moon at its darkest and deepest into the umbral shadow, in a long exposure to bring out the stars surrounding the dark red moon. This is a single exposure taken through a 92mm refractor at f/5.5 for 500mm focal length using the Canon 60Da at ISO 400 for 8 seconds. The telescope was on a SkyWatcher HEQ5 equatorial mount tracking at the lunar rate.

Then during the hour of totality take the time to enjoy the view through binoculars and with the unaided eye. No photo quite captures the glowing quality of an eclipsed Moon. But hereโ€™s how to try it.


Option 1: Simple โ€” Camera-on-Tripod

The easiest method is to take single shots using a very wide-angle lens (assuming you also want to include the landscape below) with the camera on a fixed tripod. No fancy sky trackers are needed here.ย 

During totality, with the Moon now dimmed and in a dark sky, use a good DSLR or mirrorless camera in Manual (M) mode (not an automatic exposure mode) for settings of 2 to 20 seconds at f/2.8 to f/4 at ISO 400 to 1600.ย 

Thatโ€™s a wide range, to be sure, but it will vary a lot depending on how bright the sky is at your site. Shoot at lots of different settings, as blending multiple exposures later in processing is often the best way to reproduce the scene as your eyes saw it.ย 

Shoot at a high ISO if you must to prevent blurring from sky motion. However, lower ISOs, if you can use them by choosing a slower shutter speed or wider lens aperture, will yield less digital noise.

Focus carefully on a bright star, as per the advice below for telephoto lenses.ย Don’t just set the lens focus to infinity, as thatย might not produce the sharpest stars.

Total Lunar Eclipse (December 20/21, 2010)
Total eclipse of the Moon, December 20/21, 2010, with 15mm lens at f/3.2 and Canon 5D MkII at ISO 1600 for a 1-minute tracked exposure. Without a tracker, use shorter exposures (less than 20 seconds) and higher ISOs or wider apertures to avoid trailing,

One scene to go for at this eclipse is similar to the above photo, with the reddened Moon above a winter landscape and shining east of Orion and the winter Milky Way. But that will require shooting from a dark site away from urban lights. But when the Moon is totally eclipsed, the sky will be dark enough for the Milky Way to appear.ย 

Framing Eclipse Sky
Click or tap on any of the charts to download a high-resolution copy.

The high altitude of the Moon at mid-eclipse from North America (with it 40 to 70 degrees above the horizon) will also demand a lens as wide as 10mm to 24mm, depending whether you use portrait or landscape orientation, and if your camera uses a cropped frame or full frame sensor. The latter have the advantage in this category of wide-angle nightscape.ย 

Framing Winter Milky Way & Moon

Alternatively, using a longer 14mm to 35mm lens allows you to frame the Moon beside Orion and the winter Milky Way, as above, but without the landscape. Again, this will require a dark rural site.

If you take this type of image with a camera on a fixed tripod, use high ISOs to keep exposures below 10 to 20 seconds to avoid star trailing. You have an hour of totality to shoot lots of exposures to make sure some will work best.

Total Lunar Eclipse, Dec 20, 2010 24mm Wide-Angle
Total eclipse of the Moon, December 20/21, 2010, with Canon 5D MKII and 24mm lens at f2.8 for stack of four 2-minute exposures at ISO 800. Taken during totality using a motorized sky tracker. The eclipsed Moon is the red object above Orion, and the stars appear bloated due to high haze and fog rolling in.

If you have a sky tracker to follow the stars, as I did above, exposures can be much longer โ€” perhaps a minute to pick up the Milky Way really well โ€” and ISOs can be lower to avoid noise.ย 


Option 1 Variation โ€” Urban Eclipses

Unfortunately, point-and-shoot cameras and so-called โ€œbridgeโ€ cameras, ones with non-interchangeable lenses, likely wonโ€™t have lenses wide enough to capture the whole scene, landscape and all. Plus their sensors will be noisy when used at high ISOs. Those cameras might be best used to capture moderate telephoto closeups at bright urban sites.ย 

With any camera, at urban sites look for scenic opportunities to capture the eclipsed Moon above a skyline or behind a notable landmark. By looking up from below you might be able to frame the Moon beside a church spire, iconic building, or a famous statue using a normal or short telephoto lens, making this a good project for those without ultra-wide lenses.

Total Lunar Eclipse, Feb. 20, 2008
Lunar eclipse, Feb 20, 2008 with a 135mm telephoto and Canon 20Da camera showing the Moon’s size with such a lens and cropped-frame camera. This is a blend of 8-second and 3-second exposures to bring out stars and retain the Moon. Both at ISO200 and f/2.8. Saturn is at lower left and Regulus at upper right.

Whatever your lens or subject, at urban sites expose as best you can for the foreground, trying to avoid any bright and bare lights in the frame that will flood the image with lens flares in long exposures.ย 

Capturing such a scene during the deep partial phases might produce a brighter Moon that stands out better in an urban sky than will a photo taken at mid-totality when the Moon is darkest.ย 


TIP: Practice, Practice, Practice!

With any camera, especially beginner point-and-shoots, ensure success on eclipse night by practicing shooting the Moon before the eclipse, during the two weeks of the waxing Moon leading up to Full Moon night and the eclipse.

The crescent Moon with Earthshine on the dark side of the Moon is a good stand-in for the eclipsed Moon. Set aside the nights of January 8 to 11 to shoot the crescent Moon. Check for exposure and focus. Can you record the faint Earthshine? It’s similar in brightness to the shadowed side of the eclipsed Full Moon.

The next week, on the nights of January 18 and 19, the waxing gibbous Moon will be closer to its position for eclipse night and almost as bright as the uneclipsed Full Moon, allowing some rehearsals for shooting it near a landmark.


Option 2: Advanced โ€” Multiple Exposures

An advanced method is to compose the scene so the lens frames the entire path of the Moon for the 3 hours and 16 minutes from the start to the end of the partial eclipse.ย 

Framing TL-Start of Eclipse
This set of 3 charts shows the position of the Moon at the start, middle, and end of the eclipse, for planning lens choice and framing of the complete eclipse path. The location is Alberta, Canada.

Framing TL-Mid-Eclipse

Framing TL-End of Eclipse

As shown above, including the landscape will require at least a 20mm lens on a full frame camera, or 12mm lens on a cropped frame camera. However, these charts are for my site in western Canada. From sites to the east and south where the Moon is higher an even wider lens might be needed, making this a tough sequence to take.

With wide lenses, the Moon will appear quite small. The high altitude of the Moon and midnight timing wonโ€™t lend itself to this type of multiple image composite as well as it does for eclipses that happen near moonrise or moonset, as per the example below.ย 

Lunar Eclipse From Beginning to End, To True Scale
This is a multiple-exposure composite of the total lunar eclipse of Sunday, September 27, 2015, as shot from Writing-on-Stone Provincial Park, Alberta, Canada. For this still image composite of the eclipse from beginning to end, I selected just 40 frames taken at 5-minute intervals, out of 530 I shot in total, taken at 15- to 30-second intervals for the full time-lapse sequence included below.

A still-image composite with the lunar disks well separated will need shots only every 5 minutes, as I did above for the September 27, 2015 eclipse.ย 

Exposures for any lunar eclipse are tricky, whether you are shooting close-ups or wide-angles, because the Moon and sky change so much in brightness.ย 

As I did for the image below, for a still-image composite, you can expose just for the bright lunar disk and let the sky go dark.

Exposures for just the Moon will range from very short (about 1/500th second at f/8 and ISO 100) for the partials, to 1/2 to 2 seconds at f/2.8 to f/4 and ISO 400 for the totals, then shorter again (back to 1/500 at ISO 100) for the end shots when the Full Moon has returned to its normal brilliance.ย 

Thatโ€™ll take constant monitoring and adjusting throughout the shoot, stepping the shutter speed gradually longer thorough the initial partial phase, then shorter again during the post-totality partial phase.

Youโ€™d then composite and layer (using a Lighten blend mode) the well-exposed disks (surrounded by mostly black sky) into another background image exposed longer for 10 to 30 seconds at ISO 800 to 1600 for the sky and stars, shot at mid-totality.

To maintain the correct relative locations of the lunar disks and foreground, the camera cannot move.

Lunar Eclipse Sequence from Monument Valley
The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in western Monument Valley, Utah. I shot the totality images during the short 4 minutes of totality. The mid-totality image is a composite of 2 exposures: 30 seconds at f/2.8 and ISO 1600 for the sky and landscape, with the sky brightening blue from dawn twilight, and 1.5 seconds at f/5.6 and ISO 400 for the disk of the Moon itself. Also, layered in are 26 short exposures for the partial phases, most being 1/125th sec at f/8 and ISO 400, with ones closer to totality being longer, of varying durations.

That technique works best if itโ€™s just a still image you are after, such as above. This image is such a composite, of the April 4, 2015 total lunar eclipse from Monument Valley, Utah.

This type of composite takes good planning and proper exposures to pull off, but will be true to the scene, with the lunar disk and its motion shown to the correct scale and position as it was in the sky.ย It might be a composite, but it will be accurate.


My Rant!ย 

Thatโ€™s in stark contrast to the flurry of ugly โ€œfakedโ€ composites that will appear on the web by the end of the day on January 21, ones with huge telephoto Moons pasted willy-nilly onto a wide-angle sky.

Rather than look artistic, most such attempts look comically cut-and-pasted. They are amateurish. Donโ€™t do it! ย 


Option 3: Advanced โ€” Wide-Angle Time-Lapses

If itโ€™s a time-lapse movie you want (see the video below), take exposures every 10 to 30 seconds, to ensure a final movie with smooth motion.

Unlike shooting for a still-image composite, for a time lapse each frame will have to be exposed well enough to show the Moon, sky, and landscape.ย 

That will require exposures long enough to show the sky and foreground during the partial phases โ€” likely about 1 to 4 seconds at f/2.8 and ISO 400. In this case, the disk of the partially-eclipsed Moon will greatly overexpose, as it does toward the end of the above time-lapse from September 27, 2015..ย 

But the Moon will darken and become better exposed during the late stages of the partial eclipse and during totality when a long exposure โ€” perhaps now 10 to 20 seconds at f/2.8 and ISO 800 to 1600 โ€” will record the bright red Moon amid the stars and winter Milky Way.ย 

Maintaining a steady cadence during the entire sequence requires using an interval long enough throughout to accommodate the expected length of the longest exposure at mid-totality, with similar camera settings to what youโ€™ve used for other Milky Way nightscapes. If youโ€™ve never taken those before, then donโ€™t attempt this complex sequence.ย 

After totality, as the Moon and sky re-brighten, exposures will have to shorten again, andย  symmetrically in reverse fashion for the final partial phases.

Such a time-lapse requires consistently and incrementally adjusting the camera over the three or more hours of the eclipse on a cold winter night. The high altitude of the Moon and its small size on the required wide angle lenses will make any final time lapse less impressive than at eclipses that occur when the Moon is rising or setting.ย 

But … the darkening of the sky and โ€œturning onโ€ of the Milky Way during totality will make for an interesting time-lapse effect. The sky and scene will be going from a bright fully moonlit night to effectively a dark moonless night, then back to moonlit. Itโ€™s a form of โ€œholy grailโ€ time lapse, requiring advanced processing with LRTimelapse software.ย 

Again, do not move the camera. Choose your lens and frame your camera to include the entire path of the Moon for as long as you plan to shoot.ย 

Even if the final movie looks flawed, individual frames should still produce good still images, or a composite built from a subset of the frames.ย 


Option 4: Simple โ€” Telephoto Close-Ups

The first thought of many photographers is to shoot the eclipse with as long a telephoto lens as possible. That can work, but …

The harsh reality is that the Moon is surprisingly small (only 1/2-degree across) and needs a lot of focal length to do it justice, if you want a lunar close-up.

Telescope FOV-400 & 800mm

Youโ€™ll need a 300mm to 800mm lens. Unfortunately, the Moon and sky are moving and any exposures over 1/4 to 2 seconds (required during totality) will blur the Moon badly if its disk is large on the frame and all you are using is a fixed tripod.

If you donโ€™t have a tracking mount, one solution is to keep the Moonโ€™s disk small (using no more than a fast f/2 or f/2.8 135mm to 200mm lens) and exposures short by using a high ISO speed of 1600 to 3200.ย Frame the Moon beside the Beehive star cluster as I show below.

Take aย range of exposures. But … beย sure to focus!


TIP: Focus! And Focus Again!

Take care to focus precisely on a bright star using Live View. Thatโ€™s true of any lens but especially telephotos and telescopes.ย 

Focus not just at the start of the night, but also more than once again later at night. Falling temperatures on a winter night will cause long lenses and telescopes to shift focus. What was sharp at the start of the eclipse wonโ€™t be by mid totality.ย 

The catch is that if you are shooting for a time-lapse or composite you likely won’t be able to re-point the optics to re-focus on a star in mid-eclipse. In that case, be sure to set up the gear well before you want to start shooing to let it cool to ambient air temperature. Now focus on a star, then frame the scene. Then hope the lens doesn’t shift off focus. You might be able to focus on the bright limb of the Moon but it’s risky.

Fuzzy images, not bad exposures, are the ruin of most attempts to capture a lunar eclipse, especially with a telephoto lens. And the Moon itself, especially during totality, is not a good target to focus on. Use a bright star.ย The winter sky has lots!


Option 5: Advanced โ€” Tracked Telescopic Close-Upsย 

If you have a mount that can be polar aligned to track the sky, then many more options are open to you.ย 

Sigma on SAM on Stars

You can use a telescope mount or one of the compact and portable trackers, such as the Sky-Watcher Star Adventurer (I show the Mini model above) or iOptron Sky Tracker units. While these latter units work great, you are best to keep the payload weight down and your lens size well under 300mm.ย 

Framing Telephoto CU

Thatโ€™s just fine for this eclipse, as you really donโ€™t need a frame-filling Moon. The reason is that the Moon will appear about 6 degrees west of the bright star cluster called the Beehive, or Messier 44, in Cancer.

As shown above, a 135mm to 200mm lens will frame this unique pairing well. For me, that will be the signature photo of this eclipse. The pairing can happen only at lunar eclipses that occur in late January, and there wonโ€™t be any more of those until 2037!ย 

That’s the characteristic that makes this eclipse rare and unique, not that it’s a “super-duper, bloody, wolf Moon!” But it doesn’t make for a catchy headline.

Total Lunar Eclipse, Dec 20, 2010 Total HDR
A High Dynamic Range composite of 7 exposures of the Dec 20/21, 2010 total lunar eclipse, from 1/2 second to 30 seconds, to show the more normally exposed eclipsed Moon with the star cluster M35, at left, in Gemini, to show the scene as it appeared in binoculars. Each tracked photo taken with a 77mm Borg apo refractor at f/4.2 (300mm focal length) and Canon 5D MkII at ISO 1600.

Exposures to show the star cluster properly might have to be long enough (30 to 120 seconds) that the Moon overexposes, even at mid-totality. If so, take different exposures for the Moon and stars, then composite them later, as I did above for the December 20, 2010 eclipse near the Messier 35 star cluster in Gemini.ย 

If really you want to shoot with even more focal length for framing just the Moon, a monster telephoto lens will work, but a small telescope such as an 80mm aperture f/6 to f/7 refractor will provide enough focal length and image size at much lower cost and lighter weight, and be easier to attach to a telescope mount.ย 

But even with a 500mm to 800mm focal length telescope the Moon fills only a small portion of the frame, though cropped frame cameras have the advantage here. Use one if itโ€™s a big Moon youโ€™re after!ย 

No matter the camera, the lens or telescope should be mounted on a solid equatorial telescope mount that you must polar align earlier in the night to track the sky.ย 

Alternatively, a motorized Go To telescope on an alt-azimuth mount will work, but only for single shots. The rotation of the field with alt-az mounts will make a mess of any attempts to shoot multiple-exposure composites or time-lapses, described below.ย 

Whatever the mount, for the sharpest lunar disks during totality, use the Lunar tracking rate for the motor.ย 

Total Lunar Eclipse Exposure Series
This series shows the need to constantly shift exposure by lengthening the shutter speed as the eclipse progresses. Do the same to shorten the exposure after totality. The exposures shown here are typical.ย 

Assuming an f-ratio of f/6 to f/8, exposures will vary from as short as 1/250th second at ISO 100 to 200 for the barely eclipsed Moon, to 4 to 20 seconds at ISO 400 to 1600 for the Moon at mid-totality.ย 

Itโ€™s difficult to provide a precise exposure recommendation for totality because the brightness of the Moon within the umbra can vary by several stops from eclipse to eclipse, depending on how much red sunlight manages to make it through Earthโ€™s atmospheric filter to light the Moon.


TIP: Shoot for HDR

Total Lunar Eclipse, Dec 20, 2010 Partial HDR
Total eclipse of the Moon, December 20/21, 2010, with 5-inch refractor at f/6 (780mm focal length) and Canon 7D (cropped frame camera) at ISO 400. This is an HDR blend of 9 images from 1/125 second to 2 seconds, composited in Photoshop. Note ย the blue tint along the shadow edge.

As I did above, during the deep partial phases an option is to shoot both long, multi-second exposures for the red umbra and short, split-second exposures for the bright part of the Moon not yet in the umbra.

Take 5 to 7 shots in rapid succession, covering the range needed, perhaps at 1-stop increments. Merge those later with High Dynamic Range (HDR) techniques and software, or with luminosity masks.ย 

Even if youโ€™re not sure how to do HDR processing now, shoot all the required exposures anyway so youโ€™ll have them when your processing skills improve.ย 


Option 6: Advanced โ€” Close-Up Composites and Time-Lapses

With a tracking telescope on an equatorial mount you could fire shots every 10 to 30 seconds, and then assemble them into a time-lapse movie, as below.ย 

But as with wide-angle time-lapses, that will demand constant attention to gradually and smoothly shift exposures, ideally by 1/3rd-stop increments every few shots during the partial and total phases.ย Make lots of small adjustments, rather than fewerย large ones.

If you track at the lunar rate, as I did above, the Moon should stay more or less centred while it drifts though the stars, assuming your mount is accurately polar aligned, an absolutely essential prerequisite here. ย 

Lunar Eclipse Composite
Composite image digitally created in Photoshop of images taken during October 27, 2004 total lunar eclipse, from Alberta Canada. Images taken through 5-inch apo refractor at f/6 with Canon Digital Rebel 300D camera at ISO 200.

Conversely, track at the sidereal rate and the stars will stay more or less fixed while the Moon drifts through the frame from right to left (west to east) as I show above in a composite of the October 27, 2004 eclipse.

But such a sequence takes even more careful planning to position the Moon correctly at the start of the sequence so it remains โ€œin frameโ€ for the duration of the eclipse, and ends up where you want at the end.

In the chart below, north toward Polaris is at the top of the frame. Position the Moon at the start of the eclipse so it ends up just above the centre of the frame at mid-eclipse. Tricky!ย 

Telescope CU-Stages
Repeated from earlier, this chart shows the path of the Moon through the north half of the umbra, a path that will be the same for any site, as will be the timing. North is up here.

As I show above, for this type of โ€œMoon-thru-shadowโ€ sequence a focal length of about 400mm is ideal on a full frame camera, or 300mm on a cropped frame camera.

From such a time-lapse set you could also use several frames selected from key stages of the eclipse, as I did in 2004, to make up a multiple-image composite showing the Moon moving through the Earthโ€™s shadow.ย 

Again, planetarium software such as Starry Night I used above, which can be set to display the field of view of the camera and lens of your choice, is essential to plan the shoot.ย Don’t attempt it without the rightย software to plan the framing.ย 

I would consider the telescopic time-lapse method the most challenging of techniques. Considering the hour of the night and the likely cold temperatures, your best plan might be to keep it simple.ย 

Itโ€™s what I plan to do.

Iโ€™ll be happy to get a tracked telephoto close-up of the Moon and Beehive cluster as my prime goal, with a wide-angle scene of the eclipsed Moon beside Orion and the Milky Way as a bonus.ย A few telescope close-ups will be even more of a bonus.

Astrospheric
The Astrospheric website, with astronomy-oriented weather predictions. It’s also available as a great mobile app.

However, just finding clear skies might be the biggest challenge!

Try the Astrospheric app for astronomy-oriented weather predictions. The Environment Canada data it uses has led me to clear skies for several recent eclipses that other observers in my area missed.ย 

It’ll be worth the effort to chase!

The next total eclipse of the Moon anywhere on Earth doesnโ€™t occur until May 26, 2021 in an event visible at dawn from Western North America. The next total lunar eclipse visible from all of North America comes a lunar year later, on May 15, 2022.ย 

Total Lunar Eclipse from Alan Dyer on Vimeo.

I leave you with a music video of the lunar eclipse of September 27, 2015 that incorporates still and time-lapse sequences shot using all of the above methods.ย 

Good luck and clear skies on eclipse night!

โ€” Alan, January 1, 2019 / ยฉ 2019 Alan Dyer / amazingsky.comย 

 

Testing ON1 Photo RAW for Astrophotography


ON1 Testing Title

Can the new version of ON1 Photo RAW match Photoshop for astrophotography?ย 

The short TL;DR answer: No.

But … as always, it depends. So do read on.


Released in mid-November 2018, the latest version of ON1 Photo RAW greatly improves a non-destructive workflow. Combining Browsing, Cataloging, Raw Developing, with newly improved Layers capabilities, ON1 is out to compete with Adobe’s Creative Cloud photo suite โ€“ Lightroom, Camera Raw, Bridge, and Photoshop โ€“ for those looking for a non-subscription alternative.

Many reviewers love the new ON1 โ€“ for “normal” photography.

But can it replace Adobe for night sky photos? I put ON1 Photo RAW 2019 through its paces for the demanding tasks of processing nightscapes, time-lapses, and deep-sky astrophotos.


The Conclusions

In my eBook “How to Photograph and Process Nightscapes and Time-Lapses” (linked to at right) I present dozens of processing tutorials, including several on how to use ON1 Photo RAW, but the 2018 edition. I was critical of many aspects of the old version, primarily of its destructive workflow when going from its Develop and Effects modules to the limited Layers module of the 2018 edition.

I’m glad to see many of the shortfalls have been addressed, with the 2019 edition offering a much better workflow allowing layering of raw images while maintaining access to all the original raw settings and adjustments. You no longer have to flatten and commit to image settings to layer them for composites. When working with Layers you are no longer locked out of key functions such as cropping.

I won’t detail all the changes to ON1 2019 but they are significant and welcome.

The question I had was: Are they enough for high-quality astrophotos in a non-destructive workflow, Adobe Photoshop’s fortรฉ.

While ON1 Photo RAW 2019 is much better, I concluded it still isn’t a full replacement of Adobe’s Creative Cloud suite, as least not for astrophotography.

NOTE: All images can be downloaded as high-res versions for closer inspection.ย 


ON1 2019 is Better, But for Astrophotography …

  1. Functions in Layers are still limited. For example, there is no stacking and averaging for noise smoothing. Affinity Photo has those.
  2. Filters, though abundant for artistic special effect “looks,” are limited in basic but essential functions. There is no Median filter, for one.
  3. Despite a proliferation of contrast controls, for deep-sky images (nebulas and galaxies) I was still not able to achieve the quality of images I’ve been used to with Photoshop.
  4. The lack of support for third-party plug-ins means ON1 cannot work with essential time-lapse programs such as Timelapse Workflow or LRTimelapse.

ON1 Final Composite
A finished nightscape composite, with stacked exposures for the ground and stacked and tracked exposures for the sky, layered and blended in ON1.


Recommendations

Nightscapes: ON1 Photo RAW 2019 works acceptably well for nightscape still images:

  1. Its improved layering and excellent masking functions are great for blending separate ground and sky images, or for applying masked adjustments to selected areas.

Time-Lapses: ON1 works is just adequate for basic time-lapse processing:

  1. Yes, you can develop one image and apply its settings to hundreds of images in a set, then export them for assembly into a movie. But there is no way to vary those settings over time, as you can by mating Lightroom to LRTimelapse.
  2. As with the 2018 edition, you still cannot copy and paste masked local adjustments from image to image, limiting their use.
  3. Exporting those images is slow.

Deep-Sky: ON1 is not a program I can recommend for deep-sky image processing:

  1. Stars inevitably end up with unsightly sharpening haloes.
  2. De-Bayering artifacts add blocky textures to the sky background.
  3. And all the contrast controls still don’t provide the “snap” and quality I’m used to with Photoshop when working with low-contrast subjects.

Library / Browse Functions

ON1 Browse Module
ON1 cannot catalog or display movie files or Photoshop’s PSB files (but then again with PSBs neither can Lightroom!).

ON1 is sold first and foremost as a replacement for Adobe Lightroom, and to that extent it can work well. Unlike Lightroom, ON1 allows browsing and working on images without having to import them formally into a catalog.

However, you can create a catalog if you wish, one that can be viewed even if the original images are not “on-line.” The mystery seems to be where ON1 puts its catalog file on your hard drive. I was not able to find it, to manually back it up. Other programs, such as Lightroom and Capture One, locate their catalogs out in the open in the Pictures folder.

For those really wanting a divorce from Adobe, ON1 now offers an intelligent AI-based function for importing Lightroom catalogs and transferring all your Lightroom settings you’ve applied to raw files to ON1’s equivalent controls.

However, while ON1 can read Photoshop PSD files, it will flatten them, so you would lose access to all the original image layers.

ON1’s Browse module is good, with many of the same functions as Lightroom, such as “smart collections.” Affinity Photo โ€“ perhaps ON1’s closest competitor as a Photoshop replacement โ€“ still lacks anything like it.

But I found ON1’s Browse module buggy, often taking a long while to allow access into a folder, presumably while it is rendering image previews.

There are no plug-ins or extensions for exporting directly to or synching to social media and photo sharing sites.


Nightscape Processing โ€“ Developing Raw Images

ON1 Before and After Processing
On the left, a raw image as it came out of the camera. On the right, after developing (with Develop and Effects module settings applied) in ON1.

For this test I used the same nightscape image I threw at Adobe competitors a year ago, in a test of a dozen or more raw developers. It is a 2-minute tracked exposure with a Sigma 20mm Art lens at f/2 and Nikon D750 at ISO 1600.

ON1 did a fairly good job. Some of its special effect filters, such a Dynamic Contrast, Glow, and Sunshine, can help bring out the Milky Way, though do add an artistic “look” to an image which you might or might not like.

Below, I compare Adobe Camera Raw (ACR) to ON1. It was tough to get ON1’s image looking the same as ACR’s result, but then again, perhaps that’s not the point. Does it just look good? Yes, it does.

ON1 & ACR Raw Image Comparison
On the left, a single raw image developed with Adobe Camera Raw. On the right, the same image with ON1 and its basic Develop and more advanced Effects settings.

Compared to Adobe Camera Raw, which has a good array of basic settings, ON1 has most of those and more, in the form of many special Effects, with many combined as one-click Presets, as shown below.

ON1 Presets
ON1 offers a huge array of Presets that apply combinations of its filters with one click from the Browse module.

Aย few presets and individual filters โ€“ the aforementioned Dynamic Contrast and Glow โ€“ are valuable. However, most of ON1’s filters and presets will not be useful for astrophotography, unless you are after highly artistic and unnatural effects.

Noise Reduction and Lens Correction

ON1 Noise Reduction
On the left, an image in ON1 without any Noise Reduction. On the right, with noise reduction and sharpening (under Details) applied with the settings shown.

Critical to all astrophotography is excellent noise reduction. ON1 does a fine job here, with good smoothing of noise without harming details.

Lens Correction works OK. It detected the 20mm Sigma art lens and automatically applied distortion correction, but not any vignetting (light “fall-off”) correction, perhaps the most important correction in nightscape work. You have to dial this in manually by eye, a major deficiency.

By comparison, ACR applies both distortion and vignetting correction automatically. It also includes settings for many manual lenses that you can select and apply in a click. For example, ACR (and Lightroom) includes settings for popular Rokinon and Venus Optics manual lenses; ON1 does not.

Hot Pixel Removal

Hot Pixel Removal Comparison
On the left, ACR with noise reduction applied (it offers no user-selectable Hot Pixel Removal tool). In the middle, ON1 with Remove Hot Pixels turned on; on the right, with it turned off โ€“ showing more hot pixels than ACR does.

I shot the example image on a warm summer night and without using in-camera Long Exposure Noise Reduction (to keep the gap between exposures short when shooting sets of tracked and untracked exposures for later compositing).

However, the penalty for not using LENR to expedite the image taking is a ground filled with hot pixels. While Adobe Camera Raw does have some level of hot pixel removal working “under the hood,” many specks remained.

ON1 showed more hot pixels, until you clicked Remove Hot Pixels, found under Details. As shown at centre above, it did a decent job getting rid of the worst offenders.

But as I’ll show later, the penalty is that stars now look distorted and sometimes double, or you get the outright removal of stars. ON1 doesn’t do a good job distinguishing between true sharp-edged hot pixels and the softer images of stars. Indeed, it tends to over sharpen stars.

A competitor, Capture One 11, does a better job, with an adjustable Single Pixel removal slider, so you can at least select the level of star loss you are willing to tolerate to get rid of hot pixels.

Star Image Quality

ON1 & ACR Star Image Comparison
On the left, a 700% blow-up of the stars in Adobe Camera Raw. On the right, the same image processed in ON1 and exported out as a PSD.

Yes, we are pixel peeping here, but that’s what we do in astrophotography. A lot!

Stars in ON1 don’t look as good as in Camera Raw. Inevitably, as you add contrast enhancements, stars in ON1 start to exhibit dark and unsightly “sharpening haloes” not present in ACR, despite me applying similar levels of sharpening and contrast boosts to each version of the image.

Camera Raw has been accused of producing images that are not as sharp as with other programs such as Capture One and ON1.

There’s a reason. Other programs over-sharpen, and it shows here.

We can get away with it here in wide-field images, but not later with deep-sky close-ups. I don’t like it. And it is unavoidable. The haloes are there, albeit at a low level, even with no sharpening or contrast enhancements applied, and no matter what image profile is selected (I used ON1 Standard throughout).

De-Bayering Artifacts

ON1-Debayer
ON1, with contrast boosts applied but with no sharpening or noise reduction, shows star haloes, while the sky shows a blocky pattern at the pixel level in high ISO shots.

ACR-Debayer
Adobe Camera Raw, with similar settings but also no sharpening or noise reduction, shows a smooth and uniform sky background.

You might have to download and closely inspect these images to see the effect, but ON1’s de-Bayering routine exhibits a cross-hatched blocky pattern at the pixel-peeping level. ACR does not.

I see this same effect with some other raw developers. For example, the free Raw Therapee shows it with many of its choices for de-Bayering algorithms, but not all. Of the more than a dozen raw developers I tested a year ago, ACR and DxO PhotoLab had (and still have) the most artifact-free de-Bayering and smoothest noise reduction

Again, we can get away with some pixel-level artifacts here, but not later, in deep-sky processing.


Nightscape Processing โ€” Layering and Compositing

ON1 Perfect Brush
ON1’s adjustable “Perfect Brush” option for precise masking around edges and objects isn’t quite as effective as Photoshop’s Quick Selection Tool.

Compositing

The 2018 version of ON1 forced you to destructively flatten images when bringing them into the Layers module.

The 2019 version of ON1 improves that. It is now possible to composite several raw files into one image and still retain all the original Develop and Effects settings for non-destructive work.

You can then use a range of masking tools to mask in or out the sky.

For the example above, I have stacked tracked and untracked exposures, and am starting to mask out the trailed stars from the untracked exposure layer.

To do this with Adobe, you would have to open the developed raw files in Photoshop (ideally using “smart objects” to retain the link back to the raw files). But with ON1 we stay within the same program, to retain access to non-destructive settings. Very nice!

To add masks, ON1 2019 does not have the equivalent of Photoshop’s excellent Quick Selection Tool for selecting the sky or ground. It does have a “Perfect Brush” option which uses the tonal value of the pixels below it, rather than detecting edges, to avoid “painting over the lines.”

While the Perfect Brush does a decent job, it still requires a lot of hand painting to create an accurate mask without holes and defects. There is no non-destructive “Select and Mask” refinement option as in Photoshop.

Yes, ON1’s Refine Brush and Chisel Mask tools can help clean up a mask edge but are destructive to the mask. That’s not acceptable to my non-destructive mindset!

Local Adjustmentsย 

ON1 Masking Adjustments
Local Adjustments can be painted in or out with classic and easy-to-adjust and view masks and layers, rather than adjustment pins used by many raw developers such as ACR.

The masking tools are also applicable to adding “Local Adjustments” to any image layer, to brighten or darken regions of an image for example.

These work well and I find them more intuitive than the “pins” ACR uses on raw files, or DxO PhotoLab’s quirky “U-Point” interface.

ON1’s Local Adjustments work more like Photoshop’s Adjustment Layers and are similarly non-destructive. Excellent.

Luminosity Masks

ON1 Luminosity Masking
ON1 has one-click Luminosity masking, an excellent feature.

A very powerful feature of ON1 is its built-in Luminosity masking.

Yes, Camera Raw now has Range Masks, and Photoshop can be used to create luminosity masks, but making Photoshop’s luminosity masks easily adjustable requires purchasing third-party extension panels.

ON1 can create an adjustable and non-destructive luminosity mask on any image or adjustment layer with a click.

While such masks, based on the brightness of areas, aren’t so useful for low-contrast images like the Milky Way scene above, they can be very powerful for merging high-contrast images (though ON1 also has an HDR function not tested here).

Glow Effect
ON1’s handy Orton-style Glow effect, here with a Luminosity mask applied. The mask can be adjusted with the Levels and Window sliders, and applied to a range of colors as well.

ON1 has the advantage here. Its Luminosity masks are a great feature for compositing exposures or for working on regions of bright and dark in an image.

Final Composite

ON1 Final Composite
A finished nightscape composite, with stacked exposures for the ground and stacked and tracked exposures for the sky, layered and blended in ON1.

Here again is the final result, above.

It is not just one image each for the sky and ground, but is instead a stack of four images for each half of the composite, to smooth noise. This form of stacking is somewhat unique to astrophotography, and is commonly used to reduce noise in nightscapes and in deep-sky images, as shown later.

Stacking

ON1-Layer Opacities
This shows an intermediate step in creating the final composite shown above: Four sky layers are stacked, with opacities as shown, which has the effect of smoothing noise. But to continue working on the image requires making a single “New Stamped Layer” out of the group of four โ€“ in this case, the sky layers. The same can be done for the four ground layers.

Here I show how you have to stack images in ON1.

Unlike Photoshop and Affinity Photo, ON1 does not have the ability to merge images automatically into a stack and apply a mathematical averaging to the stack, usually a Mean or Median stack mode. The averaging of the image content is what reduces the random noise.

Instead, with ON1 you have perform an “old school” method of average stacking โ€“ by changing the opacity of the layers, so that Layer 2 = 50%, Layer 3 = 33%, Layer 4 = 25%, and so on. The result is identical to performing a Mean stack mode in Photoshop or Affinity.

Fine, except there is no way to perform a Median stack, which can be helpful for eliminating odd elements present in only one frame, perhaps an aircraft trail.

Copy and Paste Settings

ON1 Pasting Settings
ON1 allows easy copying and pasting of settings from one raw image to others, with the annoying exception of Local Adjustments and their masks.

Before we even get to the stacking stage, we have to develop and process all the images in a set. Unlike Lightroom or Camera Raw, ON1 can’t develop and synchronize settings to a set of images at once. You can work on only one image at a time.

So, you work on one image (one of the sky images here), then Copy and Paste its settings to the other images in the set. I show the Paste dialog box here.

This works OK, though I did find some bugs โ€“ the masks for some global Effects layers did not copy properly; they copied inverted, as black instead of white masks.

However, Luminosity masks did copy from image to image, which is surprising considering the next point.

The greater limitation is that no Local Adjustments (ones with masks to paint in a correction to a selected area) copy from one image to another … except ones with gradient masks. Why the restriction?

So as wonderful as ON1’s masking tools might be, they aren’t of any use if you want to copy their masked adjustments across several images, or, as shown next, to a large time-lapse set.

While Camera Raw’s and Lightroom’s Local Adjustment pins are more awkward to work with, they do copy across as many images as you like.


Time-Lapse Processing

ON1 Copy & Paste
ON1 does allow developing one image in a set, then copying and pasting its settings to perhaps hundreds of other images in a time-lapse set.

A few Adobe competitors, such as Affinity Photo (as of this writing) simply can’t do this.

By comparison, with the exception of Local Adjustments,ย ON1 does have good functions for Copying and Pasting Settings. These are essential for processing a set of hundreds of time-lapse frames.

ON1 Export
This is ON1’s Export dialog box, set up here to export the developed raw files into another “intermediate” set of 4K-sized JPGs for movie assembly.

Once all the images are processed โ€“ whether it be with ON1 or any other program โ€“ the frames have to exported out to an intermediate set of JPGs for assembly into a movie by third-party software. ON1 itself can’t assemble movies, but then again neither can Lightroom (as least not very well), though Photoshop can, through its video editing functions.

For my test set of 220 frames, each with several masked Effects layers, ON1 took 2 hours and 40 minutes to perform the export to 4K JPGs. Photoshop, through its Image Processor utility, took 1 hour and 30 minutes to export the same set, developed similarly and with several local adjustment pins.

ON1 did the job but was slow.

A greater limitation is that, unlike Lightroom, ON1 does not accept any third party plug-ins (it serves as a plug-in for other programs). That means ON1 is not compatible with what I feel are essential programs for advanced time-lapse processing: either Timelapse Workflow (from https://www.timelapseworkflow.com) or the industry-standard LRTimelapse (from https://lrtimelapse.com).

Both programs work with Lightroom to perform incremental adjustments to settings over a set of images, based on the settings of several keyframes.

Lacking the ability to work with these programs means ON1 is not a program for serious and professional time-lapse processing.


Deep-Sky Processing

ON1-Tracked Milky Way
A tracked 2-minute exposure of the Cygnus Milky Way, with a Sony a7III camera at ISO 800 and Venus Optics Laowa 15mm lens at f/2, developed in ON1.

ACR-Tracked Milky Way
The same Milky Way image developed in Adobe Camera Raw. It looks better!

Wide-Angle Milky Way

Now we come to the most demanding task: processing long exposures of the deep-sky, such as wide-angle Milky Way shots and close-ups of nebulas and galaxies taken through telescopes. All require applying generous levels of contrast enhancement.

As the above example shows, try as I might, I could not get my test image of the Milky Way to look as good with ON1 as it did with Adobe Camera Raw. Despite the many ways to increase contrast in ON1 (Contrast, Midtones, Curves, Structure, Haze, Dynamic Contrast and more!), the result still looked flat and with more prominent sky gradients than with ACR.

And remember, with ACR that’s just the start of a processing workflow. You can then take the developed raw file into Photoshop for even more precise work.

With ON1, its effects and filters all you have to work with. Yes, that simplifies the workflow, but its choices are more limited than with Photoshop, despite ON1’s huge number of Presets.

Deep-Sky Close-Ups

ON1 Processed M31
The Andromeda Galaxy, in a stack of six tracked and auto-guided 8-minute exposures with a stock Canon 6D MkII through an 80mm f/6 refractor.

Photoshop Processed M31
The same set of six exposures, stacked and processed with ACR and Photoshop, with multiple masked adjustment layers as at right. The result looks better.

Similarly, taking a popular deep-sky subject, the Andromeda Galaxy, aka M31, and processing the same original images with ON1 and ACR/Photoshop resulted in what I think is a better-looking result with Photoshop.

Of course, it’s possible to change the look of such highly processed images with the application of various Curves and masked adjustment layers. And I’m more expert with Photoshop than with ON1.

But … as with the Cygnus Milky Way image, I just couldn’t get Andromeda looking as good in ON1. It always looked a little flat.

Dynamic Contrast did help snap up the galaxy’s dark lanes, but at the cost of “crunchy” stars, as I show next. A luminosity “star mask” might help protect the stars, but I think the background sky will inevitably suffer from the de-Bayering artifacts.

Star and Background Sky Image Quality

ON1 Processed M31-Close-Up
A 400% close-up of the final Andromeda Galaxy image. It shows haloed stars and a textured and noisy sky background.

Photoshop Processed M31-Close-Up
The same area blown up 400% of the Photoshop version of the Andromeda Galaxy image. Stars and sky look smoother and more natural.

As I showed with the nightscape image, stars in ON1 end up looking too “crunchy,” with dark halos from over sharpening, and also with the blocky de-Bayering artifacts now showing up in the sky.

I feel it is not possible to avoid dark star haloes, as any application of contrast enhancements, so essential for these types of objects, brings them out, even if you back off sharpening at the raw development stage, or apply star masks.

ON1 Processed M31-With & Without
On the left, the image before any processing applied; on the right, after the level of processing needed for such deep-sky images. What starts out looking OK, turns messy.

ON1 is applying too much sharpening “under the hood.” That might “wow” casual daytime photographers into thinking ON1 is making their photos look better, but it is detrimental to deep-sky images. Star haloes are a sign of poor processing.

Noise and Hot Pixels

ON1 With & Without NR and Hot Pixels
With and without noise reduction and hot pixel removal shows stars becoming lost and misshapen with the Remove Hot Pixel option.

ON1’s noise reduction is quite good, and by itself does little harm to image details.

But turn on the Remove Hot Pixel button and stars start to be eaten. Faint stars fade out and brighter stars get distorted into double shapes or have holes in them.

Hot pixel removal is a nice option to have, but for these types of images it does too much harm to be useful. Use LENR or take dark frames, best practices in any case.

Image Alignment and Registration

ON1 Auto-Alignment
The six Andromeda images stacked then “Auto-Aligned” in ON1, with just the top (first) and bottom (last) images turned on here. with the top image switched to Difference blend mode to show any mis-alignment.

Photoshop Auto-Alignment
The same set stacked and “Auto-Aligned” in Photoshop, with the same first and last images turned on and blended with Difference. PS’s alignment is much better, indicated by the image “blacking out” as the two registered frames cancel out.

Before any processing of deep-sky images is possible, it is first necessary to stack and align them, to make up for slight shifts from image to image, usually due to the mount not being perfectly polar aligned. Such shifts can be both translational (left-right, up-down) and rotational (turning about the guide star).

New to ON1 2019 is an Auto-Align Layers function. It worked OK but not nearly as well as Photoshop’s routine. In my test images of M31, ON1 didn’t perform enough rotation.

Once stacked and aligned, and as I showed above, you then have to manually change the opacities of each layer to blend them for noise smoothing.

By comparison, Photoshop has a wonderful Statistics script (under File>Scripts) that will automatically stack, align, then mean or median average the images, and turn the result into a non-destructive smart object, all in one fell swoop. I use it all the time for deep-sky images. There’s no need for separate programs such as Deep-Sky Stacker.

In ON1, however, all that has to be done manually, step-by-step.ย ON1 does do the job, just not as well.


Wrap-Up

M31 from ON1
The final M31, Andromeda Galaxy image processed with ON1.

ON1 Photo RAW 2019 is a major improvement, primarily in providing a more seamless and less destructive workflow.

Think of it as Lightroom with Layers!ย 

But it isn’t Photoshop.

Dynamic Contrast
ON1’s useful Dynamic Contrast filter. A little goes a long way.

True to ON1’s heritage as a special effect plug-in, it has some fine Effect filters, such as Dynamic Contrast above, ones I sometimes use from within Photoshop as plug-in smart filters.

Under Sharpen, ON1 does offer a High Pass option, a popular method for sharpening deep-sky objects.

Missing Filters and Adjustments

But for astrophoto use, ON1 is missing a lot of basic but essential filters for pixel-level touch-ups. Here’s a short list:

โ€ข Missing are Median, Dust & Scratches, Radial Blur, Shake Reduction, and Smart Sharpen, just to mention a handful of filters I find useful for astrophotography, among the dozens of others Photoshop has, but ON1 does not. But then again, neither does Lightroom, another example of how ON1 is more light Lightroom with layers and not Photoshop.

ON1 Color Adjustment
ON1’s selective Color Adjustment. OK, but where’s the Black and Neutrals?

โ€ข While ON1 has many basic adjustments for color and contrast, its version of Photoshop’s Selective Color lacks Neutral or Black sliders, great for making fine changes to color balance in astrophotos.

โ€ข While there is a Curves panel, it has no equivalent to Photoshop’s “Targeted Adjustment Tool” for clicking on a region of an image to automatically add an inflection point at the right spot on the curve. This is immensely useful for deep-sky images.

โ€ข Also lacking is a basic Levels adjustment. I can live without it, but most astrophotographers would find this a deal-breaker.

โ€ข On the other hand, hard-core deep-sky photographers who do most of their processing in specialized programs such as PixInsight, using Photoshop or Lightroom only to perform final touch-ups, might find ON1 perfectly fine. Try it!

Saving and Exporting

ON1 saves its layered images as proprietary .onphoto files and does so automatically. There is noย Save command, only a final Export command. As such it is possible to make changes you then decide you don’t like … but too late! The image has already been saved, writing over your earlier good version. Nor can you Save As … a file name of your choice. Annoying!

Opening a layered .onphoto file (even with ON1 itself already open) can take a minute or more for it to render and become editable.

Once you are happy with an image, you can Export the final .onphoto version as a layered .PSD file but the masks ON1 exports to the Photoshop layers may not match the ones you had back in ON1 for opacity. So the exported .PSD file doesn’t look like what you were working on. That’s a bug.

Only exporting a flattened TIFF file gets you a result that matches your ON1 file, but it is now flattened.

Bugs and Cost

I encountered a number of other bugs, ones bad enough to lock up ON1 now and then. I’ve even seen ON1’s own gurus encounter bugs with masking during their live tutorials. These will no doubt get fixed in 2019.x upgrades over the next few months.

But by late 2019 we will no doubt be offered ON1 Photo RAW 2020 for another $80 upgrade fee, over the original $100 to $120 purchase price. True, there’s no subscription, but ON1 still costs a modest annual fee, presuming you want the latest features.

Now, I have absolutely no problem with that, and ON1 2019 is a significant improvement.

However, I found that for astrophotography it still isn’t there yet as a complete replacement for Adobe.

But don’t take my word for it. Download the trial copy and test it for yourself.

โ€” Alan, November 22, 2018 / ยฉ 2018 Alan Dyer/AmazingSky.comย 

 

Aurora Reflections in Yellowknife


Auroral Arc over Tibbitt Lake

The Northern Lights are amazing from Yellowknife, in Canada’s Northwest Territories.ย 

A handful of locations in the world are meccas for aurora chasers. Yellowknife is one of them and, for me, surprisingly accessible with daily flights north.

In a two-hour flight from Calgary you can be at latitude 62ยฐ North and standing under the auroral oval with the lights dancing overhead every clear night.

Aurora Panorama at Tibbit Lake #2

The attraction of going in early September, as I did, is that the more persistent clouds of late autumn have not set in, and the many lakes and rivers are not yet frozen, making for superb photo opportunities.

Lakes down Highway 4, the Ingraham Trail, such as Prosperous, Prelude, and Pontoon are popular spots for the busloads of tourists who fly in every year from around the world.

On one magical night I and my local host and guide, Stephen Bedingfield, went to the end of the Trail, to where the Ice Road begins, to Tibbitt Lake, and had the site to ourselves. The aurora was jaw-dropping that night.

On other nights with less certain prospects I stayed in town, and still got a fine show on several nights, the Lights so bright they show up well even from within urban Yellowknife.

On another night we chased into clear skies down Highway 3 to the west, to a rocky plateau on the Canadian Precambrian Shield. Even amid the clouds, the aurora was impressive.

Aurora in the Clouds Panorama

But it was the night at Tibbitt that was the highlight.

Here is the finale music video from movies shot that night, September 8, 2018, with two cameras: the Sony a7III used to take “real-time” 4K videos of the aurora motion, and the Nikon D750 used to take time-lapses.

The movie is in 4K. The music, Eternal Hope, is by Steven Gutheinz and is used by permission of West One Music.

Aurora Reflections from Alan Dyer on Vimeo.

Click through to Vimeo for more technical info about the video.

Enjoy! And do share!

And make Yellowknife one of your bucket-list locations.

โ€” Alan, October 2, 2018 / ยฉ 2018 Alan Dyer / AmazingSky.comย 

 

“Nightscapes & Time-Lapses” Goes Universal!


How to Photograph and Process Nightscapes and Time-Lapses

I’m pleased to announce that my “Nightscapes and Time-Lapses” eBook is now available for all devices as a “universal” PDF!

First published in 2014, and revised several times since then, my How to Photograph and Process Nightscapes and Time-Lapses eBook had been available only for Apple devices through the Apple iBooks Store. Not any more!

Over the years, many people have inquired about an edition for other devices, notably Android and Windows tablets. The only format that I can be sure the wide array of other devices can read and display as I intend it is PDF.

To convert the interactive Apple iBook into a PDF required splitting the content into two volumes:

Volume 1 deals just with Photography in 425 pages.

Cover-Volume1

Volume 2 deals just with Processing, also in 425 pages.

Cover-Volume2

Volume 2 includes all the same step-by-step tutorials as the Apple edition, but spread over many more pages. That’s because the Apple Edition allows “stacking” many processing steps into a one-page interactive gallery.

In the PDF version, however, those same steps are shown over several pages. And there are about 50 processing tutorials, including for selected non-Adobe programs such as Affinity Photo, ON1 Photo RAW, and DxO PhotoLab.

The other main difference is that, unlike the Apple version, I cannot embed videos. So all the videos are provided by links to Vimeo feeds, many “private” so only my ebook owners have access to those videos.

Otherwise, the combined content of the two PDFs is the same as the Apple iBooks edition.

Cover-Apple Edition

I’ve also updated the Apple iBooks version (to v3.1) to revise the content, and add a few new pages: on Luminosity Mask panel extensions, southern hemisphere Milky Way and Moon charts, and even the new Nikon Z6 camera. It is now 580 pages.

Owners of the previous Apple iBooks edition can get the updated version for free. In iBooks, check under Purchased>Updates.

Both Apple and PDF editions are now in sync and identical in content. I think you’ll find them the most comprehensive works on the subject in print and in digital.

To learn more and to buy, see my webpage at my AmazingSky site.ย 

Thanks!

โ€” Alan, September 1, 2018 / ยฉ 2018 Alan Dyer / AmazingSky.comย 

 

Milky Way Over the Icefields

Banff by Night


Milky Way Reflections at Bow Lake

Three perfect nights in July provided opportunities to capture the night sky at popular sites in Banff National Park.

When the weather forecast in mid-July looked so promising I made an impromptu trip to Banff to shoot nightscapes and time-lapses under unusually clear skies. Clouds are often the norm in the mountains or, increasingly these days, forest fire smoke in late summer.

But from July 15 to 17 the skies could not have been clearer, except for the clouds that rolled in late on my last night, when I was happy to pack up and get some sleep.

Conjunction over the Continental Divide with Train

My first priority was to shoot the marvellous close conjunction of the Moon and Venus on July 15. I did so from the Storm Mountain viewpoint on the Bow Valley Parkway, with a cooperative train also coming through the scene at the right time.

The Milky Way and Mars over Storm Mountain

This was the view later with the Milky Way and Mars over Bow Valley and Storm Mountain.

Bow Lake by Night Panorama

The next night, July 16, was one of the most perfect I had ever seen in the Rockies. Crystal clear skies, calm winds, and great lake reflections made for a picture-perfect night at Bow Lake on the Icefields Parkway. Above is a 360ยฐ panorama shot toward the end of the night when the galactic centre of the Milky Way was over Bow Glacier.

Streaks of green airglow arc across the south, while to the north the sky is purple from a faint display of aurora.

Earlier that night the usual auroral arc known as Steve put in an unexpected appearance. It was just a grey band to the eye, but the camera picked up Steve’s usual pink colours. Another photographer from the U.S. who showed up had no idea there was an aurora happening until I pointed it out.

Mars and the Milky Way at Herbert Lake

My last night was at Herbert Lake, a small pond great for capturing reflections of the mountains around Lake Louise, and the Milky Way. Here, brilliant Mars, so photogenic this summer, also reflects in the still waters.

At each site I shot time-lapses, and used those frames to have some fun with star trail stacking, showing the stars turning from east to west and reflected in the lake waters, and with a single still image taken at the end of the sequence layered in to show the untrailed sky and Milky Way.

But I also turned those frames into time-lapse movies, and incorporated them into a new music video, along with some favourite older clips reprocessed for this new video.

Banff by Night (4K) from Alan Dyer on Vimeo.

Enjoy! And do enlarge to full screen. The video is also in 4K resolution.

Clear skies!

โ€” Alan, August 2, 2018 / ยฉ 2018 Alan Dyer / AmazingSky.com

 

On Solstice Pond


Selfie at Solstice Pond

Solstice nights have been filled with twilights, planets, and noctilucent clouds.

Astronomers tend to curse the short nights and late sunsets of summer solstice. But the bright nights do offer unique sights.

Over the last few nights I’ve set up at what I call “Solstice Pond,” a prairie slough near home ideal for shooting the aurora to the north and, at this time of year, the glow of twilight and noctilucent clouds.

Below is the view on the night before solstice, looking north toward the glow of “perpetual twilight” that lights the northern horizon at solstice time from my latitude of 50ยฐ north.

Solstice Twilight Panorama over Prairie Pond
A 120ยฐ panorama of the summer solstice twilight (at 12:30 am local time) looking north over the prairie pond near home in southern Alberta, taken June 19/20, 2018. Some very faint noctilucent clouds are at left but fading, while some very faint rays of auroral curtains are also visible in the photo but were invisible to the eye. The bright star Capella is at centre and reflected in the calm waters. Perseus is at right of centre. The red lights at right are from the wind turbines at the Wintering Hills Wind Farm. This is a stitch of 6 segments, with the 35mm lens at f/2.5 for 20 seconds each with the Canon 6DMkII at ISO 400.

From farther north the twilight would be more prominent, while above the Arctic Circle at 66ยฐ N latitude, the twilight turns to full daylight as the Sun never sets.

The view looking south this night, with the Moon just off frame at right, includes the Milky Way at centre, with Saturn embedded, flanked by bright Jupiter at right and reddish Mars at left, both casting shimmering “glitter paths” on the still waters.

Planet Panorama at a Prairie Pond
A 160ยฐ panorama looking south near summer solstice time in June 2018, with the bright planets Mars (left) and Jupiter (right) and their glitter paths on the water flanking the Milky Way and Saturn in Sagittarius above the pinkish Lagoon Nebula. The waxing Moon is setting off frame at right brightening the sky and lighting the landscape. The sky is also blue from the solstice twilight. The stars of Scorpius shine between Jupiter and the Milky Way. Some faint bands of red and green airglow are visible at left, despite the bright sky. This is a stitch of 8 segments, all for 25 seconds with the 35mm lens at f/2.2 and Canon 6D MkII at ISO 800.

A few nights later (below), on June 24, the star of the solstice sky put in an appearance. Bright noctilucent clouds (NLCs) shone to the north, reflected in the pond.

These are water vapour clouds 80 kilometres high at the edge of the atmosphere โ€“ in the mesosphere โ€“ almost in space. They form over the Arctic in summer, and are high enough to remain sunlit even in the middle of the night as they catch the Sun shining over the pole.

Southern Western Canada โ€“ the Prairies where I live โ€“ is well-placed to see them, as we are far enough north to see them in our sky, but not so far north that our sky is too bright.

Noctilucent Clouds over Prairie Pond (June 24, 2018)
A fine display of noctilucent clouds (NLCs) or polar mesospheric clouds, reflected in a local prairie pond near home in southern Alberta. The display started with wisps much higher in the north but they faded as the Sun dropped lower, with the display at this extent by the time I reached my spot and took this panorama. Leo and Regulus are setting at far left in the west, as is Venus just above the horizon at left. Capella and Auriga are at centre, and circumpolar, while the stars of Perseus at right, rising. This is a panorama of 9 segments, at 15ยฐ spacings, with the 35mm lens at f/2.8 for 13 second exposures with the Canon 6D MkII at ISO 400. Stitched with Adobe Camera Raw.

An even better display appeared two nights later, on June 26, brighter and with more structure.

The curving arc of the top of the display defines the most southerly edge where sunlight is able to reach. That edge drops lower through the first part of the night, as the Sun itself drops lower below the horizon. This causes less of the NLC display to be sunlit.

Panorama of Noctilucent Clouds (June 26, 2018)
A panorama of a fine display of noctilucent clouds across the northern horizon over an angle of about 60ยฐ. This was on June 26, 2018 at about 11:45 pm. Capella is just left of centre. The display faded as the solar illumination dropped and the clouds darkened from the top down. This was from the small pond near home in southern Alberta. This is a stitch of 7 segments, each 2 seconds at f/2.8 with the 85mm Rokinon lens and Canon 6D MkII at ISO 400. Stitched with ACR.

You can see this effect of the changing illumination of the clouds in this time-lapse compilation from June 26 (below).

Also notice the waving motion of the clouds. It is as if the NLC material is flowing over standing waves in the atmosphere โ€“ and it is! The waves are called “gravity waves,” and are bumps in the high atmosphere created by disturbances far below in the normal layers of the atmosphere, the stratosphere and troposphere.

The video includes two clips shot simultaneously: from a camera with a 24mm wide-angle lens, and from a camera with an 85mm moderate telephoto. Expand to view full screen in HD.

The motion, here over an hour or more, is hypnotic. The NLCs move right to left (east to west), while the dark normal weather clouds on the horizon are blowing left to right (west to east). The stars are also turning left to right. The water ripples in the wind, while ducks swim by.

It was a magical night at Solstice Pond.

โ€“ Alan, June 27, 2018 / ยฉ 2018 Alan Dyer / AmazingSky.comย 

 

The 2018 Edition of “Nightscapes and Time-Lapses”


Milky Way Over the Icefields

Revised and expanded, the new Third Edition of my Nightscapes and Time-Lapses eBook provides one of the most comprehensive guides to the subject you’ll find!

The 2018 Third Edition of my ebook How to Photograph and Process Nightscapes and Time-Lapses is now available at the Apple iBooks Store.

A detailed description and content listing is at my website at http://www.amazingsky.com/nightscapesbook.html where there is a link to the iBooks Store page.

Here’s a short promo video, one that also opens the ebook as one of the embedded videos.

I originally published this ebook in 2014, then revised it in late 2016. Hereโ€™s whatโ€™s new in this 2018 Third Edition:

  • Updated equipment (cameras, lenses, filters, time-lapse gear) to reflect whatโ€™s current as of mid-2018. For example I added: the Revolve Camera slider; functions from the Canon 6D MkII; and information about the Sony a7III Mirrorless.ย 
  • Updated the processing tutorials with current software: Photoshop CC2018, Lightroom Classic CC, Starry Landscape Stacker, TLDF, Timelapse Workflow, and LRTimelapse version 5.
  • Added tutorials on selected non-Adobe programs: DxO PhotoLab, ON1 Photo RAW, Affinity Photo, and the extensions Raya Pro 3 and Dr. Brownโ€™s Services.
  • Added some 50 new topic pages, such as on memory cards and exposure blending.

In addition Iโ€™ve performed โ€œhousekeeping choresโ€ such as:

  • Removing some embedded movies to reduce the file size and
  • Converting interactive diagrams into labeled images and
  • Flattening some of the interactive image galleries, all for facilitating conversion to PDFs for non-Apple platforms.ย 
  • Improving the resolution of most tutorial screenshot images.
  • Improving many diagrams and updating many images.
  • Merging the chapter on Intervalometers into Chapter 1.
  • Plus Iโ€™ve added a section on lunar eclipses back in. Yay!

Here are screen shots of sample chapter content pages, to provide an idea of what the ebook contains and looks like.

All current owners of the older editions get the Third Edition update for free through the iBooks app (Mac or iPad, and also iPhone).

I hope you enjoy the new edition. Tell your friends! And do leave a rating or review at the iBooks sales page. Thanks!

And yes, for non-Apple people, aย non-interactive PDF version for all other platforms (Windows and Android) is in production for later this year.

Thanks!

โ€” Alan, June 9, 2018 / ยฉ 2018 Alan Dyer / amazingsky.com

 

STEVE Puts on a Show


Steve Auroral Arc over House #2 (May 6, 2018)

The strange aurora named Steve put on a show on Sunday, May 6.ย 

The past weekend was a good one for Northern Lights here in Alberta and across western Canada.

Aurora and Milky Way over Red Deer River

A decent display lit the northern sky on Saturday, May 5, on a warm spring evening. I took in that show from a favorite spot along the Red Deer River.

The next night, Sunday, May 6, we were hoping for a better show, but the main aurora never amounted to much across the north.

Instead, we got a fine showing of Steve, an unusual isolated arc of light across the sky,ย that was widely observed across western Canada and the northern U.S. ย I caught his performance from my backyard.

Popularized by the Alberta Aurora Chasers Facebook group, Steve is the fanciful name applied to what still remains a partly unexplained phenomenon. It might not even be a true aurora (and it is NOT a “proton arc!”) from electrons streaming down, but a stream of hot gas flowing east to west and always well south of the main aurora.

Thus Steve is “backronymed” as Strong Thermal Emission Velocity Enhancement.

To the eye he appears as a grey arc, not doing much, but fading in, slowly shifting, then fading away after 30 to 60 minutes. He doesn’t stick around long.

The camera reveals his true colours.

Steve Auroral Arc over House #1 (May 6, 2018)

This is Steve to the west, displaying his characteristic pink and white tints.

Fish-Eye Steve #1 (May 6, 2018)

But overhead, in a fish-eye lens view, he displayed ever so briefly another of his talents โ€“ slowly moving fingers of green, called a picket fence aurora.

It was appropriate for Steve to appear on cue, as NASA scientists and local researchers who are working on Steve research were gathered in Calgary to discuss future aurora space missions. Some of the researchers had not yet seen Steve in person, but all got a good look Sunday night as they, too, chased Steve!

I shot a time-lapse and real-time videos of Steve, the latter using the new Sony a7III camera which can shoot 4K videos of night sky scenes very well.

The final video is here on Vimeo.

Steve Aurora – May 6, 2018 (4K) from Alan Dyer on Vimeo.

It is in 4K, if you choose to stream it at full resolution.

With summer approaching, the nights are getting shorter and brighter, but we here in western Canada can still see auroras, while aurora destinations farther north are too bright and lack any night skies.

Plus our latitude south of the main auroral oval makes western Canada Steve country!

โ€” Alan, May 9, 2018 / ยฉ 2018 / AmazingSky.com

 

The Rise and Set of the Easter Full Moon


Rising Easter Full Moon (Composite)

A clear day on Easter Eve allowed me to photograph the setting Full Moon in the morning and the rising Full Moon in the evening.

This was another of the year’s special Full Moons, and this time for a valid historical reason.

This was the “paschal” Full Moon, the one used to determine the date of Easter. It was the first Full Moon after the vernal equinox. The first Sunday after that Full Moon is Easter. This year, the Moon was full about an hour before sunrise on the morning of Saturday, March 31. Easter was the next day, Sunday, April 1.

Below is the view of the Full Moon not long after it was officially Full, as it was setting into the west as the first rays of sunlight lit the foreground at dawn on March 31.

The Easter Full Moonset #1 (March 31, 2018)
The setting Full Moon on the morning of Saturday, March 31, 2018, the day before Easter. At this time, at about 7:20 a.m. MDT, the Moon was a little less than an hour after the moment of exact Full Moon, so the Sun had already risen before the Moon set. This was with the Canon 6D MkII and 200mm lens with 1.4x convertor, shot from home.

To be precise, the actual paschal Full Moon is a fictional or calculated Moon that occurs 14 days into the lunar cycle, and isn’t an observed Moon. But this year, we really did have a Full Moon just before Easter Sunday, and on the first day of Passover, from which we get the term “paschal.”

Later on March 31, after sunset, the Moon was now half a day past Full, causing it to rise a good half hour after sunset. However, the lighting and sky colour was still good enough to place a reddened Moon rising into a deep blue sky for a wonderful colour contrast.

This was also touted as a “blue Moon,” as it was the second Full Moon in March, and it was also the second blue Moon of 2018. (January had one, too.) But as you can see the Moon was hardly “blue!” It was a fine pink Moon.

Rising Easter Full Moon (Trail)
This is a stack of 424 exposueres, taken at 3-second intervals for a time-lapse, but here stacked with Lighten blend mode to create a moon trail streak. I used the Advanced Stacker Plus actions in Photoshop. The final Moon disk comes from the last image in the sequence, while the ground comes from the first image in the sequence. I shot this sequence from home, using a 200mm Canon lens and 1.4x convertor, on the Canon 6D MkII. Exposures ranged from 0.8 second to 1/15 second, all at ISO 100 and f/4.

The above image is a little fun with Photoshop, and stacks hundreds of images of the rising Moon to create a “Moon trail,” showing the change in colour of the Moon as it rose.

This short HD movie includes two versions of the full time-lapse sequence:

โ€ข One showing the Moon rising normally, though the sky and ground come from the first image in the sequence.

โ€ข The second is another bit of Photoshop fun, with the Moon leaving disks behind it as it rose.

For the technically minded, I created both movies using Photoshop’s video editing capabilities to layer in various still images on top of the base video file. The stills are layered with a Lighten blend mode to superimpose them onto the background sky and video.

Rising Moon Movie Composite Screenshot
A screen shot of the Photoshop layers used to create the Moon disk composite time-lapse.

While Easter is a spring holiday, it hardly seems spring here in Alberta. The coldest Easter weekend in decades and lots of snow on the ground made this a winter scene.

With luck, spring will arrive here well before the next Full Moon.

โ€” Alan, April 3, 2018 / ยฉ 2918 Alan Dyer / amazingsky.comย 

 

The Northern Lights from Norway


All-Sky Aurora from Norway #1

The skies of Norway provided superb nights of Northern Lights as I sailed the coast.

As I did last autumn, I was able to join a cruise along the Norwegian coast, instructing an aurora tour group from Road Scholar. We were on one of the Hurtigruten ferry ships that ply the coast each day, the m/s Nordnorge, on a 12-day trip from Bergen to Kirkenes at the top end of Norway, then back again to Bergen.

Purple Auroral Curtains in Twilight from Norway
Auroral curtains in twilight on March 14, 2018 from at sea north of Tromsรธ, Norway, on the Hurtigruten ship the m/s Nordnorge, with the curtains showing a purple tinge at the tops, likely from scattered blue sunlight mixing with the red oxygen colours. The Big Dipper is at centre in a view looking north. This is a single 2-second exposure with the Rokinon 12mm full-frame fish-eye at f/2.8 and Nikon D750 at ISO 8000.

In all, we had three very clear nights, with good auroras on two of those nights. Several other nights had bright auroras but seen through broken cloud.

Aurora Watchers on m/s Nordnorge #1
Aurora tourists taking in the sky show on March 14, 2018 from the aft deck of the Hurtigruten ship the m/s Nordnorge on the journey south, from a location north of Tromsรธ this night. This is a single 2-second exposure with the Rokinon 12mm full-frame fish-eye lens and Nikon D750 at ISO 8000.

All observing and photography is done from the ship deck as we sailed among the fjords and sounds along the coast.

Purple Auroral Curtains from Norway
Auroral curtains in twilight on March 14, 2018 from at sea north of Tromsรธ, Norway, on the Hurtigruten ship the m/s Nordnorge, with the curtains showing a purple tinge to the background sky, likely from scattered blue sunlight mixing with the red oxygen colours. The Big Dipper is at upper left; Orion is at far right; Leo is left of centre, in a view looking south. This is a single 2-second exposure with the Rokinon 12mm full-frame fish-eye at f/2.8 and Nikon D750 at ISO 8000.

The best night was an all-sky display on March 14 seen from north of Tromsรธ as we sailed back south from our farthest north of 71ยฐ latitude.

All-Sky Aurora from Norway #3
A sky-covering aurora on March 14, 2018, as seen from the Hurtigruten ship the m/s Nordnorge, as we sailed south toward Tromsรธ, Norway. The view is looking east. The curtains are converging to the zenith at top. This is a single 1.6-second exposure with the Rokinon 12mm full-frame fish-eye lens at f/2.8 and Nikon D750 at ISO 8000.

Earlier, on the trip north, we had a great night as the aurora danced over the Lofoten Islands and we entered the Trollfjord. There is no finer scenery on Earth for framing the Lights.

Entering Trollfjorden with Aurora
A scene from the Norwegian coast and the Loftoten Islands of the aurora over the entrance to the Trollfjorden fjord, from the forward deck of the Hurtigruten ferry ship the m/s Nordnorge. Cassiopeia and Perseus are at left. Vega (brightest) and Deneb are at lower right, high above the northern horizon from this latitude of 68ยฐ North. Taken March 10, 2018. I used the 14mm Sigma Art lens at f/1.8 and Nikon D750 at ISO 3200, for a 2-second exposure.

As is the custom, the captain enters the fjord by searchlight, a scene depicted below.

Entering Trollfjorden with Searchlights
A scene from the Norwegian coast and the Loftoten Islands of the aurora over the entrance to the Trollfjorden fjord, from the forward deck of the Hurtigruten ferry ship the m/s Nordnorge. The ship is using its searchlights to mark the entrance to the narrow fjord. Cassiopeia and Perseus are at left. Vega (brightest) and Deneb are at lower right, high above the northern horizon from this latitude of 68ยฐ North. Taken March 10, 2018. I used the 14mm Sigma Art lens at f/1.8 and Nikon D750 at ISO 3200, for a 2-second exposure.

I shot very few time-lapses on this trip (unlike my trip in October 2017, which you can see in a music video at a previous blog post).

However, here’s a short music video of two clips I did shoot, including a time-lapse of us approaching the Trollfjord entrance.

As we sailed south, we left the aurora behind. Our last look was of the arc of the auroral oval across the north, seen from south of Rorvik.

Panorama of the Auroral Oval from Norway
A 180ยฐ panorama of the sweep of the auroral oval, from due west, at left, to due east, at right, with due north near the image centre. Orion is just setting into the sea at far left. Cassiopeia is at centre. Deneb and Vega are the bright stars low in the sky and circumpolar shining just right of centre. I shot this on the evening of March 16, 2018 from at sea on the coast of Norway south of Rorvik, with the ship sailing south away from the aurora. This was from the aft deck of the m/s Nordnorge, one of the Hurtigruten ferry ships. The latitude was about 63ยฐ N. This is a panorama from 8 segments, stitched with PTGui, and shot with the Sigma 14mm Art lens at f/1.8, for a series of 1-second exposures at ISO 6400 with the Nikon D750.

However, for several nights prior we had been under the auroral oval and the Lights had danced for us over the sky.

Norway is one of the world’s best sites for seeing the Northern Lights โ€“ the “nordlys” โ€“ and taking a Hurtigruten cruise along the coast is a great way to see the Lights and incredible scenery that changes by the minute.

โ€” Alan, March 22, 2018 / ยฉ 2018 Alan Dyer / AmazingSky.com

 

The Beauty of the Milky Way


Beauty of Milky Way Title

I present a new 4-minuteย musicย video (in 4K resolution) featuring time-lapses of the Milky Way.

One of the most amazing sights is the Milky Way slowly moving across the sky. From Canada we see the brightest part of the Milky Way, its core region in Sagittarius and Scorpius moving across the souther horizon in summer.

But from the southern hemisphere, the galactic core rises dramatically and climbs directly overhead, providing a jaw-dropping view of our edge-on Galaxy stretching across the sky. It is a sight all stargazers should see.

I shot the time-lapses from Alberta, Canada and from Australia,ย mostly in 2016 and 2017.

I include a still-image mosaic of the Milky Way from Aquila to Crux shot in Chile in 2011.

Do watch in 4K if you can! And in Full-Screen mode.

Locations include Writing-on-Stone and Police Outpost Provincial Parks, and Banff and Jasper National Parks in Alberta.

In Australia I shot from the Victoria coast and from inland in New South Wales near Coonabarabran, with some scenes from the annual OzSky Star Safari held each April.

I used a SYRP Genie Mini and a Star Adventurer Mini for the panning sequences, and a TimeLapse+ View intervalometer for the day-to-night sequences.

I processed all sequences (some 7500 frames in total) through the software LRTimelapse to smooth transitions and flickering.

Music is by Audiomachine.

Enjoy!

โ€” Alan, January 22, 2018 / ยฉ 2018 Alan Dyer / amazingsky.comย 

 

Mercury, Moon, and Mirages


Rising and Distorted Supermoon on New Year's Day

Happy New Year to all! ย 

New Year’s Day proved to be a busy one for sky sights from home in southern Alberta.

Clear skies and warming temperatures allowed me to capture a trio of sights on January 1: Mercury in the morning, a unique mirage called the Fata Morgana in the afternoon, and the rising Full Moon in the evening.

On January 1 elusive Mercury was at its greatest elongation away from the Sun in the morning sky. This placed it as high as it can get above the horizon, though that’s not high at all at the best of times.

Mercury in the Morning on New Year's Day
Mercury at dawn in the southeast sky.

I captured Mercury before dawn as a bright star in the colourful twilight, using a telephoto lens to frame the scene more closely.

At this time the temperature outside was still about -24ยฐ C, as a cold snap that had plunged the prairies into frigid air for the last week still held its grip.

But by the afternoon, warmer air was drifting in from the west, in a Chinook flow from the Rockies.

As evidence of the change, the air exhibited a form of mirage called the Fata Morgana, named after the sorceress Morgan le Fay of Arthurian legend. The illusion of castles in the air was thought to be a spell cast by her to lure sailors to their doom.

Fata Morgana Mirage on the Prairies
A Fata Morgana mirage on the Prairies

The mirage produced the illusion of bodies of water in the distance, plus distorted, elongated forms of wind turbines and farm buildings on the horizon. The cause is the refraction of light by layers of warm air aloft, above cold air near the ground.

By evening the mirage effect was still in place, producing a wonderful moonrise with the Full Moon writhing and rippling as it rose through the temperature inversion.

As the lead image at top shows, at moments the top of the disk had a green rim (almost a distinct green flash), while the bottom was tinted red.

Here’s a short time-lapse video of the scene, shot through a small telescope. The lead image above and below is a composite of four of the frames from this movie.

Rising and Distorted Supermoon on New Year's Day
A composite of 4 exposures of the rising Full Moon on New Yearโ€™s Day, 2018, rising from left to right over a snowy prairie horizon in southern Alberta. This is a composite of 4 out of 500 images shot for a time-lapse sequence, layered in Photoshop. All were with a 66mm f/7 William Optics apo refractor and Canon 60Da camera firing 1/25th second exposures every 1 second.

This was also the largest and closest Full Moon of the year, what has become popularly called a “supermoon,” but more correctly called a perigean Full Moon.

A lunar cycle from now, at the next Full Moon, the Moon undergoes a total eclipse in the dawn hours of January 31 for western North America. This will be another misnamed Moon, a “blue Moon,” the label for the second Full Moon in a calendar month.

And some will also be calling it a “supermoon,” as it also occurs close to perigee โ€“ the closest point of the Moon to Earth in its monthly orbit โ€“ but not as close a perigee as it was at on January 1.

So it will be less than super, but it will nevertheless be spectacular as the Full “blue” Moon turns red as it travels through Earth’s shadow.

โ€” Alan, January 2, 2018 / ยฉ 2018 Alan Dyer / amazingsky.com

 

Winter Stars over the Badlands


Orion Rising Star Trails at Dinosaur Park

The clouds cleared to present a magical night under the Moon in the Badlands of southern Alberta.

At last, a break in the incessant clouds of November, to provide me with a fine night of photography at one of my favourite places, Dinosaur Provincial Park, declared a U.N. World Heritage Site for its deposits of late Cretaceous fossils.

I go there to shoot the night sky over the iconic hoodoos and bentonite clay hills.

November is a great time to capture the equally iconic constellation of Orion rising in the east in the early evening. The scene is even better if there’s a Moon to light the landscape.

November 27 presented the ideal combination of circumstances: clear skies (at least later at night), and a first quarter Moon to provide enough light without washing out the sky too much and positioned to the south and west away from the target of interest โ€“ Orion and the winter sky rising in the east.

Below is a slide show of some of the still images I shot, all with the Canon 6D MkII camera and fine Rokinon 14mm f/2.5 lens, used wide open. Most are 15-second exposures, untracked.

This slideshow requires JavaScript.

I kept another camera, the Nikon D750 and Sigma 24mm Art lens, busy all night shooting 1200 frames for a time-lapse of Orion rising, with clouds drifting through, then clearing.

Below is the resulting video, presented in two versions: first with the original but processed frames assembled into a movie, followed by a version where the movie frames show accumulating star trails to provide a better sense of sky motion.

To create the frames for this version I used the Photoshop actions Advanced Stacker Plus, from StarCircleAcademy. They can stack images then export a new set of frames each with the tapering trails, which you then assemble into a movie. I also used it to produce the lead image at top.

The techniques and steps are all outlined in my eBook, highlighted at top right.

The HD movie is just embedded here, and is not published on Vimeo or YouTube. Expand to fill your screen.

To help plan the shoot I used the astronomy software Starry Night, and the photo planning software The Photographer’s Ephemeris, or TPE. With it, you can place yourself at the exact spot to see how the Sun, Moon and stars will appear in sightlines to the horizon.

Here’s the example screen shot. The spheres across the sky represent the Milky Way.

IMG_3517

Look east to see Orion now in the evening sky. Later this winter, Orion will be due south at nightfall.

Clear skies!

โ€” Alan, November 29, 2017 / ยฉ 2017ย AmazingSky.com

 

Sailing to the Northern Lights


Sailing to the Lights Title

I present a music video of time-lapses of the Northern Lights from Norway, shot from the ship the aptly named m/s Nordlys.

The Nordlys is one of many ferry ships in the Hurtigruten cruise line (the name means “fast route”) that ply the Norwegian coast, with daily departures from Bergen (at latitude 60ยฐ N) to Kirkenes at the top of Norway (at 71ยฐ N). At the top end of Norway you are under the auroral oval and almost always see some level of auroral activity, if skies cooperate.

This 11-day cruise was blessed with five clear nights with active auroras. I was serving as an instructor for a tour group of 30 from the U.S.-based Road Scholar tour company.


Sailing to the Northern Lights from Alan Dyer on Vimeo.


The final sequence is of the ship entering the Trollfjorden โ€“ a narrow fjord often entered in darkness under searchlight. This was a dramatic sight with the aurora dancing overhead.

For a selection of still images from this trip and from the second cruise I did immediately following, see my previous blog post, The Nordlys of Norway.ย 

Technical Info:
All exposures were about 1 to 1.3 seconds only, to minimize blurring during each exposure, shot with the Nikon D750 at ISO 6400, and with mostly the Sigma 14mm Art lens at f/1.8.

One sequence is with the Rokinon 12mm full-frame fish-eye at f/2.8. Intervals were 1 to 2 seconds, providing a rapid cadence.

In assembly I applied a 4-frame blur to smooth the frame-to-frame motion. All processing with Adobe Camera Raw and assembly with the Mac app Time-Lapse from MicroProjects.ca (an app no longer available – a pity).

Music is by the Hollywood soundtrack artists AudioMachine, and is used with permission under “social media” licence. It is the track “Above and Beyond” from their album Tree of Life.

โ€” Alan, November 16, 2017 / ยฉ 2017 Alan Dyer / AmazingSky.comย 

 

The Aurora Starring Steve


"Steve," the Strange Auroral Arc (Spherical Fish-Eye Projection)

I’ve assembled a music video of time-lapse clips and still images of the fine aurora of September 27, with Steve making a cameo appearance.

The indicators this night didn’t point to a particularly great display, but the sky really performed.

The Northern Lights started low across the north, in a very active classic arc. The display then quietened.

But as it did so, and as is his wont, the isolated arc that has become known as Steve appeared across the south in a sweeping arc. The Steve arc always defines the most southerly extent of the aurora.

Steve faded, but then the main display kicked up again and began to fill the sky with a post-sub-storm display of pulsing rays and curtains shooting up to the zenith. Only real-time video can really capture the scene as the eye sees it, but the fast time-lapses I shot do a decent job of recording the effect of whole patches of sky turning on and off.

The display ended with odd pulsing arcs in the south.

Here’s the video, available in 4K resolution.

Alberta Aurora (Sept. 27, 2017) from Alan Dyer on Vimeo.

Expand to fill the screen for the best view.

Thanks for looking!

โ€” Alan, October 7, 2017 / ยฉ 2017 Alan Dyer / AmazingSky.comย 

 

Totality over the Tetons โ€” the Music Video


Totality over Tetons Title Image

I present the final cut of my eclipse music video, from the Teton Valley, Idaho.

I’ve edited my images and videos into a music video that I hope captures some of the awe and excitement of standing in the shadow of the Moon and gazing skyward at a total eclipse.

Totality over the Tetons from Alan Dyer on Vimeo.

The video can be viewed in up to 4K resolution. Music is by the Hollywood session group and movie soundtrack masters, Audiomachine. It is used under license.

Eclipse Triumph Selfie (Wide)
Me at the 2017 total solar eclipse celebrating post-eclipse with four of the camera systems I used, for close-up stills through a telescope, for 4K video through a telephoto lens, and two wide-angle time-lapse DSLRs. A fifth camera used to take this image shot an HD video selfie.
Never before have I been able to shoot a total eclipse with so many cameras to capture the scene from wide-angles to close-ups, in stills, time-lapses, and videos, including 4K. Details on the setup are in the caption for the video on Vimeo. Click through to Vimeo.

I scouted this site north of Driggs, Idaho two years earlier, in April 2015. It was perfect for me. I could easily set up lots of gear, it had a great sightline to the Grand Tetons, and a clear horizon for the twilight effects. And I had the site almost to myself. Observing with a crowd adds lots of energy and excitement, but also distraction and stress. I had five cameras to operate. It was an eclipse experience I’ll likely never duplicate.

If you missed this eclipse, you missed the event of a lifetime. Sorry. Plain and simple.

2017 Eclipse Time Sequence Composite
A composite of the 2017 eclipse with time running from left to right, depicting the onset of totality at left, then reappearance of the Sun at right. Taken with the 4-inch telescope shown above.
If you saw the eclipse, and want to see more, then over the next few years you will have to travel far and wide, mostly to the southern hemisphere between now and 2024.

But on April 8, 2024 the umbral shadow of the Moon once again sweeps across North America, bringing a generous four minutes of totality to a narrow path from Mexico, across the U.S., and up into eastern Canada.

It will be the Great North American Eclipse. Seven years to go!

โ€” Alan, September 2, 2017 / ยฉ 2017 Alan Dyer / www.amazingsky.com

 

Arc of the Low Summer Moon


Arc of the Summer MoonThe summer Full Moon arcs low across the southern sky, mimicking the path of the winter Sun.

This is a project I had in mind for the last month, and hoped to capture at the July Full Moon. A clear, dry, and cooperative night provide the chance.

The still images are composites of 40 images of the Moon traveling across the sky from dusk to dawn, taken at 10-minute intervals. They are layered onto a blend of background images of the 10 p.m. dusk sky (left), 2 a.m. middle-of-the-night sky (middle), and 5 a.m dawn sky (right).

As a bonus, the 10 p.m. sky shows some dark crepuscular rays in the twilight, while at 2 a.m. the Moon was in light cloud and surrounded by iridescent colours. By 5 a.m. denser clouds were moving in to obscure the Moon.

Arc of the Summer Moon

I shot the still image composite (above) and time-lapse movie (below) to illustrate the low arc of a summer Full Moon. In summer (June or July) the Full Moon sits at a similar place near the ecliptic as does the Sun in winter near the December solstice.

From the northern hemisphere the low position of the winter Sun gives us the short, cold days of winter. In summer, the similar low position of the Full Moon simply gives us a low Full Moon! But it is one that can be impressive and photogenic.

The time-lapse movie uses all 400 frames of the moving Moon superimposed onto the same background sky images, but now dissolving from one to the other.

 

The movie is 4K in resolution, though can be viewed at a smaller resolution to speed up playback if needed.


For the technically minded:

The Moon disks in the time-lapse and still composite come from a series of short 1/15-second exposures, short enough to record just the disks of the bright Moon set against a dark, underexposed sky.

I took these shots every minute, for 400 in total. They are blended into the bright background sky images using a Lighten blend mode, both in Photoshop for the still image, and in Final Cut for the movie.

The background sky images are longer exposures to record the sky colours, and stars (in the case of the 2 a.m. image). They are blended with gradient masks for the still image, but dissolved from one to the other in the time-lapse movie.

I shot the frames with a 15mm full-frame fish-eye lens and Canon 6D, with the camera not moved during the 7-hour shoot.

โ€” Alan, July 12, 2017 / ยฉ 2017 Alan Dyer / amazingsky.com 

Northern Lights Over a Prairie Lake


Auroral Arch over a Prairie LakeThe Northern Lights dance in the solstice sky over a prairie lake.ย 

This was a surprise display. Forecasts called for a chance of Lights on Saturday, June 24, but I wasn’t expecting much.

Nevertheless, I headed to a nearby lake (Crawling Lake) to shoot north over the water, not of the Lights, but of noctilucent clouds, a phenomenon unique to the summer solstice sky and our latitudes here on the Canadian prairies.

Aurora and Noctilucent Clouds over Crawling Lake v2

But as the night darkened (quite late at solstice time) the aurora began to appear in the deepening twilight.

I started shooting and kept shooting over the next four hours. I took a break from the time-lapses to shoot some panoramas, such as the headline image at top, capturing the sweep of the auroral oval over the lake waters.

Aurora and Noctilucent Clouds over Crawling Lake v1

Just on the horizon you can see some noctilucent clouds (NLCs) as well โ€“ clouds so high they are lit by the Sun all night long. NLCs sit at the same height as the bottom of the auroral curtains. But they appear here lower and much farther away, which they likely were, sitting farther north than the auroral band.

Arcs of the Aurora and Milky Way
A 360ยฐ panorama of the aurora and Milky Way in the twilight sky of a summer solstice evening.

I also shot this 360ยฐ panorama (above) capturing the arc of the aurora and of the Milky Way. This is a stitch of 8 segments with a 14mm lens mounted in portrait mode.

I’ve assembled the several time-lapse sequences I shot into a short music video. Check it out on Vimeo here. Click through to the Vimeo page for more technical information on the video sequences.

As always click HD, and relax and enjoy the dancing lights over the calm waters of a prairie lake on a summer evening.

Thanks!

โ€” Alan, June 26, 2017 / ยฉ 2017 Alan Dyer / amazingsky.com

 

Rising of the “Strawberry” Moon


The Rising Strawberry Moon of June 9, 2017 (Composite)

The Full Moon of June rose into a twilight sky over a prairie pond. 

On June 9, the clouds cleared to present an ideal sky for capturing the rising of the so-called “Strawberry Moon,” the popular name for the Full Moon of June.

The lead image is a composite of 15 frames, taken at roughly 2.5-minute intervals and stacked in Photoshop with the Lighten blend mode.

The image below is a single frame.

The Rising Strawberry Moon of June 9, 2017
The rising Full Moon of June, dubbed the โ€œStrawberry Moonโ€ in the media, as seen rising over a prairie pond in southern Alberta, on June 9, 2017. This is a single exposure stack, from a time-lapse sequence of 1100 frames, with images taken at two second intervals. Shot with the Canon 6D and 200mm lens.
I set up beside a small local prairie pond, to shoot the moonrise over the water. Ducks enjoyed the view and a muskrat swam by at one point.

I shot over 1100 frames, at two-second intervals to create a time-lapse of the rising Moon, as it brightened and turned from yellow-orange (not quite strawberry pink) to a bright white.

Here’s the time-lapse vignette.

Click on HD for the best view.

While the Harvest Moon gets lots of PR, as this sequence shows any Full Moon can provide a fine sight, and look yellow, due to absorption of the blue wavelengths by the atmosphere as the Moon rises, or as it sets.

However, the timing can vary from Full Moon to Full Moon. This one was ideal, with it rising right at sunset. If the Moon comes up too late, the sky might have already darkened, producing too great a difference in brightness between the Moon and background sky to be photogenic.

But what of these Moon names? How authentic are they? 

Who called this the Strawberry Moon? Native Americans? No. Or at best only one or two nations. 

Check the site at Western Washington University at http://www.wwu.edu/depts/skywise/indianmoons.html and you’ll see there were an enormous number of names in use, assuming even this listing is authentic. 

The names like “Strawberry Moon” that are popularized in the media today come from the American Farmers Almanac, and everyone โ€“ science writers and bloggers โ€“ ends up copying and pasting the same wrong, or at best misleading, information from the Almanac. 

Search for “Strawberry Moon” or “Moon names” and you’ll find the same explanation repeated verbatim and unquestioned by many writers. Alas, the Almanac is not an authoritative source โ€“ after all, they were the source of a misleading definition of Blue Moon decades ago. 

Yes, people around the world may have long had names for months and moons, but they were not necessarily the ones that make the rounds of news sites and blogs today. Most are a modern media concoction. A few years ago, pre-internet, no one knew about nor used these names. 
โ€” Alan, June 10, 2017 / ยฉ 2017 Alan Dyer / www.amazingsky.com

Night of the Great Aurora


Great Aurora of May 27, 2017 โ€“ Wide-Angle v5

No one predicted this spectacle. But on May 27 the last-minute warnings went out to look for a fabulous show as night fell.

And what a show it was! As darkness fell the sky was lit with green curtains. After midnight the curtains converged at the zenith for that most spectacular of sky sights, a coronal burst.

Aurora over the Rothney Observatory

As the night began I was at the Rothney Observatory helping out with the public stargazing night.

ISS and Aurora - Rising out of the West

We saw the Space Station rise out of the west over the Rockies and pass through the Northern Lights.

ISS and Aurora - In the East over Rothney Observatory

It then headed off east, appearing here as the streak amid the Lights and light pollution of Calgary.

To continue to shoot the display I, too, decided to head east, to home. I should have gone west, to the mountains.

I drove through rain to get home, and missed the peak of the display, judging by images from others in the Rockies, and those to the north.

ISS Through the Aurora (May 27, 2017)

But as I got home clouds began to clear enough for a glimpse of the Space Station, on its next pass, flying overhead, again through the aurora. I wonder what the astronauts might have been seeing looking down.

Great Aurora of May 27, 2017 โ€“ Wide-Angle v3

From home, I caught another bright sub-storm outburst to the north, as the curtains suddenly exploded in brightness and rapid motion, with characteristic pink fringes at the bottoms, from nitrogen molecules.

What impressed me about this display was the smell! Yes, you see auroras and some claim to hear them. But this display is one I’ll remember for the springtime scent of lilacs in the night air as the Lights danced. 

The Great Aurora of May 27 from Alan Dyer on Vimeo.

Here is a short music video of several time-lapse sequences I shot, of the sub-storm then post-storm subsidence into the patchy flaming and flickering effect that we often see at the end of a great display. And this was certainly one of them.

We southerners were treated to the class of display you usually have to travel north the Arctic and auroral oval to see.

โ€” Alan, May 31, 2017 / ยฉ 2017 Alan Dyer / AmazingSky.com 

 

Meet Steve, the Odd Auroral Arc


Red Auroral Arc #1 (May 10, 2015)

Stargazers in western Canada will have seen him โ€“ Steve, the odd auroral arc.ย 

There’s been a lot of publicity lately about anย unusualย form of aurora that appears as a stationary arc across the sky, isolated from the main aurora to the north. It usually just sits there โ€“ motionless, featureless, and colourless to the eye, though the camera can pick up magenta and green tints.

We often see these strangeย auroral arcs from western Canada.

Red Auroral Arc #3 (May 10, 2015)

In lieu of a better name, and lacking a good explanation as to their cause, these isolated arcs have become labelled simply as “Steve” by the aurora chasing community (the Alberta Aurora Chasers Facebook group) here in Alberta.

In a gathering of aurora chasers at Calgary’sย Kilkenny Pub,ย aurora photographer extraordinaire and AAC Facebook group administrator Chris Ratzlaff suggested the name. It comes from the children’s movie Over the Hedge, where a character calls anything he doesn’t understand “Steve.” The name has stuck!

Aurora Panorama with Isolated Arc

The 270ยฐ panorama fromย March 2, 2017 shows Steve to the west (right) and east (left) here, and well isolated from the main aurora to the north.

Isolated Auroral Arc Overhead

This is the view of that same March 2, 2017 arc looking straight up, showing Steve’sย characteristic gradient from pink at top though white, then to subtle “picket-fence” fingers of green that are usually very short-lived.

Isolated Auroral Arc #3 (Sept 2, 2016)

The view above is Steve from exactly 6 months earlier, on September 2, 2016. Same features. I get the impression we’reย looking up along a very tall but thin curtain.

Isolated Auroral Arc #5 (Sept 2, 2016)

Another view of the September 2, 2016 Steve shows hisย classic thin curtain and gradation of colours, here looking southeast.

Isolated Auroral Arc #4 (Sept 2, 2016)

Looking southwest on September 2, 2016, Steve takes on more rippled forms. But these are very transient. Indeed, Steve rarely lasts more than 30 minutes to an hour, and might get bright for only a few minutes. But even at his brightest, he usually looks white or grey to the eye, and moves very slowly.

Auroral Arc East

Here’s a classic Steve, from October 1, 2006 โ€“ aย white featureless arc even to the camera in this case.

So what is Steve?

Heย is often erroneously called a “proton arc,” but heย isn’t. True auroral proton arcs are invisible to the eye and camera, emitting in wavelengths the eye cannot see. Proton auroras are also diffuse, not tightly confined like Steve.

Auroral Arc Overhead

Above isย Steve from August 5, 2005, whenย he crashed the Saskatchewan Summer Star Party, appearing as a ghostly white band across the sky. But, again, the camera revealed hisย true colours.

Steve Auroras in 2015 from Alan Dyer on Vimeo.

Here are a couple of time-lapses from 2015 of the phenomenon, appearing as an isolated arc overhead in the sky far from the main auroral activity to the north. I shot these from my backyard in southern Alberta. In both clips the camera faces north, but takes in most of the sky with a fish-eye lens.

In the first video clip, note the east-to-west flow of structure, as in classic auroras. In the second clip, Steve is not so well-defined. Indeed, his usual magenta band appears only briefly for a minute or so. So I’m not sure this second clip does show the classic Steve arc.

The origin and nature of Steve are subjects of investigation, aided by “citizen science” contributors of photos and videos.

Local aurora researcher Dr. Eric Donovan from the University of Calgary has satellite data from the ESA Swarm mission to suggest Steve is made of intensely hot thermal currents, and not classic electrons raining down as in normal auroras. He has back-acronymed Steve to mean Strong Thermal Emission Velocity Enhancement.

Learning more aboutย Steve will require a unique combination of professional and amateur astronomers working together.

Now that he has a name, Steve won’t be escaping our attention any longer. We’ll be looking for him!

โ€” Alan Dyer / May 12, 2017 / ยฉ 2017 Alan Dyer/AmazingSky.comย 

The Sky Was Dancing


Aurora Panorama from Northern Studies Centre #2 (January 29, 201

The Northern Lights once again performed beautifully from Churchill, Manitoba, making the sky dance with colours.ย 

As I do each winter, I spent time in Churchill, Manitoba at the wonderful Churchill Northern Studies Centre, attending to groups of “aurora tourists” thereย to check an item off their bucket list โ€“ seeing the Northern Lights.

Auroral Arcs over Boreal Forest #2

In the 30 years the courses have been presented only one group has ever come away not seeing the Lights. Well, make that two now. A bout of unseasonably warm weather in my first week brought clouds every night. Mild temperatures to be sure. But we want it to be -25ยฐ C! That’s when it is clear.

Winter Star and Milky Way from Churchill Manitoba

Our first clear night was very clear, affording us a wonderful view of the winter Milky Way before the Lights came out. Such a view is unusual from the North, as the Lights usually wash out the sky, which they did later this night. Even here, you can see some wisps of green aurora.

Orion over Snow Inukshuk

Normal temperatures didn’t return until week 2 of my stay. The second group fared much better, getting good displays on 4 of their 5 nights there, more typical of Churchill.

Photographers Under the Northern Lights

A few determined die-hards from Group 1 (here shooting the Lights) stayed on a couple of more nights, and were rewarded with the views they had come for. They were happy!

All-Sky Aurora from Churchill #2 (January 29, 2017)

In the images here, at no time did the auroral activity exceed a level of Kp 3 (on a scale of 0 to 9) and was often just Kp 1 or 2. Farther south no one would see anything. But at latitude 58ยฐ N Churchill lies under the auroral oval where even on quiet nights the aurora is active and often spectacular.

Aurora Panorama from Northern Studies Centre #3 (January 29, 201

In speaking to a Dene elder who presents a cultural talkย to each of the CNSC groups, Caroline said that to the Dene of northern Canada their word for the Lights translates to “the sky is dancing.” Wonderful! It did for us.

The Auroras of Churchill from Alan Dyer on Vimeo.

This music video presents a montage of time-lapse movies I shot over four nights, from January 25 to 29, 2017. They provide an idea of what we saw under the dancing sky.

As usual, choose HD and enlarge to full screen to view the movie. Or go to Vimeo with the V button.

โ€” Alan, February 3, 2017 / ยฉ 2017 Alan Dyer/AmazingSky.comย 

 

Published! My New and Improved eBook


book-cover

After a year of work, the new edition of my Nightscapes and Time-Lapse ebook is on the e-shelves at the Apple iBooks Store.ย 

In the two years since I first published this ebook, the field of nightscape shooting has enjoyed many changes, to equipment, software and techniques. Not to mention I’ve learned a lot!

All those changes are reflected in this new and expanded edition. It is 100 pages bigger โ€“ 500 pages now โ€“ than the first edition. It contains:

โ€ข 60 step-by-step image processing tutorials, all with current late-2016 software

โ€ข a dozen galleries of comparison “before-and-after” images

โ€ข 40 HD videos of time-lapse examples

โ€ข reviews of current equipment

โ€ข reviews of software, some very new – like this week! โ€“ to use in place of Adobe

โ€ข information on Nikon and Pentax cameras, as well as Canons

โ€ข In addition, many images can be tapped on to zoom up. And most text can now be enlarged in a Scrolling View for use on small-screen devices.

The previous 2014 edition garnered rave reviews, with readers calling it:

โ€œIncredibly well put together and visually stunning.โ€

โ€œSimply amazing! From hardware to software, it’s all covered. Alan Dyer got it right!โ€

and โ€œIt is a must-have resource for anyone doing nightscape and time-lapse photography.โ€

As with the first edition, I’ve designed theย ebook to appeal to both amateur astronomers and landscape photographers by providing what I feel is theย most comprehensive information available in any ebook on theย hugely popular field of nightscape and time-lapse photography.

This isn’t a simple 50-page PDF pamphlet, as so many ebooks are. This is an extensive and detailed tutorial, with loads of interactive and multi-media content.

book-page-1
 

There’s loads of information on cameras and lenses

 

book-page-2
 

I’ve included information on setting Nikons and Pentaxes. Sony mirrorless camera will wait for the next edition!

 

book-page-4
 

I’ve added many new images, with lots of information on how to set cameras for many sky subjects.

 

book-page-5
 

The ever popular Milky Way gets its own chapter, with information on how to โ€“ and how NOT to โ€“ process the Milky Way.

 

book-page-6
 

I’ve included lots of information about new time-lapse gear, including some units, like the TimeLapse+ View bramping intervalometer that aren’t even available for general sale yet.

 

book-page-8
 

Lots of embedded HD videos illustrate time-lapse techniques. A book about shooting time-lapse movies ought to have time-lapse movies in it. Most don’t!

 

book-page-10
 

Step-by-step tutorials show you how to process with Lightroom, Camera Raw, Photoshop, and LRTimelapse (shown here), an essential tool for time-lapse work.

 

book-page-14
 

Tutorials cover still image processing, from the basics to advanced techniques such as masking and compositing. Stacking meteor showers and star trails? It’s all covered!

 

The size and media content of the ebook make it impossible to publish on Kindle/Amazon or Google Play/Android.

How to Photograph & Process Nightscapes and Time-Lapses is available worldwide exclusively through the Apple iBooks Store, for the iBooks app on Apple Macs, iPads and iPhones.

Check it out at my website or at the iTunes sales page.ย 

Owners of the original edition get the update for FREE! Just open iBooks on your Mac or iOS device and check Purchased and Updates.

For new buyers, the price remains unchanged: $24.99 US (prices vary with country due to exchange rates and local GST). The book is sold in every one of the 51 countries Apple sells into.

Enjoy! And do leave a review or star rating for the new edition at iTunes/iBooks Store.

Thanks! And happy holidays to all!ย 

โ€” Alan, December 21, 2016 / ยฉ 2016 Alan Dyer / www.amazingsky.com

 

Our Video Tutorials are Now Available!


video-tutorial-programs

I’m pleased to announce that after a year in production, our video tutorial series, Nightscapes and Time-Lapses: From Field to Photoshop, is now available.ย 

It’s been quite a project! Over the last few years I’ve presented annual astrophoto workshops in conjunction with our local telescope dealer All-Star Telescope to great success.

However, we always had requests for the workshops on video. Attempts to video the actual workshops never produced satisfactory results. So we spent a year shooting in the field and in the studio to produce a “purpose-built” series of programs.

They are available now as a set of three programs, totalling 4 hours of instruction, for purchase and download at Vimeo at


Or go directly to Vimeo’s sales page.

The programs can be purchased as downloads.

For those wanting “hard copies” we will also be selling the programs on mailed USB sticks. See All-Star Telescope for info and prices. The downloaded version can also be ordered from there.

This series deals with the basics of capturing, then processing nightscape still images and time-lapse movies of the night sky and landscapes lit by moonlight and starlight.

Here’s the content outline:

video-tutorial-5

Program 1 โ€“ Choosing Equipment (1 Hour)

โ€ข Tips for Getting Started
โ€ข Essential Gear
โ€ขย Choosing A Camera
โ€ขย Photo 101 โ€“ Exposure Triangle
โ€ขย Setting Exposure
โ€ขย Expose to the Right
โ€ขย Setting a Camera โ€“ File Types
โ€ขย Photo 101 โ€“ Noise Sources
โ€ขย Setting a Camera โ€“ Noise Reduction
โ€ขย Setting a Camera โ€“ Focusing
โ€ขย Setting a Camera โ€“ Other Menus
โ€ขย Choosing Lenses
โ€ขย Choosing an IntervalometerSummary and Tips

video-tutorial-10

Program 2 โ€“ Shooting in the Field (1 hour)

โ€ขย Climbing the Learning Curve
โ€ขย Twilights
โ€ขย Astronomy 101 โ€“ Conjunctions
โ€ขย Shooting Conjunctions
โ€ขย Moonrises
โ€ขย Shooting Auroras
โ€ขย Astronomy 101 โ€“ Auroras
โ€ขย Photo 101 โ€“ Composing
โ€ขย Moonlit Nightscapes
โ€ขย Astronomy 101 โ€“ Where is the Moon?
โ€ขย Choosing a Location
โ€ขย Shooting the Milky Way
โ€ขย Astronomy 101 โ€“ Where is the Milky Way?
โ€ขย Astronomy 101 โ€“ Daily Sky Motion
โ€ขย Tracking the Sky
โ€ขย Shooting Star Trails
โ€ขย Shooting Time-Lapses
โ€ขย Calculating Time-Lapses
โ€ขย A Pre-Flight Checklist
โ€ขย Summary and Tips

video-tutorial-12

Program 3 โ€“ Processing Nightscapes and Time-Lapses (2 hours)

โ€ขย Workflows
โ€ขย Using Adobe Bridge โ€“ Importing and Selecting
โ€ขย Photo 101 โ€“ File Formats
โ€ขย Using Adobe Lightroom โ€“ Importing and Selecting
โ€ขย Adobe Camera Raw โ€“ Essential Settings
โ€ขย Adobe Camera Raw โ€“ Developing Raw Images
โ€ขย Adobe Lightroom โ€“ Develop Module
โ€ขย Adobe Photoshop โ€“ Introduction
โ€ขย Photoshop โ€“ Setup
โ€ขย Photoshop โ€“ Smart Filters
โ€ขย Photoshop โ€“ Adjustment Layers
โ€ขย Photoshop โ€“ Masking
โ€ขย Photoshop โ€“ Processing Star Trails & Time-Lapses
โ€ขย Stacking Star Trails
โ€ขย Assembling Time-Lapse Movies
โ€ขย Archiving
โ€ขย Summary & Finale

If this first introductory series is successful we may produce follow-up programs on more advanced techniques.

Thanks for looking!

โ€” Alan, October 18, 2016 / ยฉ 2016 Alan Dyer / amazingsky.com

 

 

A Night at Police Outpost


Milky Way in Twilight at Police Outpost Park

It was a perfect night at a dark site in southern Alberta. The Milky Way shone to the south and aurora danced to the north.

I had scouted out this location in June and marked it on my calendar to return in the fall when the centre of the Milky Way would be well-placed to the southwest.

The site is Police Outpost Provincial Park, named for the North West Mounted Police fort that once occupiedย the site, guarding Canada’s sovereignty in the late 1800s.

Oneย result from the night of shooting is the opening image, the first frame from a time-lapse taken while deep blue twilight still coloured the sky. The main peak is Chief Mountain in Montana.

Twilight Aurora at Police Outpost
A fairly mild dispay of aurora in the darkening deep blue twilight over the lake at Police Outpost Provincial Park, in southern Alberta, on September 26, 2016, with the stars of Perseus rising, and with Capella low in the northeast at centre. This is a stack of 4 x 20 second exposures for the dark ground and water to smooth noise and one 20-second exposure for the sky, all with the 25mm Canon lens at f/2.8 and Canon 6D at ISO 2000.ย 

To the north an aurora display kicked up over the lake. While it never got very bright, it still provided a photogenic show over the still waters.

Aurora over Police Outpost Lake
A fairly mild dispay of aurora over the lake at Police Outpost Provincial Park, in southern Alberta, on September 26, 2016, with the stars of Auriga and Taurus rising, including the Pleiades at upper right. The Hyades in Taurus are the most prominent stellar reflections at lower right, in the still water this evening. Capella is the bright star above centre; Aldebaran is at right. This is a stack of 4 x 20 second exposures for the dark ground to smooth noise and one 20-second exposure for the sky and water, all with the 25mm Canon lens at f/2.2 and Canon 6D at ISO 3200.ย 

The waters were calm on this windless night (rare for southern Alberta), and so reflected the stars and Northern Lights beautifully.

Big Dipper Reflection
The Big Dipper reflected in the still waters of the lake at Police Outpost Provincial Park, in southern Alberta, on September 26, 2016, with an aurora to the north at right. Only in autumn can one shoot the Dipper reflected in the water in the evening sky, as it is then riding low along the northern horizon. This is from a latitude of 49ยฐ N where the Dipper is circumpolar. This is a stack of 4 x 25 second exposures for the dark ground to smooth noise and one 25-second exposure for the sky and water, all with the 25mm Canon lens at f/2.2 and Canon 6D at ISO 3200.ย 

Here, the Big Dipper reflects in the lake as we look north to the Lights. The movie below compiles still images and two time-lapse sequences, of the Lights and Milky Way. The sounds are the natural sounds I recorded on site, as flocks of geese were getting ready to migrate and the owls hooted.

Enjoy! โ€” As always, for the best view, enlarge to full screen orย click through to Vimeo with the V button.

โ€” Alan, October 6, 2016 / ยฉ 2016 Alan Dyer / www.amazingsky.com

 

A Night at Moraine Lake


Aurora over Desolation Valley PanoramaWhat a night this was – perfect skies overย an iconic location in the Rockies. And an aurora to top it off!

On August 31 I took advantage of a rare clear night in the forecast and headed to Banff and Moraine Lake for a night of shooting. The goal was to shoot a time-lapse and stills of the Milky Way over the lake.

The handy planning app, The Photographer’s Ephemeris, showed me (as below) that the Milky Way and galactic centre (the large circles) would be ideally placed over the end of the lake as astronomical twilight ended at 10:30 p.m. I began the shoot at 10 p.m. as the sky still had some twilight blue in it.

Moraine Lake TPE

I planned to shoot 600 frames for a time-lapse. From those I would extract select frames to create a still image. The result is below.

Milky Way over Moraine Lake
This is looking southwest with the images taken about 11:15 pm on August 31, 2016.The ground is illuminated by a mix of starlight, lights from the Moraine Lake Lodge, and from a display of aurora brightening behind the camera to the north.ย The starclouds of Scutum and Sagittarius are just above the peaks of the Valley of Ten Peaks. This is a stack of 16 images for the ground, mean combined to smooth noise, and one exposure for the sky, untracked, all 15 seconds at f/2 with the Sigma 20mm Art lens and Nikon D750 at ISO 6400. The frames are part of a 450-frame time-lapse.

As the caption explains, the still is a composite of one exposure for the sky and 16 in succession for the ground, averaged together in a technique to smooth noise. The camera wasn’t tracking the sky, so stacking sky images isn’t feasible, as much as I might like to have the lower noise there, too. (There are programs that attempt to align and stack the moving sky but I’ve never found they work well.)

About midnight, the Valley ofย Ten Peaks around the lake began to light up. An aurora was getting active in the opposite direction, to the north. With 450 frames shot, I stopped the Milky Way time-lapse and turned the camera the other way. (I was lazy and hadn’tย hefted a second camera and tripod up the steep hill to the viewpoint.)

The lead-image panorama is the first result, showing the sweeping arc of Northern Lights over Desolation Valley.

Aurora over Desolation Valley #2
The Northern Lights in a fine Level 4 to 5 display over Desolation Valley at Moraine Lake, Banff National Park, on the night of August 31/Sept 1. This is one frame from a 450-frame time-lapse with the aurora at its best. This is a 2-second exposure at f/2 with the Sigma 20mm Art lens and Nikon D750 at ISO 5000.

Still images shot, I began a time-lapse of the Lights, grabbing another 450 frames, this time using just 2-second exposures at f/1.6 for a rapid cadence time-lapse to help freeze the motion of the curtains.

The final movies and stills are in a music video here:

 

I ended the night with a parting shot of the Pleiades and the winter stars rising behind the Tower of Babel formation. I last photographedย that scene with those same stars in the 1980s using 6×7 film.

Aurora and Winter Stars Rising over Tower of Babel
The early winter stars rising behind the Tower of Babel formation at Moraine Lake, Banff National Park, with a bright aurora to the north at left. Visible are the Pleiades at centre, and Capella and the stars of Auriga at left. Just above the mountain are the Hyades and Taurus rising. At top are the stars of Perseus. Aries is just above the peak of Babel. The aurora in part lights the landscape green. This is a stack of 16 images for the ground, mean combined to smooth noise, and 1 image for the sky, untracked, all for 15 seconds at f/2.2 with the Sigma 20mm Art lens, and Nikon D750 at ISO 3200. All with LENR turned on.

In a summer of clouds and storms, this was a night to make up for it.

โ€” Alan, September 4, 2016 / ยฉ 2016 Alan Dyer / www.amazingsky.com

Member of The World at Night photo group

TWAN-black

 

The Cadence of the Moving Sky


Saturn, Mars and the Milky Way over the Bow River

Saturn, Mars and the Milky Way appeared in the twilight over the Bow River.

I shot this scene on August 24 from the viewpoint at Blackfoot Crossing Historical Park, overlooking the Bow River. Mars appears between Saturn above and Antares below, in a line of objects west of the Milky Way.

The valley below is the traditional meeting place of the Blackfoot Nation, and the site of the signing of Treaty Seven between Chief Crowfoot and Colonel MacLeod of the North West Mounted Police in 1877.

The image is a panorama of two images, each 20-second exposures at f/2 and ISO 1600 with the 24mm lens. I shot them just prior to shooting time-lapses of the moving sky, using two cameras to create a comparison pair of videos, to illustrate the choices in setting the cadence when shooting time-lapses.

The movies, embedded here, will be in the next edition of my Nightscapes and Time-Lapse ebook, with the current version linked to below. The text explains what the videos are showing.

 

Choose Your Style

When shooting frames destined for a time-lapse movie we have a choice:

  • Shoot fewer but longer exposures at slower ISOs and/or smaller apertures.

OR …

  • Shoot lots of short exposures at high ISOs and/or wide apertures.

 

The former yields greater depth of field; the latter produces more noise. But with time-lapses, the variations also affect the mood of a movie in playback.

This comparison shows a pair of movies, both rendered at 30 frames per second:

Clip #1 was taken over 2 hours using 20-second exposures, all at ISO 2000 and f/2 with 1-second intervals. The result was 300 frames.

Clip #2 was taken over 1 hour using 5-second exposures also at f/2 and 1-second intervals, but at ISO 8000. The result was 600 frames: twice as many frames in half the time.

Clip #1 shows fast sky motion. Clip #2 shows slow motion.

Clip #2 exhibits enough noise that I couldnโ€™t bring out the dark foreground as well as in Clip #1. Clip 2 exhibits a slower, more graceful motion. And it better โ€œtime-resolvesโ€ fast-moving content such as cars and aircraft.

Which is better? It depends …

Long = Fast

The movie taken at a longer, slower cadence (using longer exposures) and requiring 2 hours to capture 300 frames resulted in fast, dramatic sky motion when played back. Two hours of sky motion are being compressed into 10 seconds of playback at 30 frames per second. You might like that if you want a dramatic, high-energy feel.

Short = Slow

By comparison, the movie that packed 600 frames into just an hour of shooting (by using short exposures taken at fast apertures or fast ISOs) produced a movie where the sky moves very slowly during its 10 seconds of playback, also at 30 frames per second. You might like that if you want a slow, peaceful mood to your movies.

So, if you want your movie to have a slow, quiet feel, shoot lots of short exposures. But, if you want your movie to have a fast, high-energy feel, shoot long exposures.

As an aside โ€“ all purchasers of the current edition of my ebook will get the updated version free of charge via the iBooks Store once it is published later this year.ย 

โ€” Alan, August 26, 2016 / ยฉ 2016 Alan Dyer / AmazingSky.com

 

The Moving Stars of the Northern Hemisphere


Arizona Star Trails - Circumpolar Looking North

I present a montage of time-lapses illustrating the motion of the sky in the Northern Hemisphere.ย 

Any stargazer should be familiar with how the sky moves, with stars rising in the east and setting in the west.

From the northern hemisphere, when we look north we see the sky rotating counter-clockwise around the North Celestial Pole, near Polaris. As you’ll see in the video, even Polarisย moves, though not much over the night. The stars that never set, but just moveย across the northern horizon, are the circumpolar stars.

When we look south we see the seasonal constellations, the ones that rise and set, and change over the seasons.

I shot the images for these sequences from southern Arizona, in early December 2015.

So the night starts with the summer stars setting in the west and the autumn stars dominating the sky. But then Orion and the winter stars rise and march across the sky over the night, setting before dawn, as the spring stars rise.

The south-looking movie is a dusk-to-dawn sequence. Note the Zodiacal Light in the west at right in the early evening, then reappearing in the east at left before dawn brightens the sky, and as Venus and the Moon rises.

Also note the moving bands of red and green airglow, a natural phenomenon of the upper atmosphere.

 

I posted a matching set of movies in my previous blog post, shot from the Southern Hemisphere. But here’s the link to the movie.

 

Both sets of movies were shot from nearly identical latitudes โ€“ about 31ยฐ, but 31ยฐ N for Portal, Arizona and 31ยฐ S for Coonabarabran, Australia.

As such the Celestial Poles appear at equal altitudes above the horizon. And the angles that the stars rise and set at in relation to the horizon are the same.

But the direction they move is opposite. When looking 180ยฐ away from the Pole, the seasonal stars move from left to right in the Northern Hemisphere, but from right to left in the Southern Hemisphere.

Visitors from one hemisphere to the other are bound to get turned around!

โ€” Alan, August 25, 2016 / ยฉ 2016 Alan Dyer / AmazingSky.com

 

The Moving Stars of the Southern Hemisphere


Southern Sky Star Trails - OzSky Looking South

Nothing amazes even the most inveterate skywatcher more than traveling to another hemisphere and seeing sky move. It moves the wrong way!

Whether you are from the southern hemisphere traveling north, or as I do, travel south from the Northern Hemisphere, watching how the sky moves can be disorienting.

Here I present a video montage of time-lapses shot last April in Australia, at the annual OzSky Star Party near Coonabarabran in New South Wales.

Select HD and Enlarge button to view at full screen at best quality.

You’ll see the sky set in the west but traveling in arcs from right to left, then in the next clip, rise in the east, again moving from rightย to left. That’s the wrong angle for us northerners.

Looking north you see the seasonal constellations, the ones that rise and set over a night and that change with the seasons. In this case, the night starts with Orion (upside-down!) to the north but setting over in the west, followed by Leo and bright Jupiter. The sky is moving from east to west, but that’s from right to left here. The austral Sun does the same thing by day.

Looking south, we see the circumpolar constellations, the ones that circle the South Celestial Pole. Only there’s no bright “South Star” to mark the pole.

The sky, including the two Magellanic Clouds (satellite galaxies to the Milky Way) and the spectacular Milky Way itself, turns around the blank pole, moving clockwise โ€“ the opposite direction to what we see up north.

I shot theย sequences over four nights in early April, as several dozen stargazers from around the world revelled under the southern stars, using an array of impressive telescopes supplied by the Three Rivers Foundation, Australia, for us to explore the southern sky.

I’ll be back next year!

โ€“ Alan, August 19, 2016 / ยฉ 2016 Alan Dyer / www.amazingsky.com

 

Alberta Skies โ€“ A Music Video


Alberta Skies TitleI am pleased to present my latest music video featuring Alberta Skies in motion, set to the music of Ian Tyson.

Myย 5-minute video features time-lapse imagery shot over the last three years in the plains, badlands, and mountains of Alberta.

Do click through to Vimeo and view in HD for the best quality.

The footage is set to the music of Alberta singer/songwriter Ian Tyson, and his superb rendition of Home on the Range. It is used by kind permission of Ian Tyson and Stony Plain Records. Thanks!

It was hearing Ian’s version of this song on CBC one day in 1992 when hisย album And Stood There Amazed came out that inspired me to move back to Alberta and the great landscapes of the west that I knew I wanted to capture.

Little did I know at the time how it was going to be possible in the 2000s to do it in time-lapse.

Enjoy!

โ€” Alan, July 7, 2016 / ยฉ 2016 Alan Dyer / www.amazingsky.com

 

Success! Thank you all!


Star Trails Behind Double Arch

We achieved our funding goal on Kickstarter with 10 days to go.

Hurray! We made it to the top, with funding now secure to complete the production of our video tutorial series.

But the Kickstarter campaign doesn’t end now! You have until July 15 to back us, and get the videos at a big discount off the final retail prices when they are released later this year. So there’s still time to act and save!

Go to our Kickstarter page for the details.ย 

After July 15, you’ll still be able to order the videos through All-Star Telescope, but the cost will be higher.

Many thanks to all who contributed so far and to those who will in future!

โ€” Alan, July 5, 2016 / www.amazingsky.comย 

 

We’re Live on Kickstarter


Star Trails Behind Double Arch

Our video tutorial project is now live on Kickstarter!

For the last two years I’ve been involved in a project to produce a set of comprehensive video tutorials on how to shoot and process Nightscapes and Time-Lapses, to complement myย ebook by the same name.

If you’ve not been able to attend my workshops โ€“ or even if you have! โ€“ these videos will provide you with all the information, and more, in a format you can review over and over.

We’ve shot all the field and studio footage, but to complete the production, we need your help. Back us on Kickstarter and we’ll be able to make the programs available this September, as downloads and on aย shipped USB drive.

Ourย Kickstarter page has all the details. Early backers can purchaseย the tutorial programs now for as little as $55 – and that’s Canadian! โ€“ vs. $80 for the final retail price. The final programs willย provide several hours of instruction, both in the field and at the computer.

kickstarter-logo-light copy

If you have not participated in a Kickstarter campaign before, it is no risk. Nothing is charged to your credit card until and when the project is successfully funded after the 30-day campaign. If it isn’t successful, you are charged nothing.

Here’s our promo video describing the programs.

We have 30 days to make our goal. We invite you to joinย usย in making our project a reality.

Thanks!

โ€” Alan, June 15, 2016 / www.amazingsky.com

The Beauty of Solar Eclipses


Beauty of Solar Eclipses Title

This is a video 37 years in the making, compiling images and videos I’ve shot of total solar eclipses since my first in 1979.

Though I’ve “sat out” on the last couple of total eclipses of the Sun in 2015 and 2016, I’m looking forward to once again standing in the shadow of the Moon in 2017 โ€“ on August 21.

If you have not yet seen a total eclipse of the Sun, and you live in North America, next year is your chance to. It is the most spectacular and awe-inspiring event you can witness in nature.

I hope myย video montage relays some of the excitement of being there, as the Moon eclipses the Sun.

As always, click HD and enlarge to full screen.

My montage features images and movies shot in:

โ€ขย Manitoba (1979)

โ€ขย Chile (1994)

โ€ขย Curaรงao (1998)

โ€ขย Turkey (1999)

โ€ข Zimbabwe (2001)

โ€ข Australia (2002)

โ€ขย Over Antarctica (2003)

โ€ขย South Pacific near Pitcairn Island (2005)

โ€ขย Libya (2006)

โ€ขย Over Arctic Canada (2008)

โ€ข South Pacific near the Cook Islands (2009)

โ€ขย Australia (2012)

โ€ขย Mid-Atlantic Ocean (2013)

Out of the 15 total solar eclipses I have been to, only the 1991 and 2010 eclipses that I did go to are not represented in the video, due to cloud. Though we did see much of the 1991 eclipse from Baja, clouds intervened part way through, thwarting my photo efforts.

And I only just missed the 2010 eclipse from Hikueru Atoll in the South Pacific as clouds came in moments before totality. Of course, it was clear following totality.

Cameras varied a lot over those years, from Kodachrome film with my old Nikon F, to digital SLRs; from 640×480 video with a Sony point-and-shoot camera, to HD with a DSLR.

I shot images through telescopes to capture the corona and prominences, and with wide-angle lenses to capture the landscape and lunar shadow. I rarely shot two eclipses the same way or with the same gear.

I hope you enjoy the video and will be inspired to see the August 21, 2017 eclipse. For more information about that eclipse, visit:

GreatAmericanEclipse.com

EclipseWise.com

eclipse2017.org

In addition, meteorologist and eclipse chaser Jay Anderson has the first and last words on eclipse weather prospects at:

eclipseophile.com

Clear skies in 2017!

โ€” Alan, May 25, 2016 / ยฉ 2016 Alan Dyer / www.amazingsky.com

 

 

The Beauty of the Northern Lights


Beauty of Northern Lights Title

My latest music video includes images, time-lapses and real-time videos of the Northern Lights shot in February and March 2016 in Churchill.ย 

While I’ve posted my recent images of the aurora here and at many social media sites, all the videos I shoot take more work before they are ready to unveil to the public. Videos work best when set to music.

In this case, I’m very pleased to have received permission from EverSound Music to incorporate the music of one of my favourite artists, John Adorney, in my latest music video montage.ย The selection isย If a Rose Could Speak, from his 2013 album The Wonder Well. It features vocals by Daya.

The video incorporates still images, as well as time-lapse sequences, and real-time videos of the Northern Lights.

The all-sky time-lapses are intended to be projected in digital planetarium theatres, recreating the scene on their 360ยฐ domes.

Please click on the V for Vimeoย button to really see the video well. And selectย 1080p HD for the best image quality. And do share!ย 

ABOUT THE VIDEO

I shot all scenes at the Churchill Northern Studies Centre, near Churchill, Manitoba, on the shore of Hudson Bay at a latitude of 58ยฐ North. Churchillโ€™s location places it under the usual location of the auroral oval, providing spectacular displays of Northern Lights even on nights when locations to the south are seeing nothing.

I was at the CNSC to present sets of 5-night aurora viewing programs to guests from across North America. Click the link above for more details on their programs. The 2016 aurora season is over, but we’ll have more aurora programs in January and Februaryย ofย next year.

TECHNICAL

I shot all images with Canon 6D and Nikon D750 DSLR cameras, usually at ISO 3200. The fish-eye all-sky sequences were with a Sigma 8mm lens on the Canon, while most of the still images and other full-frame time-lapses were with the Sigma 20mm Art lens on the Nikon. For the โ€œrapid-cadenceโ€ time-lapses I used 1- to 2-second exposures at an interval of one second.

The real-time video clips were with the Nikon โ€“ set to ISO 25600 โ€“ and the Sigma wide open at f/1.4. While these clips are prone to digital noise, they do record the fast movement and subtle colour of the aurora much as the eye saw it. See my earlier music video with real-time clips shot February 12 for more examples of these.

The all-sky sequences were processed through LRTimelapseย v4 software, to handle the huge range in brightness of the Lights. Real-time video clips were processed in Photoshop with the Camera Raw filter.

Temperatures ranged from a bitter -35ยฐ C to just (!) -15ยฐ C on most nights.

I kept the long-duration, all-sky, time-lapse camera going by placing it in a Camera Parka (www.atfrostedlens.com) and inserting disposable hand warmer packs inside the insulated parka. It worked very well, making it possible to shoot for up to 3 hours. Without it, the battery died after an hour.

โ€” Alan, March 18, 2016 / ยฉ 2016 Alan Dyer / AmazingSky.com

New Year’s Eve Sky: Aurora, Orion, and a Comet


New Year's Eve Winter Sky

The New Year’s sky was filled with Northern Lights, a panorama of stars, and a comet at dawn.

It was a busy night for stargazing as 2015 turned to 2016. A fine display of Northern Lights kicked off the celebrations, as curtains danced in the east as Orion rose (below).

New Year's Eve Aurora, Dec. 31, 2015

Toward midnight the Lights kicked up again, now with Jupiter (on the horizon) and Leo rising in the east (below).

New Year's Eve Aurora #2 (Dec 31, 2015)

I shot hundreds of frames for time-lapse sequences, and assembled them into a short music video. Click on the buttons to enlarge it to HD.


 


 

Just before midnight, while the second time-lapse was going and the aurora was still active, but before the Last Quarter Moon rose to light the sky, I shot a set of tracked images taking in the entire winter sky from horizon to well past the zenith.

That image is at top. It takes in the winter sky and northern winter Milky Way,  from Canis Major just above the horizon, up past Orion, then on up to Perseus and Cassiopeia at top right.

It shows how Orion and Sirius, the night sky’s brightest star, stand nearly due south at midnight on New Year’s Eve.


 

Comet Catalina near Arcturus on New Year's Day
Comet Catalina (C/2013 US10) near Arcturus in the constellation of Bootes, at pre-dawn on the morning of January 1, 2016, with the Last Quarter Moon nearby illluminating the sky. A long, faint ion tail is visible extending 2 to 3 degrees to the right while a brighter but stubby dust tail extends down to the south. Shot from home using the 200mm Canon telephoto and 1.4x extender at f/4.5 for a stack of 8 x 2-minute exposures at ISO 800 with the Canon 6D. Median combined stacked to eliminate satellite trails. The comet is slightly blurred due to its own motion in that time.
The final show of the night, now before dawn on New Year’s Day 2016, was Comet Catalina sitting right next to the bright spring star Arcturus. The comet was visible in the moonlight as a fuzzy object next to brilliant Arcturus, but the photo begins to show its faint tails, just standing out in the moonlit sky.

The comet will become more visible later this month once the waning Moon exits the dawn sky, as Catalina is expected to remain a nice binocular comet for most of the month as it heads high into northern sky.

Happy New Year to all! Have a celestial 2016!

 

Don’t forget, you can download my free 2016 Sky Calendar as a PDF. See my previous blog for details and the link. 

โ€” Alan, January 1, 2016 / ยฉ 2016 Alan Dyer / amazing sky.com

Orion Star Trails in the Moonlight


Orion Rising in the Moonlight

Orion ascends into the sky on a clear autumn night, with its stars drawing trails behind it as it rises.

Only on November nights is it possible to capture Orion rising in the evening sky. Here, I used the light of the waxing gibbous Moon to illuminate the landscape … and the sky, creatingย the deep blue tint.

The lead image above is an example of a star trail, a long exposure that uses Earth’s rotation to turn the stars into streaks across the sky. In the old days of film you would create such an exposure by opening the shutter for an hour or more and hoping for the best.

Today, with digital cameras, the usual method is to shoot lots of short exposures, perhaps no more than 20 to 40 seconds each in rapid succession. You then stack them later in Photoshop or other specialized software to create the digital equivalent of a single long exposure.

The image above is a stack of 350 images taken over 2.5 hours.

With a folder of such images, you can either stack them to create a single image, such as above, or string them together in time to create a time-lapse of the stars moving across the sky. The short video below shows the result. Enlarge the screen and click HD for the best quality.

 

For the still image and time-lapse, I used the Advanced Stacker Plus actions from StarCircleAcademy to do the stacking in Photoshop and create the tapering star trail effect. A separate exposure after the main trail set added the point-like stars at the end of the trails.


 

My tutorial on Vimeo provides all the details on how to shoot, then stack, such a star trail image…


 

… While this video illustrates how to capture and process nightscapes shot under the light of the Moon.

 

Enjoy the videos! And happy trails!

โ€” Alan, November 24, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

 

Astrophotography Video Tutorials โ€“ Free!


 

Video Tutorial FB PR ImageLearn the basics of shooting nightscape and time-lapse images with my three new video tutorials.

In these comprehensive and free tutorials I take you from “field to final,” to illustrate tips and techniques for shooting the sky at night.

At sites in southern Alberta I first explain how to shoot the images.ย Then back at the computer I step you through how toย process non-destructively, using images I shot that night in the field.


 

Tutorial #1 โ€“ The Northern Lights

This 24-minute tutorial takes you from a shoot at a lakeside site in southern Alberta on a night with a fine aurora display, through to the steps to processing a still image and assembling a time-lapse movie.


 

Tutorial #2 โ€“ Moonlit Nightscapes

This 28-minute tutorial takes you from a shoot at Waterton Lakes National Park on a bright moonlit night, to the steps for processing nightscapes using Camera Raw and Photoshop, with smart filters, adjustment layers and masks.


 

Tutorial #3 โ€“ Star Trails

This 35-minute tutorial takes you from a shoot at summer solstice at Dinosaur Provincial Park, then through the steps for stacking star trail stills and assembling star trail time-lapse movies, using specialized programs such as StarStaX and the Advanced Stacker Plus actions for Photoshop.

 

As always, enlarge to full screen for the HD versions. These are also viewable at my Vimeo channel. ย 

Or they can be viewed on my YouTubeย channel.ย 

Thanks for watching!

And for much more information about shooting and processing nightscapes and time-lapse movies, check out my 400-page multimedia eBook, linked below.

โ€” Alan, November 21, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com/tutorials.html

 

10 Steps to Processing Nightscapes & Time-Lapses


Icefields-Demo StillIn a “10 Steps”ย tutorial I review my tipsย for goingย from “raw to rave” in processing a nightscape or time-lapse sequence.

NOTE: Click on any of the screen shots below for a full-res version that willย be easier to see.

In my preferred โ€œworkflow,โ€ Steps 1 through 6 can be performed in either Photoshop (using its ancillary programs Bridge and Adobe Camera Raw) or in Adobe Lightroom. The Develop module of Lightroom is identical to Adobe Camera Raw (ACR for short).

However, my illustrations show Adobe Bridge, Camera Raw and Photoshop CC 2014. Turn to Photoshop to perform advanced filtering, masking and stacking (Steps 7 to 10).

To useย Lightroom to assemble a time-lapse movie from processed Raw frames you needย the third-party program LRTimelapse, described below. Otherwise, you need to export frames from Lightroom โ€“ or from Photoshop โ€“ as “intermediate” JPGs (see Step 6), then use other third party programs to assemble them into movies (Step 10B).


Demo-Timelapse1Step 1 โ€“ Bridge or Lightroom โ€“ Import & Select

Use Adobe Bridge (shown above) or Lightroom to import the images from your cameraโ€™s card.

As you do so you can add โ€œmetadataโ€ to each image โ€“ your personal information, copyright, keywords, etc. As you import, you can also choose to convert and save images into the open and more universal Adobe DNG format, rather than keep them in the cameraโ€™s proprietary Raw format.

Once imported, you can review images, keeping the best and tossing the rest. Mark images with star ratings or colour labels, and group images together (called โ€œstackingโ€ in Bridge), such as frames for a panorama or โ€œhigh dynamic rangeโ€ set.

Always save images to both your working drive and to an external drive (which itself should automatically back up to yet another external drive). Never, ever save images to only one location.


Demo-Timelapse2Step 2 โ€“ Adobe Camera Raw or Lightroom โ€“ Basics

Open the Raw files you want to process. From Bridge, double click on raw images and they will open in ACR. In Lightroom select the images and switch to its Develop module.

In Adobe Camera Raw be sure to first set the Workflow Preset (the blue link at the bottom of the screen) to 16 bits/channel and ProPhoto RGB colour space, for maximum tonal range. This is a one-time setting. Lightroom defaults to 16-bit and the AdobeRGB colour space.

The Basics panel (the first tab) allows you to fix Exposure and White Balance. For the latter, use the White Balance Tool (the eyedropper, keyboard shortcut I) to click on an area that should be neutral in colour.

You can adjust Contrast, and recover details in the Highlights and Shadows (turn the latter up to show details in starlit landscapes). Clarity and Vibrance improves midrange contrast and colour intensity.

Use Command/Control Z to Undo, or double click on a slider to snap it back to zero. Or under the pull-down menu in the Presets tab go to Camera Raw Defaults to set all back to zero.


Demo-Timelapse4Step 3 โ€“ย Adobe Camera Raw or Lightroom โ€“ย Detail

The Detail panel allows you to set the noise reduction and sharpness as you like it, one of the benefits of shooting Raw.

Generally, settings of Sharpness: Amount 25, Radius 1 work well. Turn up Masking while holding the Option/Alt key to see what areas will be sharpened (they appear in white). Thereโ€™s no need to sharpen blank, noisy sky, just the edge detail.

Setting Noise Reduction: Luminance to 30 to 50 and Color to 25, with others sliders left to their defaults works well for all but the noisiest of images. Luminance affects the overall graininess of the image. Color, also called chrominance, affects the coloured speckling. Turning the latter up too high wipes out star colours.

Turn up Color Smoothness, however, if the image has lots of large scale colour blotchiness.

Zoom in to at least 100% to see the effect of all noise reduction settings. Adobe Camera Raw and Lightroom have the best noise reduction in the business. Without it your images will be far noisier than they need to be.


Demo-Timelapse4Step 4 โ€“ย Adobe Camera Raw or Lightroom โ€“ย Lens Correction

Wide angle lenses, especially when used at fast apertures, suffer a lot from light falloff at the corners (called vignetting). Thereโ€™s no need to have photos looking as if they were taken through a dark tunnel.

ACR orย Lightroom can automatically detect what lens you used and apply a lens correction to brighten the corners, plus correct for other flaws such as chromatic aberration and lens distortion.

Use the Color tab to โ€œRemove Chromatic Aberrationโ€ and dial up the Defringe sliders.

For lenses not in the database (manual lenses like the Rokinons and Samyangs will not be included, nor will any telescopes) use the Manual tab to dial in your own vignetting correction. This can take some trial-and-error to get right, but once you have it, save it as a Preset to apply in future to all photos from that lens or telescope.

I usually apply Lens Corrections as a first step, but sometimes find I have to back it off it as I boost the contrast under Basics.


Demo-Timelapse5Step 5 โ€“ Bridge or Lightroom โ€“ Copy & Paste

For a small number of images you could open them all, then Select All in ACR to apply the same settings to all images at the same time.

Or you can adjust one, then Select All and hit Synchronize.

Another method useful for processing dozens or hundreds of frames from a star trail or time-lapse set is to choose one representative image and process it. Then in Bridge choose Edit>Develop Settings>Copy Camera Raw Settings. If you are in Lightroomโ€™s Library module, choose Photo>Develop Settings>Copy Settings.

With either program you can also right-click on an image to get to the same choices. Then select all the other images in the set (Command/Control A) and use the same menus to Paste Settings.

A dialog box comes up for choosing what settings you wish to transfer.

If you cropped the image (a good idea for images destined for an HD movie with a 16:9 aspect ratio), pick that option as well. In moments all your images get processed with identical settings. Nice!


Demo-Timelapse6Step 6 โ€“ Lightroom or Photoshop โ€“ Export

You now have a set of developed Raw images. However, the actual Raw files are never altered. They remain raw!

Instead, with Adobe Camera Raw the information on how you processed the images is stored in the โ€œsidecarโ€ XMP text files that live in the same folder as the Raw files.

In Lightroomโ€™s case your settings are stored in its own database, unless you choose Metadata>Save Metadata to File (Command/Control S). In that case, Lightroom also writes the changes to the same XMP sidecar files.

To convert the images into final Photoshop PSDs, TIFFs or JPGs you have a couple of choices. In Lightroom go to the Library module and choose Export. It’s an easy way to export and convert hundreds of images, perhaps into a folder of smaller JPGs needed for assembling a time-lapse movie.

To do that from withinย Adobe Bridge, select the images, then go to Tools>Photoshop>Image Processor. The dialogue box allows you to choose how and where to export the images. Photoshop then opens, processes, and exports each image.


Demo-Timelapse7Step 7 โ€“ Photoshop โ€“ Smart Filters

For a folder of images intended to be stacked into star trails (Step 10A) or time-lapse movies (Step 10B), youโ€™re done processing.

But individual nightscape images can often benefit from more advanced work in Photoshop. The next steps make use of a non-destructive workflow, allowing you to alter settings at any time after the fact. At no time do we actually change pixels.

One secret to doing that is to open an image in Photoshop and then select Layer>Smart Objects>Convert to Smart Object. Or go to Filter>Convert for Smart Filters.

OR … better yet, back in Adobe Camera Raw hold downย the Shift key while clickingย the Open Image button, so it becomes Open Object. That image will then open in Photoshop already as a Smart Object, which you can re-open and re-edit in ACR at any time later should you wish.

Either way, with the image as a Smart Object, you can now apply useful filters such as Reduce Noise, Smart Sharpen, and Dust & Scratches, plus third-party filters such as Nik Softwareโ€™s Dfine 2 Noise Reduction, all non-destructively as โ€œsmart filters.โ€ย They can be re-adjustedย or turned off at any time.


Demo-Timelapse8Step 8 โ€“ Photoshop โ€“ Adjustment Layers

The other secret to non-destructive processing is to apply adjustment layers.

Go to Layer>New Adjustment Layer, or click on any of the icons in the Adjustments panel. If that panel is not visible at right, then under the Window menu check โ€œAdjustments.โ€

This panel is where you can alter the colour balance, the brightness and contrast, the vibrancy, and many other choices. I find Selective Color most useful for tweaking colour.

Curves allows you to bring up detail in dark areas. Levels allows setting the black and white points, and overall contrast.

The beauty of adjustment layers is that you can click on the layerโ€™s little icon and bring up the dialog box for changing the setting at any time. You never permanently alter pixels.

The image adjustment โ€œShadows & Highlightsโ€ is also immensely useful, but appears as a smart filter, not as an adjustment layer. It’s one of the prime tools for creating images with great detail in scenes lit only by starlight.


Demo-Timelapse9Step 9 โ€“ Photoshop โ€“ Masks

The power of adjustment layers is that you can apply them to just portions of an image. This is useful in nightscapes where the sky and ground often need different processing.

To create a mask first select the region you want to work on. Try the Quick Selection Tool (found near the top of the Tool palette at left). Use it to brush across the sky, or the ground, so that the entire area is outlined by โ€œmarching ants.โ€

Use the Refine Edge option to tweak the selection by brushing across intricate areas such as tree branches.

Once you have an area selected, hit one of the Adjustments to add an adjustment layer with the mask automatically applied. Double click on the mask to tweak it: hit Mask Edge to clean up the edge, or turn up the Feather to blur the edge.

To apply the same mask to another adjustment layer, drag the mask from one layer to another while holding down the Option/Alt key.

Invert the mask (or select it and hit Command/Control I) to apply it to the other half of the image. Paint the mask with black or white brushes if you need manually alterย it. Remember โ€“ black โ€œconceals,โ€ while white โ€œreveals.โ€

When done, be sure to always save the image as a layered “master” .PSD file.

Never, ever flatten and save โ€“ that will wipe out all your non-destructive filters and adjustment layers.

If you need to save the image as a JPG for social mediia or emailing, then Flatten and Save As … ย Or use Photoshop’s File>Export>Export As .. function.


Stars setting in trails over the Athabasca Glacier and Columbia Icefields, Sept 14, 2014. The Milky Way is trailed at right. This is a stack of 100 exposures, composited with Advanced Stacker Plus actions in Photoshop, with the ground coming from a subset stack of 8 images to reduce noise. Each exposure, taken as part of a time-lapse sequence, was 45 seconds at f/2.8 with the 16-35mm lens at 23mm and Canon 6D at ISO 4000.
Stars setting in trails over the Athabasca Glacier and Columbia Icefields, Sept 14, 2014. The Milky Way is trailed at right.ย This is a stack of 100 exposures, composited with Advanced Stacker Plus actions in Photoshop, with the ground coming from a subset stack of 8 images to reduce noise. Each exposure, taken as part of a time-lapse sequence, was 45 seconds at f/2.8 with the 16-35mm lens at 23mm and Canon 6D at ISO 4000.

Step 10A โ€“ Photoshop or 3rd Party Programs โ€“ Stack for Star Trailsย 

One popular way to shoot images of stars trailing in arcs across the sky is to shoot dozens or hundreds of well-exposed frames at a fairly high ISO and wide aperture, and at a shutter speed no longer than 30 to 60 seconds. You then โ€œstackโ€ the images to create the equivalent of one frame shot for many minutes, if not an hour or more. The image above is an example.

There are several ways to stack.

From within Photoshop CC (or using anย Extended version of the older CS5 or CS6) one method is to go to File>Scripts>Statistics. In the dialog box, drill down to the images you wish to stack (put them all in one folder) and choose Stack Mode: Maximum, and uncheck โ€œAttempt to Automatically Align.โ€ The result is a huge (!) smart object. This method works best on just a few dozen images. In this case, you’ll need to use Layers>Flatten to reduce its size.

Other options for stacking hundreds of images include the free program StarStax (Windows and Mac), which requires a folder of “intermediate” TIFFs or JPGs. See Step 6 above.

The Advanced Stacker Actions from Star Circle Academy are actions you install in Photoshop that work directly from Raw files to create some impressive effects. I use them and recommend them.


Demo-Timelapse10Step 10B โ€“ Photoshop or 3rd Party Programs โ€“ Assemble for Movies

The same folder of images taken for star trail stacking can also be turned into a time-lapse movie. Instead of stacking the images on top of one another in space, you string them together one after the other in time.

There are many methods for assembling movies. Free or low cost programs such as Quicktime 7 Pro, Time-Lapse Assembler, Sequence (a Mac program shown above), VirtualDub, or Time-Lapse Tool can do the job, all offering options for the final movieโ€™s format.

Generally, an HD video of 1920×1080 pixels in the H264 format, or โ€œcodec,โ€ is best, rendered at 15 to 30 frames per second.

Most movie assembly programs will need to work from a folder of JPGs of the right size, produced using one of the choices listed under Step 6: Export.

But … you can also use Photoshop to assemble a movie.

Choose the Window>Workspace>Motion to bring up a video timeline. Then File>Open to drill to your folder of processed and down-sized JPG files. Select one image, then check โ€œImage Sequence.” Choose the frame rate (15 to 30 fps is best). Then go to File>Export>Render Video to turn the resulting file into a final H264 or Quicktime movie suitable for use in other movie editing programs.


Demo-Timelapse11

Advanced Techniques: Using LRTimelapse

The workflow Iโ€™ve outlined works great when you can apply the same development settings to all the images in a folder. For star trail and time-lapse sequences shot once it gets dark and under similar lighting conditions that will be the case.

But if the Moon rises or sets during the shoot, or if you are taking a much more demanding sequence that runs from sunset to night, the same settings wonโ€™t work for all frames.

The answer is to turn to the program LRTimelapseย (100 Euros for the standard version, and available in a free but limited trial copy). LRTimelapse works with either Lightroom or Bridge/Adobe Camera Raw.

To use it you process just a few selected โ€œkeyframesโ€ โ€“ at least two, at the start and end of the sequence, and perhaps other frames throughout the sequence, processing them so each frame looks great. You read that processing data into LRTimelapse and, like magic, it interpolates your settings, creating a folder of images with every setting changing incrementally from frame to frame, something you could never do by hand.

It can then work with Lightroom to export the frames out to a video in formats from HD up to 4K in size. For serious time-lapse work, LRTimelapse is an essential tool.


Much, much more information and tutorials are included in my multimedia Apple eBook, linked to below.

But I hope this quick tutorial helps in providing you with tips to make your images and movies even better! If you found it useful, please feel free to share a link to this blog page through your social media channels. Thanks!

And for tips on shooting in the field, please see my earlier blog on Ten Tipsย for Terrific Time-Lapses.

โ€“ Alan, November 10, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

How to See and Shoot the โ€œSupermoonโ€ Eclipse


Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400 for 4 seconds, single exposure, shortly after totality began.

On Sunday, September 27 the Moon undergoes a total eclipse, the last weโ€™ll see until January 2018.

This is a sky event you donโ€™t want to miss. Whether you photograph it or just enjoy the view, it will be a night to remember, as the Full Moon turns deep red during a total eclipse.

Note โ€” For this article Iโ€™m giving times and sky directions for North America. For Europe the eclipse occurs early in the morning of September 28, as the Moon sets into the west. But for here in North America the timing could not be better. Totality occurs in the evening of Sunday, September 27 as the Moon rises into the east.ย 

Courtesy Wikimedia Commons
Courtesy Wikimedia Commons

ECLIPSE BASICS

A total lunar eclipse occurs when the Moon โ€” and it can only be Full โ€” passes through the shadow cast into space by Earth. The Sun, Earth and Moon are in near-perfect alignment.

All total eclipses of the Moon consist of 3 main parts:

โ€ขย The initial partial eclipse occurs as the Moon slowly enters the dark central portion of our planetโ€™s shadow, the umbra. This lasts about an hour.

โ€ขย Totality begins as the entire disk of the Moon is within the umbra. For this eclipse, totality lasts a generous 72 minutes.

โ€ขย Totality ends as the Moon emerges from the umbra to begin the final partial eclipse lasting another hour.


Courtesy Fred Espenak/EclipseWise.com
Courtesy Fred Espenak/EclipseWise.com – All times are Eastern Daylight. Subtract 1 hour for Central Daylight, 2 hours for Mountain Daylight, 3 hours for Pacific Daylight Time. Times apply for anywhere in that time zone.

WHERE TO SEE IT

All of North America, indeed most of the western hemisphere, can see this eclipse. In North America, the farther east you live on the continent the later in your evening the eclipse occurs and the higher the Moon appears in the southeast.

For example, in the Eastern time zone,ย totality begins at 10:11 p.m. EDT and ends at 11:23 p.m. EDT, with mid-totality is at 10:47 p.m. EDT with the Moon about 35 degrees up, placing it high in the southeast sky for southern Ontario, for example.

For me in the Mountain time zone, the total eclipse begins at 8:11 p.m. MDT and ends at 9:23 p.m. MDT, with mid-totality is at 8:47 p.m. MDT, with the Moon just 13 degrees up in the east from here in southern Alberta. From my time zone, and from most location in the Rocky Mountain regions, the Moon rises with the initial partial phases in progress.

This is the total eclipse of the Moon, December 10, 2011, taken from the grounds of the Rothney Astrophysical Observatory, near Priddis Alberta, and looking west to the Rockies. This is a 2 second exposure at ISO 800 with the Canon 5DMkII and Canon 200mm lens at f/4. This was taken toward the end of totality at 7:48 am local time.
This is the total eclipse of the Moon, December 10, 2011, taken from the grounds of the Rothney Astrophysical Observatory, near Priddis Alberta, and looking west to the Rockies. This is a 2 second exposure at ISO 800 with the Canon 5DMkII and Canon 200mm lens at f/4.

For locations on the west coast viewers miss most of the partial eclipse phase before totality. Instead, the Moon rises as totality begins, making for a more challenging observation. Viewers on the coast will need clear skies and a low horizon to the east, but the reward could be a beautiful sight and images of a red Moon rising.


Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400. An HDR composite of 9 images from 1/125 second to 2 seconds, composited in Photoshop CS5. Vibrancy increased to show bring out the colour variations across the shadow and at the edge of the shadow. Taken at about 12:21 am MST on Dec 21, about 20 minutes before totality began, during the partial phase.
Total eclipse of the Moon, December 20/21, 2010, taken from home with 130mm AP apo refractor at f/6 and Canon 7D at ISO 400. An HDR composite of 9 images from 1/125 second to 2 seconds, composited in Photoshop CS5. Taken at about 12:21 am MST on Dec 21, about 20 minutes before totality began, during the partial phase.

“SUPERMOON” ECLIPSE

This eclipse of the Moon is the last in a series of four total lunar eclipses that occurred at six-month intervals over the last two years. We wonโ€™t enjoy another such โ€œtetradโ€ of total lunar eclipses until 2032-33.

But this eclipse is unique in that it also coincides with the annual Harvest Moon, the Full Moon closest to the autumnal equinox. Harvest Moons are known for their orange tint as they rise into what is sometimes a dusty autumn evening.

But what is making internet headlines is that this Full Moon is also the yearโ€™s โ€œsupermoon,โ€ the Full Moon of 2015 that comes closest to Earth. Inย recent years these “perigee” Full Moonsย have been dubbed “supermoons.”

Call it what you will, it doesย make this Full Moon a little larger than usual, though the difference is virtually impossible to detect by eye. And it makes little difference to the circumstances or appearance of the eclipse itself.

Partial eclipse of the Moon at moonset, morning of June 26, 2010, at about 5:00 am. Shot with 200mm telephoto and 1.4x teleconvertor, for 1/15th sec at f/5 and ISO 100, using Canon 7D.
Partial eclipse of the Moon at moonset, morning of June 26, 2010, at about 5:00 am. Shot with 200mm telephoto and 1.4x teleconvertor, for 1/15th sec at f/5 and ISO 100, using Canon 7D. From western North America the Moon will rise in partial eclipse like this on September 27.ย 

HOW TO SEE IT

Just look up! You can enjoy the eclipse with the unaided eye, and even from within city limits.

Unlike eclipses of the Sun, the eclipsed Moon is perfectly safe to look at with whatever you wish to use to enhance the view. The best views are with binoculars or a telescope at low power.

Look for subtle variations in the red colouring across the disk of the Moon, and even tints of green or blue along the dark edge of the Earthโ€™s advancing or retreating shadow during the partial phases.

If you can, travel to a dark site to enjoy the view of the stars and Milky Way brightening into view as the Full Moon reddens and the night turns dark.


HOW TO SHOOT IT

The total eclipse of the Moon, April 15, 2014 local time just after sunset from Australia, seen from Shingle Splitter's Point overlooking Lake Macquarie on the Central Coast of New South Wales, Australia. It was fortunate that we saw this eclipse at all as the sky was very cloudy and at times it was actually raining on us. But about 6 pm the Moon appeared as totality was ending. The Moon appears below Spica and below right of Mars. The lake has a red glitter path from the eclipsed Moon. This is an 8-second exposure at f/2.8 with the 50mm lens on the Canon 60Da at ISO 800.
The total eclipse of the Moon, April 15, 2014 local time just after sunset from Australia.ย This is an 8-second exposure at f/2.8 with the 50mm lens on the Canon 60Da at ISO 800.

1. On A Tripod

The easiest method is to use a camera on a tripod, with a remote release to fire the shutter and prevent vibration from blurring the image. What lens you use will depend on how you wish to frame the scene and how high the Moon is in your sky.

Lens Choice

From eastern North America youโ€™ll need a wide-angle lens (14mm to 24mm) to frame the eclipsed Moon and the ground below. The Moon will appear as a small red dot.

While you can shoot the Moonย with longer focal lengths it takes quite a long lens (>300mm) to really make it worthwhile shooting just the Moon itself isolated in empty sky. Better to include a landscape to put the Moon in context, even if the Moon is small.

From western North America the lower altitude of the Moon allows it to be framed above a scenic landscape with a longer 35mm to 50mm lens, yielding a larger lunar disk.

From the west coast you could use a telephoto lens (135mm to 200mm) to frame the horizon and the eclipsed Moon as it rises for a dramatic photo.

Focusing

Use Live View (and zoom in at 10x magnification) to manually focus on the horizon, distant lights, or bright stars. The Moon itself my be tough to focus on.

Exposure Times

Exposures will depend on how bright your sky is. Use ISO 400 to 800 and try metering the scene as a starting point if your sky is still lit by twilight. Use wide lens apertures (f/4 to f/2) if you can, to keep exposures times as a short as possible.

The apparent motion of the Moon as the sky turns from east to west will blur the image of the Moon in exposures lasting more than a few seconds, especially ones taken with telephoto lenses.

The maximum exposure you can use before trailing sets in is roughly 500 / lens focal length.


Total eclipse of the Moon, December 20/21, 2010, taken from home with Canon 5D MKII and 24mm lens at f2.8 for stack of 4 x 2 minutes at ISO 800. Taken during totality. The eclipsed Moon is the red object above Orion, and the stars appear bloated due to high haze and fog rolling in, visible at the bottom.
Total eclipse of the Moon, December 20/21, 2010, taken with Canon 5D MKII and 24mm lens at f2.8 for stack of 4 x 2 minutes at ISO 800. Taken during totality using a camera tracker.

2. On a Tracker or Equatorial Mount

If you can track the sky using a motorized tracker or telescope mount, you can take exposures up to a minute or more, to record the red Moon amid a starry sky.

For this type of shot, youโ€™ll need to be at a dark site away from urban light pollution. But during totality the sky will be dark enough that the Milky Way will appear overhead. Use a wide-angle lens to capture the red Moon to the east of the summer Milky Way.


The total eclipse of the Moon, October 8, 2014, the Hunterโ€™s Moon, as seen and shot from Writing-on-Stone Provincial Park, Alberta under mostly clear though slightly hazy skies, thus the glow around the Moon. The planet Uranus is the brightest dot left of the Moon at 8 oโ€™clock position. Both the Moon and Uranus were at opposition. This was the second in a โ€œtetradโ€ series of 4 total lunar eclipses in a row at six-month intervals in 2014 and 2015. I shot thus just after mid-totality though with the northern limb of the Moon still bright in this single 15-second exposure at ISO 400 with the Canon 60Da, and with the Officina Stellaire 80mm apo refractor at f/6. It was mounted on the Sky-Watcher HEQ5 mount tracking at the lunar rate. I chased into clear skies to see and shoot this eclipse.
The total eclipse of the Moon, October 8, 2014, the Hunterโ€™s Moon, as seen and shot from Writing-on-Stone Provincial Park, Alberta.ย I shot this just after mid-totality in aย single 15-second exposure at ISO 400 with the Canon 60Da, and with the 80mm apo refractor at f/6. It was mounted on the Sky-Watcher HEQ5 mount tracking at the lunar rate.

3. Through a Telescope

The most dramatic closeups of the eclipsed red Moon require attaching your camera body (with its lens removed) to a telescope. The telescope becomes the lens, providing a focal length of 600mm or more, far longer than any telephoto lens most of us own.

Youโ€™ll need the appropriate โ€œprime focusโ€ camera adapter and, to be blunt, if you donโ€™t have one now, and have never shot the Moon though your telescope then plan onย shooting with another method.

But even if you have experience shooting the Moon through your telescope, capturing sharp images of the dim red Moon demand special attention.

The telescope must be on a motorized mount tracking the sky, preferably at the โ€œlunar,โ€ not sidereal, drive rate. Focus on the Moon during the partial phases when it is easier to focus on the bright edge of the Moon.

Exposures during totality typically need to be 5 to 30 seconds at ISO 800 to 3200, depending on the focal ratio of your telescope. Take lots of exposures at various shutter speeds. You have over an hour to get it right!


The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in western Monument Valley, Utah. I shot the totality images at 6:01 a.m. MDT, during mid-totality during the very short 4 minutes of totality. The mid-totality image is a composite of 2 exposures: 30 seconds at f/2.8 and ISO 1600 for the sky and landscape, with the sky brightening blue from dawn twilight, and 1.5 seconds at f/5.6 and ISO 400 for the disk of the Moon itself. Also, layered in are 26 short exposures for the partial phases, most being 1/125th sec at f/8 and ISO 400, with ones closer to totality being longer, of varying durations. All are with the 24mm lens and Canon 6D on a static tripod, with the camera not moved through the entire sequence. The short duration of totality at this eclipse lent itself to a sequence with one total phase image flanked by partial phases. The rocks are illuminated by lights from the community - light pollution but photogenic in this case - and partly from dawn glow in the east.
The total lunar eclipse of April 4, 2015 taken from near Tear Drop Arch, in western Monument Valley, Utah.ย The mid-totality image is a composite of 2 exposures: 30 seconds at f/2.8 and ISO 1600 for the sky and landscape, with the sky brightening blue from dawn twilight, and 1.5 seconds at f/5.6 and ISO 400 for the disk of the Moon itself.ย Also, layered in are 26 short exposures for the partial phases, most being 1/125th sec at f/8 and ISO 400, with ones closer to totality being longer, of varying durations.ย All are with the 24mm lens and Canon 6D on a static tripod.

4. Time-Lapses

Iโ€™d suggest attempting time-lapses only if you have lots of experience with lunar eclipses.

Exposures can vary tremendously over the partial phases and then into totality. Any time-lapse taken through a telescope, or even with a wide-angle lens, will require a lot of manual attention to ensure each frame is well-exposed as the sky and Moon darken.

However, even if you do not get a complete set of frames suitable for a smooth, continuous time-lapse, selected frames taken every 5 to 10 minutes may work well in creating a multiple-exposure composite (as above), by layering exposures later in Photoshop.


Whatever method โ€“ or methods โ€” you use, donโ€™t get so wrapped up in fussing with cameras you forget to simply enjoy the eclipse for the beautiful sight it is.

This is the last total eclipse of the Moon anyone on Earth will see until January 31, 2018. So enjoy the view of the deep red Moon in the autumn sky.

โ€” Alan, September 20, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

10 Tips for Terrific Time-Lapses


eMotimo at Dino Park #1

Here are my top tips for shootingย terrificย still-image nightscapes … and time-lapse movies of the night sky.ย 

Canon 6D

1. Go for pixel size, not pixel count

When choosing a camera for night sky scenes, the most important characteristic is not number of megapixels. Just the opposite.

The best cameras are usually models with more modest megapixel counts. Each of their individual pixels is larger and so collects more photons in a given exposure time, yielding higher a signal-to-noise ratio โ€“ or lower noise, critical for night shooting.

Cameras with pixels (the โ€œpixel pitchโ€) 6 to 8 microns across are best. Many high-megapixel cameras have tiny 4-micron pixels.

Large-pixel cameras are often the full-frame models, such as the Canon 5D MkIII and 6D, the Nikon D610, D750, and Df, and the Sony a7s and a7S II.

Many โ€œcropped-frameโ€ cameras are now 18- to 24-megapixel models with smaller, noise-prone pixels. They can certainly be used, but will requireย more care in exposing well at lower ISOs, and in processing to smooth out noise without blurring detail.

Manual Settings

2. Learn to fly on manual

While DSLRs and Compact System Cameras have amazing automatic functions we use none of them at night.

Instead, we use the camera on Manual or Bulb, dialling in shutter speed, aperture and ISO speed manually. We also have to focus manually, using Live View mode to focus on a bright star or distant light.

Learn the tradeoffs involved: Increasing ISO sensitivity of the sensor keeps exposure times down but increases noise. Opening up the lens aperture to f/2 or f/1.4 also keeps exposures short but introduces image-blurring aberrations, especially at the frame corners.

To prevent stars from trailing due to the skyโ€™s motion adhere to the โ€œ500 Rule:โ€ the maximum exposure time is roughly 500 divided by the focal length of your lens.

Histogram-Correct

3. Expose to the rightย 

At night, always give the sensor plenty of signal.

Use whatever combination of shutter speed, aperture and ISO will provide a well-exposed image. The image โ€œhistogram,โ€ the graph of number of pixels at each brightness level shown above, should never be slammed to the left.

It should be a well-distributed โ€œmountain rangeโ€ of pixels, extending well to the right. If the 500 Rule restricts your shutter speed, and your desire for sharp images across the frame demands you shoot at f/2.8 or even slower, then donโ€™t be afraid to bump up the ISO speed to whatever it takes to produce a good histogram and a well-exposed image.

Noise will look far worse if you underexpose, then try to boost the image brightness later in processing. Expose to the right!

File Format #2 7D

4. Shoot Raw!

Shoot Raw. Period.

When comparing Raw and compressed JPG versions of the same image, you can be fooled into thinking the JPGs look better (i.e. smoother) because of the noise reduction the camera has applied to the JPG that is beyond your control. However, that smoothing has also wiped out fine detail, like stars.

By shooting Raw you get to control whatever level of noise reduction and sharpening the image needs later in processing.

JPGs are also 8-bit images with a limited tonal range โ€“ย or palette โ€“ย in which to record the subtle gradations of brightness and colour present in our images.

Imported Raw files are 16-bit, with a much wider tonal scale and colour palette. Thatโ€™s critical for all astrophotos when, even with a well-exposed image, many tonal values are down in the dark end of the range. Processing Raw images makes it possible to extract detail in the shadows and highlights.

Even when shooting a time-lapse sequence, shoot Raw.

LENR

5. Take dark frames (sometimes!)

LENR reduces noise.

Itโ€™s a topic of some debate, but in my experience it is always better to turn on the cameraโ€™s Long Exposure Noise Reduction (LENR) function when shooting individual nightscape images. Doing so forces the camera to take a โ€œdark frame,โ€ an exposure of equal length but with the shutter closed.

It records just the noise, which the camera then subtracts from the image. Yes, it takes twice as long to acquire an image, but the image is cleaner, with fewer noisy pixels.

This is especially true when shooting on hot summer nights (the warmer the sensor the higher the noise). That said, you cannot use LENR when shooting frames for star trail composites or time-lapse movies.

For those, the interval between images should be no more than 1 to 5 seconds. Using LENR would introduce unsightly gaps in the trails or jumps in the star motion in time-lapses.

As an alternative, it is possible to take separate dark frames at the end of the night by simply covering the lens and taking exposures of the same duration and at the same ISO as your “light frames.”

Some stacking software, such as StarStax and the Advanced Stacker Actions have places to put these dark frames, to subtract them from the stack later in processing.

811eBU4sBkL._SL1500_

6. Use fast lenses

A fast lens is your best accessory.

While the โ€œkit zoomโ€ lenses that come with many DSLRs are great for shooting bright twilight or Full Moon scenes, they will prove too slow for dark starlit scenes with the Milky Way.

In addition to exposing to the right and shooting Raw, the secret to great nightscapes is to shoot with fast lenses, usually โ€œprimeโ€ lenses with fixed focal lengths. They are usually faster and have better image quality than zooms.

Your most-used lens for nightscape and time-lapse shooting is likely to be a 14mm to 24mm f/2 to f/2.8 lens.

Fortunately, because we donโ€™t need (and indeed canโ€™t use) autofocus we can live happily with low-cost manual lenses, such as the models made in Korea and sold under brands such as Rokinon, Samyang and Bower. They work very well.

The quarter Moon reflected in the waters of Reesor Lake, Alberta in Cypress Hills Interprovincial Park. Taken on July 5, 2014. This is with the 14mm Rokinon lens and Canon 6D at ISO800. This is a high dynamic range stack of6 exposures from 1/15 to 0.6 seconds taken just before using the camera to take a motion control time-lapse. The Moon was in conjunction with Mars (right of Moon) and Spica (left of Moon) but in the bright twilight they are not showing up here.

7. Get to know the Moon & Milky Way

For many nightscape and time-lapse shoots, the Moon is your light source for illuminating the landscape.

When the Moon is absent, the Milky Way is often your main sky subject.

Knowing where the Moon will be in the sky at its various phases, and when it will rise (in its waning phases after Full Moon) or set (in its waxing phases before Full) helps you a plan a shoot, so youโ€™ll know whether a landscape will be well lit.

Astronomy apps for desktop computers and mobile devices are essential planning aids. A good one specifically for photographers is The Photographer’s Ephemeris.

Knowing in what season and time of night the Milky Way will be visible is essential if you want to capture it. Donโ€™t try for Milky Way shots in spring โ€“ it isn’t up!

Me with cameras shooting time-lapses at Crawling Lake reservoir, Alberta, June 30/July 1, 2013. Perpetual twilight of summer solstice shines to the north and very weak noctilucent clouds.

8. Keep it simple to start

Don’t be seduced by the fancy gear.ย 

Time-lapse imaging has blossomed into a field replete with incredible gear for moving a camera incrementally during a shoot, and for automating a shoot as day turns to night.

I explain how to use all the fancy gear in my ebook, linked to below, however … Great time-lapses, and certainly still-frame nightscapes, can be taken with no more than a DSLR camera with a good fast lens and mounted on a sturdy tripod. Invest in the lens and donโ€™t scrimp on the tripod.

Another essential for shooting multi-frame star trails and time-lapses is a hardware intervalometer ($50 to $150).

TC-80N3 Masked

9. Learn the intricacies of intervals

For time-lapses, an intervalometer is essential.

Mastering exposure and focus in still images is essential for great time-lapse movies because they are simply made of hundreds of well-exposed still frames.

But move to time-lapses and you have additional factors to consider: how many frames to shoot and how often to shoot them. A good rule of thumb is to shoot 200ย to 300 frames per sequence, shot with an interval of no more than 1 to 5 seconds between exposures, at least for starry night sequences.

However, most intervalometers (the Canon TC-80N3 is an exception) define their โ€œIntervalโ€ setting to mean the time from when the shutter opens to when it opens again. In that case, you set the Interval to be a value 1 to 5 seconds longer than the exposure time you are using. That’s also true of theย intervalometer function Nikon builds into their internal camera firmware.

Test first!

The summer Milky Way with a meteor streaking at centre as a bonus. An aurora to the north off frame is lighting the foreground with a green glow. Haze and forest fire smoke obscure the horizon. I shot this at the Battle Scene viewpoint at Writing-on-Stone Provincial Park, in southern Alberta. Sagittarius and the galactic centre is on the horizon at left of centre. Capricornus is amid the haze at left of centre. On the horizon are the Sweetgrass Hills in Montana. The Milk River winds below amid the sandstone formations that are home to historic First Nations petroglyphs.  This is a single 30-second exposure with the Nikon D750 at ISO 3200 and Sigma 24mm Art lens at f/2, taken as part of a time-lapse sequence.

10. Go to beautiful places

While the gear can be simple, great shots demandย anย investment in time.

By all means practice at home and at nearby sites that are quick to get to. Try out gear and techniques at Full Moon when exposures are short (the Full Moon is bright!) and you can see what you are doing.

But beautiful images of landscapes lit by moonlight or starlight require you to travel to beautiful locations.

When you are on site, take the time to frame the scene well, just as you would during the day. Darkness is no excuse for poor composition!

While shooting nightscapes and time-lapses can be done with a minimal investment in hardware and software, it does require an investment in time โ€“ time to travel and spend nights shooting at wonderful places under the stars.

Enjoy the night!

I cover all these topics, and much more, in detail in my ebook How to Photograph & Process Nightscapes and Time-Lapses. Click the link below to learn more.

โ€” Alan, September 16, 2015 / ยฉ 2015 Alan Dyer / www.AmazingSky.com

The Dancing Lights over Dinosaur Park


The Northern Lights over the badlands of Dinosaur Provincial Park, Alberta, on September 11, 2015. This is one frame from a 280-frame time-lapse sequence. Although, in this image the ground came from a later exposure in the sequence when passing car headlights lit the ground briefly on an otherwise dark, moonless night, to help sculpt the ground. This was with the Nikon D750 and 24mm lens for 15 seconds at f/2.8 and ISO 6400.

The Northern Lights dance over the badlands of Dinosaur Provincial Park, a World Heritage Site.

Aurora alerts called for a fine display on Friday, September 11. Forewarned, I headed to one of my favourite shooting spots at Dinosaur Provincial Park, and aimed three cameras at the sky. It didn’t take long before the lights appeared, right on cue.

An aurora and the autymn Milky Way over the Badlands of Dinosaur Provincial Park, Alberta, on September 11, 2015. The stars, constellations and Milky Way of the autumn and early winter sky are rising in the northeast, including the objects: the Andromeda Galaxy at top, and the Pleiades at bottom.  This is one frame from a 200-frame time-lapse sequence, though in this image the ground comes from a Mean Combine stack of 7 images to smooth noise but the sky is from one image, each 30 seconds at f/2.8 with the Rokinon 14mm lens and Canon 5D MkII at ISO 3200 on a dark moonless night.

The display started out with lots of promise, but did fade after 12:30 a.m., just when it was supposed to be peaking in intensity. I let the cameras run for a while but eventually stopped the shutters and packed it in…

…But not before I captured this odd bit of aurora in the east, shown below, that appearedย as an isolated and stationary band pulsing up and down in brightness, but with little movement.

An odd isolated arc of aurora in the eastern sky over the badlands of Dinosaur Provincial Park, Alberta, on September 11, 2015. This arc sat stationary and pulsed up and down in brightness over a few seconds. It was in some frames but not others. The winter stars of Taurus, including the Pleiades cluster, and Auriga are rising in the east.  The sky here is from a single exposure but the ground came from a Mean Combine stack of 8 exposures to smooth noise. Each was 40 seconds at f/2.8 with the 14mm Rokinon lens and Canon 5D MkII at ISO 3200 on a moonless night.

I’ve seen these before and have never heardย a good explanation of what process creates such an effect, with a patch of sky appearing to “turn on” and off.

You can see the effect at the end of the time-lapse compilation, linked below from Vimeo.

As usual, please enlarge to full-screen and watch in HD for the best quality.

Unfortunately, a patrolling park official checking on things, spoiled some frames with her truck’sย headlights. It’s one of the hazards of time-lapse imaging.

As a final image, here are all the fish-eye lens framesย stacked into one image, to create a single star trail showing the sky rotating about the celestial pole.

A composite stack of 198 images creating a circumpolar star trail image of the entire sky, with the motion of the stars and the Northern Lights over an hour recorded onto one frame.  The 8mm fish-eye lens take in almost all the sky, with the camera aimed northeast to the centre of the auroral arc, with Polaris, the centre of the skyโ€™s rotation, at left. The scene is at Dinosaur Provincial Park in Alberta, from September 11, 2015.  Each exposure was 20 seconds at f/3.5 with the Sigma 8mm lens and at ISO 6400 with the Canon 6D. The ground comes from a stack of 16 images taken early in the sequence turned into a smart object and mean combined with Mean stack mode, to average out and smooth noise. The sky comes from 198 exposures, Lighten stacked using the Advanced Stacker Actions from StarCircleAcademy.com.
Each exposure was 20 seconds at f/3.5 with the Sigma 8mm lens and at ISO 6400 with the Canon 6D. The ground comes from a stack of 16 images taken early in the sequence turned into a smart object and mean combined with Mean stack mode, to average out and smooth noise. The sky comes from 198 exposures, Lighten stacked using the Advanced Stacker Actions from StarCircleAcademy.com.

It’s been a good week for auroras, with a promise of more to come perhaps, as we approach equinox, traditionally a good time for magnetic field lines to align, funnellingย solar storm particles into our magnetosphere.

Keep looking up!

โ€” Alan, September 13, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.comย 

The Dancing Northern Lights


A still frame from a 865-frame time-lapse movie taken the morning of Sept. 9, 2015 from the back deck, using the Nikon D750 and 24mm lens for 2-second exposures for a fast cadence. Focus is soft.

The lights came out and danced in my sky in the early morning hours.

The early warning signs weren’t calling for anything too impressive for a display last night, September 8/9, but the sky surprised us with a fantastic display of Northern lights.

I shot with one camera โ€“ it was very late, or very early! โ€“ but shot enough frames to create this short 1.5-minute music video.

I photographed the sequenceย with a single fixed-camera aimed east toward a bright auroral curtain, showing fast pulsing forms common to the later stages of a substorm. But then a new bright curtain sweeps in from the north and the display brightens even more in a new substorm. The display then fades.

The exposures were taken over an hour fromย 1:30 a.m. to 2:30 a.m. MDT. Each was a 2-second exposure with an interval of 2 seconds, shot with the Nikon D750 at ISO 3200 and Sigma 24mm lens at f/2, for a total of just over 850 frames.

Music is my Adi Goldstein at AGSoundtrax.com.

โ€” Alan, September 9, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

Time and Tide … and the Pull of the Moon


Sunset at Point Prim Lighthouse, near Digby, Nova Scotia on the Fundy side of the peninsula, with a waxing crescent Moon in the western twilight sky. The dark rocks are basaltic volcanic rocks from the late Triassic formed as part of the rifting that split Gondwonaland into the Americas and Europe and Africa. The Lighthouse is the fourth in a succession of lighthouses built at Point Prim starting in 1804. It was automated in 1984. This is a panorama created from 9 segments taken with the 16-35mm lens at 35mm and Canon 6D. Stitched in Photoshop.

Nothing demonstrates the power of the sky to affect the Earth better than the daily ebb and flow of the tides.

For a few days earlier this week I was fortunate to visit Nova Scotia, to speak at the annual Nova East Star Party.

A scene at the Nova East Star Party near Windsor, Nova Scotia, in August 2015, showing laser pointer in use under a clear starry sky.
A scene at the Nova East Star Party near Windsor, Nova Scotia, in August 2015.
I took advantage of my visit to Canada’s east coast to shoot time-lapses of one of nature’s most amazing phenomena, the daily pulse of the tides.

The coastal regions around the Bay of Fundy, particularly on the Nova Scotia shore, and around the Minas Basin, experience the highest tides in the world. The range can be as much as 16 metres. Only remote Leaf Basin on Ungava Bay in northern Quรฉbec matches the Minas Basin for tidal range.

The reason is not, as is sometimes stated, the funnel shape of the Bay of Fundy, but rather its length. It takes about 12 hours and 25 minutes for an ocean wave to traverse the length of the Bay, equal to the time between successive high tides. This creates a resonance, with the incoming and outgoing waves building upon each other and increasing the height of the twice-a-day tides.

The amount of water moving back and forth is mind-boggling: some 9 to 16 billion tonnes of water flows daily into and out of the Minas Basin alone, enough to tilt the land.

For the time-lapse videos I shot at two locations:

  • Evangeline Beach on Minas Basin, with vast tidal flats that are engulfed twice a day.
  • And Halls Harbour on the Fundy shore, a great spot for watching boats go from grounded to afloat in just an hour or so.


I timed my arrival at both sites to be there near lowest tide and shoot for about 3 hours as the tide came in, then stop shooting at about high tide.

Luckily, high tide on both days was about 3 p.m. making for convenient shoots on a summer afternoon. Being just after New Moon, the tides were near their highest.

Earth experiences two tides a day, at an interval of about 12 hours and 25 minutes, with the extra 25 minutes coming from the motion of the Moon around the Earth during that half-day interval. It takes another 25 minutes for us to line up with the Moon again.

But why two tides a day? If the Moon pulls at our water why isn’t there just one high tide, when the Moon is highest in our sky?

The Moon doesn’t pull on just the water. It pulls on everything.

And it isn’t the Moon’s gravity per se that raises the tides, it is the difference in the strength of that gravitational pull across an object.

The side of the Earth closest to the Moon feels the strongest pull, raising the tides on the side facing the Moon. But the Earth itself is also pulled toward the Moon, but to a lesser extent because the centre of our planet lies farther from the Moon.

In effect, the Moon pulls the Earth away from the water on the far side of the Earth, the side away from the Moon. This raises a bulge of water on the other side of our planet, the side that feels the least gravitational pull from the Moon because it is farthest from the Moon.

So as Earth rotates we pass through two tidal bulges, one facing the Moon and one facing away from the Moon.

Newton's Apple Tree

It wasn’t until Isaac Newton came along in the mid-17th century that we had an explanation for and an ability to predict the tides accurately. Even Galileo got it wrong. It was Newton’s mathematical explanation of how gravity fell off with increasing distance that led to an accurate theory of the tides. See Wikipedia for much more detail.

The tree above is a direct descendent of the famous “Newton’s Apple” tree that inspired his theory of universal gravitation. It is an apple tree on the picturesque grounds of Acadia University in Wolfville, Nova Scotia, and was grown from a cutting from the famous apple tree at Woolsthorpe Manor where Newton grew up and took refuge during the outbreak of plague in the cities.

Newton's Apple #1

It was during this retreat that, story has it โ€“ a story told by Newton himself โ€“ that an apple falling on his head inspired him to wonder if the same force that was causing the apple to fall was also keeping the Moon in perpetual orbit around the Earth.

Annapolis Tidal Generating Station

Today, we can turn the pull of the Moon into power, as here at Annapolis Royal where Nova Scotia Power operates the only tidal power station in North America, driven by water pouring into and out of the Annapolis River. The pull of the Moon here generates 20 megawatts of electricity.

New submerged turbines are now being tested in the Minas Basin, using a variety of technologies. A previous underwater turbine at the same site was ripped to pieces by the force of the water. Harnessing the tides is not so easy.

Tide watchers take note: The Full “supermoon” of September 27 (when there is also a total eclipse of the Moon) will be especially close. Favourable geometry will raise the highest tides in 18 years in the two days that follow the Full Moon.

The Moon truly has the power to move the waters and the Earth.

Many thanks to my host Dr. Roy Bishop for the tidal tour and elucidation. Click here to download an article of his about the tides. 

โ€“ Alan, August 21, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

Moonlight on the Prairie


The rising almost-Full Moon, a โ€œBlue Moonโ€ of July 30, 2015, rising behind a rustic old farmhouse near Bow Island, Alberta. The Moon sits in the pibk Belt of Venus with the blue shadow of the Earth below. This is a single frame from a 600-frame time-lapse sequence, taken with the Canon 6D and 16-35mm lens.

I present a short time-lapse vignette of scenes shot under moonlight on the Alberta prairie.

The movie linked below features sequences shot July 29 and 30, 2015 on beautifully clear moonlit nights at locations south of Bow Island, Alberta, on the wide open prairie. The three-minute video features two photogenic pioneer sites.

Circumpolar star trails over the historic but sadly neglected St. Anthonyโ€™s Church between Bow Island and Etzikom, Alberta. The Big Dipper is at left, Polaris at top. The Roman Catholic church was built in 1911 by English, Russian German immigrants. It served a dwindling congregation until 1991 when it closed. At that time workers found a time capsule from 1915 with names of the priest and parisioners of the day. In summer of 2014 the Church suffered its latest indignity when the iron cross on its steeple tower was stolen. It was there when I stopped at this Church on a site scouting trip in May 2014. I planned to return on a moonlit night and did on July 29, 2015. A nearby house had been torn down and the cross was now gone.  This is a stack of 300 6-second exposures with the Canon 6D at ISO 1600 and 16-35mm lens at f/2.8. Bright light from a 13-day Moon lights the scene, making for very short exposures. The ground comes from one exposure to keep shadows sharp. The final stars also come from another single exppsure taken two minutes after the last trail image. I used the Advanced Stacker Actions to stack the trails.

The church is the now derelict St. Anthony’s Church, a former Roman Catholic church built in 1911 by English and Russian-German immigrants. It served a dwindling congregation until as late as 1991 when it closed. At that time workers found a time capsule from 1915 with names of the priest and parisioners of the day.

The wood churchย seems to have been largely neglected since.

In the summer of 2014 the Church suffered its latest indignity when the iron cross on its steeple tower was stolen. I also shot in the pioneer cemetery of the Church.

Circumpolar star trails circling above an old rustic and abandoned house near Bow Island, Alberta, with illumination from the nearly Full Moon. Cassiopeia is near centre. Polaris is at top left.  This is a stack of 140 frames from a time-lapse sequence with additional frames added for the first and last stars, and the ground coming from a mean combine stack of 8 frames to reduce noise. Each frame is 10 seconds at f/4 with the 16-35mm lens and ISO 1600 with the Canon 6D. Stacked with Advanced Stacker Actions, using the Ultrastreaks effect, from within Photoshop.

The other site is a nearby farmhouse with photogenic textures and accompanied by rustic out buildings that are barely managing to stand.

Illumination was from a waxing gibbous Moon, just 1 to 2 days before the infamous “Blue Moon” of July 31. Its bright light turned the sky blue, and lit the landscape with the same quality as sunlight, because it is sunlight!


Enlarge the video to full screen for the full HD version.

For theย technically inclined:

I shot the scenes with three cameras โ€“ a Canon 60Da, Canon 6D, and Nikon D750.

The Nikon, with a 24mm lens, was on the Dynamic Perception Stage Zero Dolly and Stage R panning unit, while the 60Da, with a 14mm lens, was on the compact Radian panning unit. The third camera, the 6D, with a 16-35mm lens, was on a fixed tripod for the star trail sequences and stills.

The music is by Adi Goldstein (AGSoundtrax.com), whose music I often use in my sequences. It just seems to work so well, and is wonderfully melodic and powerful. Thank you, Adi!

To process the several thousand frames that went into the final movie, I used Adobe Bridge and Adobe Camera Raw, supplemented by the latest Version 4.2 of LRTimelapse (lrtimelapse.com). Its new “Visual Deflicker” workflow does a beautiful job smoothing out frame-to-frame flickering in sequences shot in twilight under darkening lighting conditions. Thank you Gunther!

For the star trail sequences and the still images above I used the Advanced Stacker Actions fromย StarCircleAcademy.com. Unlike most other stacking programs, the Stacker Actions work from within Adobe Bridge and Photoshop directly, using the processed Raw images, with no need to create intermediate sets of JPGs. Thank you Steven!

โ€” Alan, August 3, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.comย 

The “Blue Moon” over Calgary


The Full Moon of July 31, 2015, an infamous โ€œblue Moonโ€, the second Full Moon of July, rising over the skyline of Calgary, Alberta. This is one frame of a 480-frame time-lapse sequence taken with the Canon 60Da and 28-105mm lens. The location was Toronto Crescent.

The much-publicized “Blue Moon” of July rises over the skyline of Calgary.

Last night, July 31, many people looked east to see a wonderful moonrise. Did it look different thanย any other moonrise? No. But did it look great? You bet.

I set up myย cameras at a site in northwest Calgary, picked for its sightline looking east-southeast over the downtown core of Calgary and directly toward the moonrise point.

I used the software The Photographer’s Ephemeris to plan the location and angles. It is wonderful for making sure you are in the right place at the right time for catching a photogenic moonset or moonset.

Here’s the screen shot from TPE that showed me where to be Friday evening. The blue line aimsย to the moonrise point.

IMG_2473

Of course, despite the planning the Moon did not look blue! Blue Moons, as they have come to be defined, never do. The term now means the second Full Moon in a calendar month. We had a Full Moon on Canada Day, July 1, and then enjoyed a second July Full Moon one lunar cycle later on July 31.

I shot the scene with two cameras, each shooting hundreds of frames for time-lapses, from which I extracted still images.

A short 1-minute music video of the result is here at Vimeo. Enlarge the screen and be sure HD is selected.


As a technical note, for the processing I used the latest version 4.2 of LRTimelapse and its new “Visual Deflicker” workflow which very nicely smooths out all the frame-to-frame flickering that can plague daytime and twilight shots taken under Auto Exposure.

Whileย the shutter speed does constantly decrease, it does so in 1/3rd-f/stop steps, yielding stair-step jumps in brightness. LRT smooths all that out, with v4.2 doing a much better job than earlier versions.

Thanks for watching!

โ€” Alan, August 1, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.comย 

The Great Solstice Aurora: THE MOVIE!



On June 22 I shot the great all-sky aurora with three cameras all shooting time-lapse frames. Here’s the result!

The rapidly moving and astonishing patterns of the aurora are ideal for time-lapse photography. Except for a total eclipse of the Sun, nothing else in the sky changes with such dramatic and jaw-dropping intensity.

For the June 22 outbreak of Northern Lights across the sky, I shot some 2,200 frames, and assembled them into the time-lapse compilation here.

One sequence records the entire sky and the complete development of the display, from when it first appeared in twilight about 11:15 p.m., to when it faded into a diffuse glow across the sky by 1:15 a.m. I shot that sequence with an 8mm fish-eye lens, to capture a scene suitable for projection in a digital planetarium theatre.

I shot theย other sequences with 15mm and 24mm lenses.ย All total, the 3-minute movie comes from about 50 gigabytes of images.

Still images from this night, and from the time-lapse sequences, are in my previous blog post.

I hope you enjoy the video. Do enlarge it to full screen 1080p HD.

โ€“ Alan, June 24, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

Night of the Space Station


A pass of the International Space Station in the bright moonlight, on the evening of May 31, 2015, with the gibbous Moon to the south at centre. The view is looking south, with the ISS travelling from right (west) to left (east) over several minutes. This was the first pass of a 4-pass night, May 31/June 1, starting at 11:06 pm MDT this evening. Numerous other fainter satellite trails are also visible. This is a composite stack of 95 exposures, each 2 seconds at f/2.8 with the 14mm lens and ISO 6400 with the Canon 6D. The gaps are from the 1-second interval between exposures. The length of the trails and gaps reflects the changing apparent speed of the ISS as it approaches, passes closest, then flies away.  I stacked the exposures with the Advanced Stacker Actions from StarCIrcleAcademy.com, using the Lighten mode. The ground comes from a Mean blend of just 8 of the exposures to prevent shadows from blurring but to smooth noise.

The Space Station is now continuously lit by sunlight, allowing me to capture dusk-to-dawn passages of the ISS.

On the night of May 31/June 1 I was able to shoot four passages of the International Space Station on successive orbits, at 90-minute intervals, from dusk to dawn.

The first passage, at 11:06 p.m., was low across the south. It’s the image at top.

An overhead pass of the International Space Station in a bright moonlit sky on the night of May 31/ June 1, 2015, with the gibbous Moon in to the south, below. The view is looking south, with the ISS travelling from right (west) to left (east) over several minutes. This was the second pass of a 4-pass night, May 31/June 1, starting at 12:44 am MDT this morning.  This is a composite stack of 91 exposures, each 4 seconds at f/3.5 with the 8mm fish-eye lens and ISO 6400 with the Canon 6D. The gaps are from the 1-second interval between exposures. The length of the trails and gaps reflects the changing apparent speed of the ISS as it approaches, passes closest, then flies away. The stars are trailing around Polaris at top. An aircraft supplies the other dashed trail across the top and intersecting with the ISS trail. I stacked the exposures with the Advanced Stacker Actions from StarCIrcleAcademy.com, using the Lighten mode. The ground comes from a Mean blend of just 8 of the exposures to prevent shadows from blurring but to smooth noise.

Then at 12:45 a.m. the Space Station came over again, now directly overhead. It’s the image above. The Moon is the bright glow at bottom.

An overhead pass of the International Space Station in a bright moonlit sky on the night of May 31/ June 1, 2015, with the gibbous Moon in the southwest, below. The view is looking south, with the ISS travelling from right (west) to left (east) over several minutes. This was the third pass of a 4-pass night, May 31/June 1, starting at 2:21 am MDT this morning.  This is a composite stack of 66 exposures, each 4 seconds at f/3.5 with the 8mm fish-eye lens and ISO 6400 with the Canon 6D. The gaps are from the 1-second interval between exposures. The length of the trails and gaps reflects the changing apparent speed of the ISS as it approaches, passes closest, then flies away. The stars are trailing around Polaris at top. Unfortunately, I missed catching the start of this pass. I stacked the exposures with the Advanced Stacker Actions from StarCIrcleAcademy.com, using the Lighten mode. The ground comes from a Mean blend of just 8 of the exposures to prevent shadows from blurring but to smooth noise.

One orbit later, at 2:21 a.m., the Station came over in another overhead pass in the bright moonlight.

A pass of the International Space Station in the brightening twilight of dawn, on the morning of June 1, 2015, with the gibbous Moon setting to the southwest at right. The view is looking south, with the ISS travelling from right (west) to left (southeast) over several minutes. This was the last pass of a 4-pass night, May 31/June 1, starting at 3:55 am MDT this morning.  This is a composite stack of 144 exposures, each 2 seconds at f/2.8 with the 15mm full-frame fish-eye and ISO 3200 with the Canon 6D. The gaps are from the 1-second interval between exposures. The length of the trails and gaps reflects the changing apparent speed of the ISS as it approaches, passes closest, then flies away.  I stacked the exposures with the Advanced Stacker Actions from StarCIrcleAcademy.com, using the Lighten mode. The ground comes from a Mean blend of just 8 of the exposures to prevent shadows from blurring but to smooth noise.

The final passage of the night came at 3:55 a.m. as the sky was brightening with dawn twilight and the Moon was setting. This was another passage across the south, and made for the most photogenic pass of the night.

Here’s an edited movie of the four passes, with a little music just for fun.

Seeing the Space Station on not one but two, three, or even four orbits in one night is possible at my latitude of 50 degrees north around summer solstice because the Station is now continuously lit by sunlight — the Sun never sets from the altitude of the ISS.

When the ISS should be entering night, sunlight streaming over the north pole still lights the Station at its altitude of 400 km.

To shoot the time-lapse clips and stills I used 8mm and 15mm fish-eye lenses, and a 14mm ultra-wide lens.

The bright moonlight made it possible to use short 2- to 4-second exposures, allowing me to record enough frames at each passage to make the little movies of the ISS flying across the sky. Keep in mind, to the eye, the ISS looks like a bright star. Some image processing trickery adds the tapering trails.

I used the Advanced Stacker Actions from StarCircleAcademy.com to create the trail effects, and to stack the time-lapse frames into single composite still images. The gaps in the trails are from the one second interval between frames.

โ€“ Alan, June 2, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

Under an Endless Open Sky


Circumpolar star trails at dawn over the historic Butala homestead at the Old Man on His Back Prairie and Heritage Conservation Area in southwest Saskatchewan, taken May 2015. This is a stack of 70 frames from a larger time-lapse sequence, from the end of the sequence in the dawn twilight. Each exposure is 40 seconds with the 14mm lens at f/2.8 and Canon 60Da at ISO 1600. Stacked with Advanced Stacker Actions. The foreground comes from a stack of 8 of the final exposures, mean combined, to smooth noise.

The skies were spectacular at a pioneer homestead on the Saskatchewan prairie.

Canada’a province of Saskatchewan bills itself as the “Land of Living Skies,” and that was certainly true last week when I spent three perfect nights under some of the darkest skies in the country.

The location was the Old Man on His Back Prairie & Heritage Conservation Area, deep in dry southwest Saskatchewan, between Grasslands National Park and Cypress Hills Interprovincial Park, two favourite places of mine for nightscape photography and astronomy.

The Conservation Area reclaims and preserves original short grass prairie habitat. It is named for the formation to the west that is said to resemble the profile of Napi, the creator being of Siksika legends, who after creating the world, lay back here to rest.

The land was once a working ranch first settled by the Butala family. The white pioneer house in my photos dates from that time. It was built in Montana and moved here in the 1920s.

The waxing crescent Moon and Venus (above) over the old farm house at the Visitor Centre at the Old Man on His Back Natural and Historical Conservation Area in southwest Saskatchewan, May 20, 2015, on a very clear night. The old house was the original house lived in by the Butala family who settled the area in the 1920s. This is a single exposure taken as part of an 850-frame time-lapse sequence with the 14mm Rokinon lens and Canon 60Da camera.

In the mid-1990s Peter and Sharon Butala transferred their land to the Nature Conservancy of Canada, to create an island of original prairie amid the heavily grazed land around it.

A 360ยฐ panorama of the night sky and prairie landscape from the Visitor Centre and farmyard at the Old Man on His Back Prairie & Heritage Conservation Area in southwest Saskatchewan. The Milky Way arches across the eastern sky from north to south, while an aurora display (faint to the naked eye) glows in an arch of green and magenta across the northern horizon. The pioneer house was built in the 1920s and this was a working ranch until the 1990s when the land was turned over to the Nature Conservancy of Canada to turn into a natural area to preserve the short grass prairie habitat.  This a stitch of 8 segments, each a 1 minute untracked exposure at f/3.5 with the 15mm lens and ISO 4000 with the Canon 6D. Stitched with PTGui software. I shot these May 18, 2015.

For astronomers, the Area serves also as an island of darkness amid intruding light pollution. The region is very dark, with few lights and manmade sky-glows on the horizon.

My 360ยฐ panorama above shows that the greatest glows come from the arc of the aurora to the north and the arch of the Milky Way stretching across the sky. This is a stargazer’s paradise.

My 2-minute compilation of time-lapse videos and still images taken over three crystal clear nights attempts to capture the wonder of the night sky from such a dark site. Be sure to enlarge the video to full screen to view it.

It was in the little white house that Sharon Butala wrote some of her best-selling books retelling stories of her life on the prairie, notably The Perfection of the Morning, and Wild Stone Heart.

In the latter book, Sharon writes:

“At night the Milky Way glittered and gleamed above us, fathomlessly deep and numberless, the constellations wheeled slowly across the sky with the seasons, and the moon came and went, sometimes white as a maiden’s face, sometimes a looming orange sphere … under such an endless, open sky.”

– Sharon Butala, Wild Stone Heart (Harper Collins, 2000)

โ€“ Alan, May 25, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

Dance of the Northern Lights



My new 3-minute music video compiles still and time-lapse imagery of the aurora I shot inย February 2015 from Churchill, Manitoba.

Churchill’s location at 58ยฐ North on the shore of Hudson Bay puts it directly under the main auroral oval, the zone of greatest auroral activity. Over the 9 nights, 2 were cloudy, with a roaring blizzard.

But on the 8 clear nights we saw aurora every night. I shot time-lapses on 6 of those nights, shooting about 3,500 frames, most of which appear in the final cut of this movie.

Despite the amazing displays we saw, on no night was the auroral activity index (on a scale of 0 to 9) higher than 2 or 3. These were all “normal” quiet nights for auroras in Churchill. Anyoneย farther south would have seen little in their sky on most of these nights.

I shot many of the time-lapses with an 8mm spherical fish-eye lens, to create sequences suitable for projection in digital planetarium domes. One other time-lapse sequence (the last in this movie) I shot with a 15mm full-frame fish-eye. Even it is not wide enough to take in the entire display when the Lights fill the sky.

Exposures were typically 10 to 15 seconds at f/3.5 and ISO 1600 to 4000, all with the Canon 6D. I powered it from its lone internal battery. Amazingly, despite temperatures that were considered extreme even for Churchill (often -32ยฐ C at night) the batteries lasted 90 to 150 minutes allowing me to take lots of frames with no battery change or perhaps just one battery change. Churchill is very dry and only on one night did I have an issue with the lens frosting up.

Music is by Dan Phillipson, his composition “Into the Unknown,” purchased for royalty-free use through Triple Scoop Music. I edited the movie in Apple Aperture, with a title sequence created in Photoshop. Processing of the original images was with Adobe Camera Raw, Photoshop, and LRTimelapse, with assembly of movie frames done with Sequence for MacOS.

I hope you enjoy it! Do click on the Enlarge button to watch it full screen. It may take a while to start playing.

โ€” Alan, March 6, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

The Colourful Curtains of the Northern Lights


All-Sky Aurora #1 (Feb 17, 2015)

The Northern Lights have performed beautifully the last fewย nights, presenting curtains of light dancing across the sky.

Two nights ago in Churchill, Manitoba we were treated to a “storm level” show of aurora, with the Lights all across the sky in green curtains waving and curling before our eyes.

The curtains tower several hundred kilometres up into the atmosphere, from the lower edge at about 80 km up (still high above the stratosphere) to the curtain tops at about 400 km altitude at the edge of space.

The camera picks up the colours far better than the eye can, recording not only the predominant green hues but also shades of pink, magenta and red.

All-Sky Aurora #5 (Feb 17, 2015)

The magentas and reds come from the sections of the curtains at the highest altitudes, from the top of the auroral curtains. Here, where the atmosphere is a near vacuum, sparse oxygen atoms can glow with a red emission line.

However, there must be a blue component as well, leading to the magenta or pink tones, as in my photos here. Nitrogen can glow in blues and purples and might be contributing to the colours.

The top two photos are from Tuesday night, Feb 17, when storm levels of 5 were in effect worldwide.

All-Sky Auroral Curtains #2 (Feb 18, 2015)

Lower down, at about 100 km altitude, the air is denser and oxygen glows with a brighter green hue, which the eye can detect more easily.

The photo above from last night, with an activity level of just 2, also shows most of the sky covered with a faint emission, with a patchy appearance, with dark “holes” also moving and flowingย in the time-lapse movies I shot.

Closer to the horizon, and far to the north, the aurora brightens into the more characteristic green snaking curtains.

Red Auroral Curtains

This image from three nights ago shows an usually coloured aurora at the start of the night, glowing mostly a deeper red and orange.

The green was still off in the distance far to the east. It arrived a few minutes later as green curtains swept in over us.

But the initial red was from low-energy electrons lighting up just high-altitude oxygen. Only when the higher energy particles arrived did the sky light up green.

All-Sky Aurora #7 (Feb 17, 2015)

I shot all these images with an 8mm fish-eye lens as frames inย time-lapse sequences intended for use projected in digital planetarium domes, where the 360ยฐ “all-sky” scene would be recreated on the dome as it was in real life.

If you are with a planetarium, contact me if you’d like to get aurora clips.

Our second group of aurora tourists hasย arrived today at the Churchill Northern Studies Centre, and the weather is warming to a high of -20ยฐ C. Balmy!

We’re hoping for more fine displays, though the space weather forecast calls for a quiet magnetic field in the next few days.

โ€“ Alan, February 19, 2015 / ยฉ 2015 Alan Dyer / www.amazingsky.com

Comet Lovejoy Moving Amid the Stars


Comet Lovejoy near the Pleiades (Jan 15, 2015)

Comet Lovejoy is now at its best. I captured a time-lapse of it moving through the stars.

Last night I shot Comet Lovejoy with a couple of cameras. One, using a telephoto lens, captured the green comet with its long blue ion tail near the blue Pleiades star cluster (at top). The comet is passing west of the Pleiades over the next few nights, providing some wonderfully photogenic compositions.

Clear skies most of the nightย allowed me to also shoot through the telescope, taking 280 close-up images of the comet over 5 hours as the telescope tracked the stars. Assembled into a time-lapse movie, the result shows the comet slowly gliding against the background stars in its orbit around the Sun.

Expand the video frame to see it properly.

Each of the 280 frames is a 1-minute exposure, taken at ISO 6400, using a TMB 92mm refractor at f/4.4. I started the sequence just before 7pm and ended it just before midnight. So the movie records about 5 hours of motion.

Toward the end some cloud drifting through causes the stars to bloat up momentarily. And as the comet set lower into the west sky conditions got worse compared to the start of the sequence when the comet was at its highest in the south.

However, judicious processing using the time-lapse software LRTimelapse and Sequence helped compensate for the changing sky conditions.

Do take a look at this fine comet. The tail is visible in binoculars from a dark site.

โ€“ Alan, January 16, 2015 / ยฉ Alan Dyer 2015 / amazingsky.com

My new eBook on Nightscapes & Time-Lapse Photography


Nightscapes Book Cover

Iโ€™m pleased to announce my new ebook, How to Photograph and Process Nightscapes and Time-Lapses

The ebook describes โ€”

How to shoot and process still image โ€œnightscapesโ€ โ€“ images of landscapes taken at night by the light of the Moon or stars โ€ฆ and โ€ฆ

How to shoot and assemble time-lapse movies of the stars and Milky Way turning above Earthly scenes, all using DSLR cameras.

Available worldwide only for MacOS and iPads through the Apple iBookstore.

See http://tiny.cc/urdoqx for more about the book at iTunes.

IMG_2108

The 400-page multi-touch book includes โ€”

50 embedded HD videos (no internet connection required) demonstrating time-lapse techniques.

60 multi-page tutorials with step-by-step instructions of how to use software: Adobe Bridge, Adobe Camera Raw, Photoshop, Lightroom, LRTimelapse, Advanced Stacker Actions, StarStaX, Panolapse, Sequence, GBTimelapse, and more.

Numerous Photo 101 sections explaining the basic concepts of photography and video production (f-stops, ISOs, file types, aspect ratios, frame rates, compression, etc.).

Numerous Astronomy 101 sections explaining the basics of how the sky works (how the sky moves, where the Moon can be found, when the Milky Way can be seen, when and where to see auroras).

Reviews of gear โ€“ I donโ€™t just mention that specialized gear exists, I illustrate in detail how to use popular units such as the Time-Lapse+, Michron, and TriggerTrap intervalometers, and the All-View mount, Radian, Mindarin Astro, eMotimo, and Dynamic Perception motion-control units, with comments on whatโ€™s good โ€“ and not so good โ€“ to use.

IMG_2121

Youโ€™ll learn โ€”

โ€ข What are the best cameras and lenses to buy (cropped vs. full-frame, Canon vs. Nikon, manual vs. automatic lenses, zooms vs. primes).

โ€ข How to set your cameras and lenses for maximum detail and minimum noise (following the mantra of โ€œexposing to the rightโ€ and using dark frames).

IMG_2133

โ€ข How to shoot auroras, conjunctions, satellites, comets, and meteor showers.

โ€ข How to shoot nightscapes lit only by moonlit, and how to determine where the Moon will be to plan a shoot.

โ€ข How to shoot & stitch panoramas of the night sky and Milky Way, using Photoshop and PTGui software.

IMG_2137

โ€ข How to shoot tracked long exposures of the Milky Way using camera trackers such as the iOptron Star Tracker and Sky-Watcher Star Adventurer.

โ€ข How to develop Raw files, the essential first step to great images and movies.

โ€ข How to process nightscape stills using techniques such as compositing multiple exposures, masking ground and sky, and using non-destructive adjustment layers and smart filters.

โ€ข How to shoot and stack star trail images made of hundreds of frames.

IMG_2150

โ€ข How to assemble time-lapse movies from those same hundreds of frames.

โ€ข How to plan a time-lapse shoot and calculate the best balance of exposure time vs. frame count vs. length of shoot, and recommended apps to use.

โ€ข How to process hundreds of frames using Adobe Camera Raw, Bridge, Photoshop, and Lightroom.

IMG_2154

โ€ข How to shoot and process advanced โ€œHoly Grailโ€ time-lapse transitions from day to night.

โ€ข How to shoot motion-control sequences using specialized dolly and pan/tilt devices.

โ€ข How to use time-lapse processing tools such as LRTimelapse, Panolapse, Sequence, and Advanced Stacker Actions.

โ€ข What can go wrong and how best to avoid problems in the field.

IMG_2159

It’s a large, multi-media book available only for MacOS and iPads through the Apple iBookstore.

For technical and economic reasons, the book’s size and media content prevent it from being offered via other platforms such as Kindles and Android devices. It is not available as a static PDF or traditional print book. It’s subject makes use of an ebook’s ability to contain interactiveย and video content.

See http://tiny.cc/urdoqx for more about the book at iTunes. Available worldwide. It’s $24.95 in the U.S.

Rocky Mountain Nights โ€“ A Time-Lapse Collage


 

My new 4-minute video presents time-lapse and still images shot in the Rockies this past summer.

It’s been a busy summer for shooting. Since July I’ve spent a week each in Banff, Jasper and Waterton Lakes National Parks shooting nightscape stills and time-lapse videos of Alberta’sย famous Rocky Mountain landscapes by night.ย 

This compilation includes some of the best footage, plus some panned still images, set to a wonderful piece of royalty-free (i.e. legal!) music by Adi Goldstein.ย 

For many of the sequences I employed “motion control” (MoCo) devices that incrementally move theย cameras during the oneย to three hours that they areย taking the 200 to 450 frames needed for a time-lapse sequence.ย 

I used the compact single-axis Radian, the 2-axis eMotimo, and the Dynamic Perception Stage Zero dolly, now equipped with their new Stage R single-axis panning unit. This was the first summer with the eMotimo and Stage R, so I’m still learning their best settings for speed, angles, and ramping rates.ย 

In recent blogs you’ve seen many still images shot as part of these sequences, or with other cameras dedicated to shooting stills. Now you get to see some of the time-lapse videos that represent many nights of shooting, and many hours sitting in the car waiting for the automated camera gear to finish its shooting task.ย 

Time-lapse shooting is an exercise in dedication and self-denial!

I hope you enjoy the result. Do click on the Enlarge button to go full-screen. Or visit my Vimeo site to watch the video, and others, there.

โ€“ Alan, September 10, 2014 / ยฉ 2014 Alan Dyer

 

Table Mountain Time-Lapses


Table Mountain Star Trails-Circumpolar Elastic Effect

I present a set of short time-lapse videos shot at the Table Mountain Star Party.

At the star party in Washington state last week I shot about a 3-hour-long set of images each night for assembly into time-lapse movies. Here’s the compilation.

 

Click the Enlarge button for a full-screen view.

For the first two clips I used the eMotimo motion controller to pan across the star party field looking south to the Milky Way.

For the last two clips I used a static camera aimed north to capture the turning sky around the north celestial pole. I took the same 350 frames and assembled them two ways: as a standard movie and as an “accumulating star trails” movie where the stars seem to draw themselves across the sky like a sky full of comets.

That clip cross-fades to the still image above, created with the Advanced Stacker Plus actions that automatically stacks and blends images viaย a choiceย of effects. I used the “elastic stars” effect for the still image.

Many thanks to the organizers and volunteers at the Table Mountain Star Party for the opportunity to attend and speak at the party. I was a great three nights. I highly recommend the site and event.

โ€“ Alan, August 3, 2014 / ยฉ 2014 Alan Dyer

 

Sunset on the Range


Sunset on the Range

The setting Sun provided a fine light show on the open range of the Canadian Prairies.

This was the scene Friday evening, July 4, as the Sun lit up the clouds in the big sky of the Historic Reesor Ranch.

I’m here for a week of intensive shooting and writing. On the first night the setting Sun put on a fine show, captured in still images, like the high dynamic range composite above, and in time-lapses captured with the motion control gear below.

Reesor Ranch Sunset Shoot #4

When I took these shots I was likely right on the 105th meridian, the line of longitude that marks the boundary of Alberta and Saskatchewan. Either way, the land is expansive and stunning.

Just to the south the land rises to the Cypress Hills and the namesake provincial park where I’m spending most nights shooting stills and time-lapses. More to come this week I’m sure!

โ€“ Alan, July 7, 2014 / ยฉ 2014 Alan Dyer

 

A Windy Day on the Wind Farm


Windfarm Cloudscape

It was windy day out on the wind farm, with some wonderful cloudscapes blowing by.

Shooting time-lapse movies by day is so much easier than shooting at night! Yesterday, to try out some new gear and grab footage for some demo videos, I drove to the nearby Wintering Hills Wind Farm, site of some previous imagesย and movies I’ve posted. It’s a wonderful place for nightscapes, but in this case I shotย cloudscapes by day.

The movie compiles five time-lapse clips into a short demo of cloudscapes and time-lapse techniques: using fixed cameras and using cameras on motorized devices that move the camera a little between each time-lapse frame โ€“ what’s called “motion control.”

It might take a moment to load and play through. But do expand it to full screen.

 

For two clips in the movie I used a Dynamic Perception Stage Zero dolly rail, a unit I bought two years ago and have used a lot for time-lapse shooting.

DP Stage Zero Dolly and Stage R on Induros

Here I show it on the new pair of Induro tripods, a much more stable arrangement than the single large tripod I had been using up to now. What’s also new is the Stage R panning unit, now attached to the dolly platform, here on the left (the controller is on the right).

DP Stage Zero Dolly and Stage R CU

What this motorized unit does is allow the camera to slowly turn in azimuth as it is running down the rail, to keep the camera aimed at a foreground subject, or to pan along the horizon, as I do in one of the clips in the movie.

This is a brand new piece of kit, purchased last month through Dynamic Perception’s Kickstarter campaign. I got one of the first batch ofย units shipped out. It works very well but takes a little practice to get the speeds set right. I’m still working on that!

I hope you enjoy the little demo movie. It shows that even cloudy skies can be photogenic at times!

โ€“ Alan, June 29, 2014 / ยฉ 2014 Alan Dyer

 

 

Aurora Over the Old Barn


Purple Aurora over Old Barn #6 (June 7-8, 2014)

What a fabulous night this was! Forewarned about an impending solar storm I headed to the site of a rustic barn near home to shoot the Northern Lights.

The night started with cloud but upon looking out after midnight (it pays never to go to bed too early!) the skies were clear. Checking Spaceweather.com showed an active auroral oval lit up red and Storm in Progress warnings!

That was all the cue I needed to pack up the gear and head over to the old barn site where I have been shooting time-lapses all this week.

Purple Aurora over Old Barn #1 (June 7-8, 2014)

The aurora remained quiet and diffuse for the first hour and a half, but then about 2 a.m., the substorm hit. Within seconds the curtains began to light up with well-defined rays and beams shooting to the zenith. And they danced.

The notable feature of this display, as with one in May 2013, was the blue and purple colour of the tops of the curtains. I think this is partly due to sunlight illuminating the tops of the curtains, possible at this time of year when the upper atmosphere is perpetually lit by the midnight Sun.

Shooting the Aurora over Old Barn #2 (June 7-8, 2014)

From the start I shot with two cameras taking time-lapses (the main still image at top is a frame from one of the movies). Then toward the end of the night I switched to just shooting still images framed to suit the curtains towering up to the zenith.

As above, I also shot a “selfie” of me shooting the vertical image in the middle of the set.

But below is the result of a night of shooting time-lapse movies and stills, in a montage set to music. The link takes you toย my Vimeo site. Do turn on HD mode.

 

I hope you enjoy the video!

โ€“ Alan, June 8, 2014 / ยฉ 2014 Alan Dyer (video and stills)

McDougall Church under Moonlight


McDougall Church in Moonlight #1 (May 14, 2014)

The historic pioneer church at Morley, Alberta stands under moonlight on the banks of the Bow.

Last night, after presenting a talk on time-lapse techniques to the Cochrane Camera Club, I headed west on Highway 1A to the historic McDougall Memorial United Church, long on my target list for time-lapse photography. It was Full Moon, which helped mask the lighting from nearby town lights and the urban sky glow of Cochrane and Calgary.

The wooden church stands on the benchlands north of the Bow River, near Morley, Alberta. Rev. George McDougall built it in 1875 to minister to the Cree. He lies buried on the Church grounds โ€” that’s his grave in the foreground in the main image above, with the Full Moon shining above the headstone.

McDougall Church in Moonlight #2 (May 14, 2014)

In this image, Mars stands directly above the Church steeple. The Full Moon shines in the clouds to the south. Both still images are frames from time-lapse movies, shot with two cameras. One was on the Dynamic Perception Stage Zero dolly, the other was a static tripod-mounted camera.

This little compilation shows the movies I shot last night, under moonlight on the banks of the Bow. It may take a moment to load. I hope you enjoy it!

โ€” Alan, May 15, 2014 / ยฉ 2014 Alan Dyer

 

Waves of Northern Lights in Time-Lapse


Aurora - Feb 7, 2014 (Fisheye #3)

Watch waves of aurora wash over the sky rising out of the west to swirl overhead.

This was the spectacle we saw Friday night at the Churchill Northern Studies Centre, as the northern lights filled our sky. I set up my camera on the east side of the main building, out of the bitterly cold west wind. The fish-eye lens is aimed west but its view takes in most of the sky.

The bright object at lower left is the Moon.

The still image above is a frame from the 349-frame time-lapse movie below.

Each frame is a 7-second exposure at f/3.5 and ISO 1250. The interval is 1 second.

The movie covers about 45 minutes of time, compressed into 30 seconds. It shows the aurora peaking in intensity,ย then fading out behind the ever-present thin cloud drifting through all night.

What amazes me are the waves and loops of auroral curtains that come at us from the west (bottom behind the building) then swirl around the zenith overhead. They move off to the east and north at the top of the frame.

Even watching this in real-time the scene was astonishing. The curtains rippled so quickly, forming and reforming over the sky, you didn’t know where to look. As the image above shows, people just stood amazed.

โ€” Alan, February 9, 2014 / ยฉ 2014 Alan Dyer

P.S.: You can view a better-grade version of the movie at my Flickr site.

Music Video โ€“ Sky Events of 2013


 

Myย 2-minuteย music video looks back at some of the celestial highlights of 2013, in images and videos I captured.ย 

Some of the events and scenes I show were accessible to everyone who looked up. But some required a special effort to see.

โ€ข In 2013 we had a couple of nice comets though not the spectacle hoped for from Comet ISON.

โ€ข Chris Hadfield became a media star beaming videos and tweets from the Space Station.ย We on Earth could look up and see his home sailing through the stars.

โ€ข The sky hosted a few nice conjunctions of planets, notably Mars, Venus and Jupiter in late May.

โ€ข The Sun reached its peak in solar activity (we think!) unleashing solar storms and some wonderful displays of northern lights.

โ€ข Locally, record rain storms in Alberta unleashed floods of devastating consequences in June, with a much publicized super moon in the sky.

โ€ข For me, the summer proved a productive one for shooting the “star” of the summer sky, the Milky Way.

โ€ข But the year-end finale was most certainly the total eclipse of the Sun on November 3. Few people saw it. I did, from a ship in the Atlantic Ocean. The video ends with that sight and experience, the finest the sky has to offer.

I hope you enjoy this music video mix of time-lapse, real-time video and still images, shot from Alberta, New Mexico and from the Atlantic.

You can watch a better quality version of this video at my Vimeo channel.

Clear skies for 2014!

โ€“ Alan, January 1, 2014 / ยฉ 2014 Alan Dyer

Time-Lapse โ€“ Alberta Skies 2013


 

It was a good year for time-lapse photography at home. Here’s my compilation of Alberta time-lapses in a 3-minute music video.

For a year-end look back at 2013 I assembled these highlights of my year of shooting time-lapse movies of the Alberta sky, by day and night.ย 

I’ve included clips shot around home in rural southern Alberta, and further afield at popular photo spots around the province such as Waterton Lakes National Park, Banff, Writing-on-Stone Provincial Park, and Cypress Hills Provincial Park.ย 

I hope you enjoy it! Be sure to maximize the video screen and select HD. ย Or for a better grade version check out my Vimeo channel.

________________________________________________

Some technical background:

I shot all the frames for the movies (150 to 300 frames for each clip) with either a Canon 5D MkII or a Canon 60Da camera, equipped with various lenses from 8mm to 200mm. For many of the clips the cameras were on motion control devices: the Radian azimuth panning unit, an Orion TeleTrack mount, or a Dynamic Perception Stage Zero dolly unit. You see the latter in action behind the credits.ย 

For image processing and movie assembly I used Adobe Camera Raw, Photoshop, LRTimeLapse, Sequence, Panolapse/RawBlend utility, and for some of the star trails either StarStax or Star Circle Academy’s Advanced Stacker Actions.

I demonstrate all these in my Nightscapes workshops.ย The next one is in Edmonton, January 25!

To edit the movie I used the new OS10 Mavericks iMovie.ย 

โ€“ Alan, December 29, 2013 / ยฉ 2013 Alan Dyer

The Eclipse in Time-Lapse


Total Solar Eclipse - 2nd Contact Diamond Ring (Nov 3 2013)

Here’s the Atlantic Crossing eclipse in time-lapse from the deck of the spv Star Flyer.

The above image is a still frame from the time-lapse movie I took on November 3, 2013 of the 44-second-long total eclipse of the Sun from the mid-Atlantic Ocean. It shows the first diamond ring (second contact) as totality began.

Below is the full time-lapse.

The movie is from 385 frames shot from before totality until well after. It shows just how lucky were were at seeing this eclipse, with the Sun coming out into a deep blue sky moments before totality and going back into thin cloud just as the total eclipse ends.

You’ll also appreciate the rolling of the ship, sped up here in the time-lapse, with frames taken one second apart.

Below is a still frame of the final diamond ring (third contact).ย Notice the difference in the brightness of the distant clouds in this image versus the one above. In the main image at top the clouds below the Sun had not yet entered the Moon’s umbral shadow.

But in the image below, the clouds are immersed in the lunar shadow and are about to be lit up again as the shadow races away from us in the direction toward the Sun.

Total Solar Eclipse - 3rd Contact Diamond Ring (Nov 3 2013)

In the time-lapse you can see the shadow enter the scene at top, then depart at the bottom of the frame below the Sun. As it shoots away from us, the shadow darkens the horizon far in the distance further down the path, bringing totality to those on the path to the east.

โ€“ Alan, November 11, 2013 / ยฉ 2013 Alan Dyer

Equinox Highway


Equinox Setting Sun (Sept 23, 2013)

Highway One heads into the setting equinox Sun.

I try for this shot every year, and every year I’m thwarted by low clouds over the Rockies to the west.

So here’s the shot from tonight, Monday, September 23, the night after equinox. Had the horizon been perfectly clear tonight the Sun would have appeared right at the end of the Trans-Canada Highway as it set behind the Rockies. Instead, it disappeared higher up and to the left, behind low cloud.

At equinox (fall or spring) the Sun rises due east and sets due west. So tonight, it was shining into the eyes of all the drivers as they headed west into Calgary โ€“ a little demonstration of the annual motion of the Sun.

The previous night, Sunday, Sept. 22, I shot a time-lapse movie of the scene, again hoping for a clear shot to the setting Sun. Alas! A neat movie but still not quite what I was after.

There’s always 2014. But I think I need to aim east and catch the rising Sun at equinox instead. The mountains attract too many clouds.

โ€“ Alan, September 23, 2013 / ยฉ 2013 Alan Dyer

 

 

Harvest Moon Panoramas


Harvest Moon & Earth Shadow Panorama (Sept 19, 2013)

The Harvest Moon rises into the dark arc of the Earth’s shadow.

What a perfect night this was. The Full Moon rose into a crystal clear sky, tinted with the dark blue shadow of our planet arching across the eastern sky.

The main image above is a 7-section panorama sweeping from northeast to southeast, but centred on the rising Harvest Moon rising almost due east.

The Moon came up just before the Sun set. The panorama below shows that scene. It’s a crop of a full 360ยฐ, 45,000-pixel-wide panorama, taken just as the Sun was setting almost due west and the Moon was rising 180ยฐ away in the east.

Harvest Moon Panorama (Sept 19, 2013)

I took both panoramas with a Canon 5D MkII and 50mm Sigma lens, with the segments at a 30ยฐ spacing. That way I take 12 segments to cover a full 360ยฐ, a habit leftover from the days of shooting photo pans for planetarium projection systems consisting of 12 Kodak slide projectors.

 

My previous post showed some still frames from a time-lapse movie of the rising Harvest Moon. The final movie is above, assembled from 670 frames taken at 2-second intervals with the Canon 60Da and 200mm lens. I’ve shot this subject a few times now, but this was my best capture of the rising Full Moon at harvest time, always the most photogenic Moon it seems.

It was a marvellous night for a moonrise!

โ€“ Alan, September 20, 2013 / ยฉ 2013 Alan Dyer

 

 

Night of the Northern Lights


All-Sky Aurora #1 (June 28, 2013)

The Northern Lights danced all night, as Earth was buffeted by winds from the Sun.

As soon as I saw the warning notices at Spaceweather.com I was hoping we would be in for a wonderful night of aurora watching. I wasn’t disappointed.

Forewarned, I headed out to the Wintering Hills Wind Farm near my home in southern Alberta. I thought it would be neat to get shots of the effects of the solar wind from beneath and beside the wind turbines of the farm. The shot above is from a time-lapse movie taken with a fish-eye lens that will look great when projected in a full-dome digital planetarium.

Northern Lights over Wind Farm #3 (June 28, 2013)

I shot with three cameras, with two aimed east to where the brightest part of the auroral arc usually sits. It was also exactly where the Moon would rise after midnight. This shot, above, captures the scene right at moonrise, which was also right when the aurora kicked into high gear as a sub-storm of solar particles rained down on our upper atmosphere. The ground lit up green with the glow of oxygen in the mesosphere, some 100 kilometres up.

Moonrise and Northern Lights

This shot, taken moments later with a longer focal length lens, grabs the waning Moon shining behind the distant wind machines, and beneath the arc of auroral curtains.

In all, I shot 50 gigabytes of raw images, both still images and frames for time-lapse movies. I’ve assembled most of them into a musical collage that honours the night. In the final sequence of the movie, it almost looks like the wind machine is facing into the brunt of the solar wind, as pulses of aurora surge from out of the east toward the turbine towering overhead.

 

The music is by a new favourite artist of mine, the Italian composer Ludovico Einaudi. His latest album of alt-classical/new age music is called “In a Time Lapse.” How could you not like that?! Buy it on iTunes. It’s stunning.

I hope you got to see the Night of the Northern Lights in person. If not, I trust these images and movies give you a sense of the wonder of what the solar wind can do.

โ€“ Alan, June 29, 2013 / ยฉ 2013 Alan Dyer

Night of the Noctilucent Clouds


Star Trails and Noctilucent Clouds (Lighten Stack)

It was a beautiful summer evening, with stars wheeling overhead in a moonlit sky and the only clouds far away and interesting.

This was one of those nights we get once or twice a summer when the much-anticipated noctilucent clouds โ€“ the clouds of summer โ€“ put on a perfect show. In my previous post I featured an image from early in the night, last night, June 26, 2013.

These are images and time-lapse movies from later in the night. The composite image above shows stars trailing over 90 minutes with the brilliant noctilucent clouds on the horizon, and fringed by a rosy glow of red twilight where the southern edge of the cloud display, which sits over the Northwest Territories, is being lit by a setting Sun with red sunlight filtering through our atmosphere as it passes over the North Pole.

Noctilucent Clouds and Thunderstorm (June 26, 2013)

This telephoto lens shot above captures a close-up of the rosy-fringed noctilucent clouds, behind a lightning-lit thunderstorm rolling through storm alley in central Alberta. The storms can stay there! We’ve had enough of them for a while!

 

My time-lapse sequence extends over about 90 minutes and opens with a wide-angle view of the display as it appeared low on the horizon. What follows are two closeup views that really show the intricate wave-like motion of these high-altitude mesospheric clouds, and their changing lighting and colours.

These are beautiful clouds drifting on the edge of space but it takes time-lapse to reveal their fluid-like motion.

โ€“ Alan, June 27, 2013 / ยฉ 2013 Alan Dyer

 

Time-Lapse: Northern Lights and Noctilucent Clouds


Northern Lights and Noctilucent Clouds (135mm #1) (June 9, 2013)

What strange clouds these are, moving where there shouldn’t be winds, and forming where there’s barely any air.

These are noctilucent clouds, sometimes called polar mesospheric clouds. Their icy strands form around particles at the top of the atmosphere some 80 km up. There’s almost no air up there so just how these clouds form has always been a mystery. They may be condensing around meteoric dust particles. They may also be more common now than in past decades and centuries, as the upper atmosphere cools due to an odd quirk of global warming that sees the lower troposphere warm while the upper mesosphere cools.

This was the first display of NLCs I’ve seen so far this season. They can only be seen, and indeed they only form, in summer. Sunlight streams over the pole and lights these clouds all night long. They are literally “night-shining” clouds. Only from a latitude range of 45ยฐ to 60ยฐ north and around summer solstice is the geometry right to see the clouds, usually as electric blue cirrus strands moving slowly along the northern horizon.

The time-lapse movies capture their motion over 30 to 90 minutes of shooting.

 

The 40-second movie contains three clips:

โ€ข The first, a wide-angle ย view of the amazing aurora that danced in fast accompaniment to the slow noctilucent clouds.

โ€ข The second clip, very short, zooms in a little more to the northern horizon. However, I cut that sequence short so I could switch lenses and take the next clip.

โ€ข The third scene is with a telephoto lens, framing the east-to-west slow motion of the clouds. I took 4-second exposures at 1-second intervals so it shows some pretty fine motion.

This was certainly one of the best NLC displays I’d seen and my best shot at capturing them.

What was especially rare was seeing them accompanied by auroral curtains actually moving among the clouds (or so it appeared). Both are up high in the near vacuum of near space, but they may have been miles apart in latitude.

โ€“ Alan, June 10, 2013 / ยฉ 2013 Alan Dyer

Time-Lapse Techniques โ€” Creating Star Trails


Dinosaur Park Star Trails (May 26, 2013)

The stars wheel above the Cretaceous-age sediments of Dinosaur Provincial Park.

One of the most powerful techniques in the nightscape photographer’s arsenal is to stack lots of short-exposure images together to create the equivalent of one long exposure showing the motion of the stars. A creative tool to do this in Photoshop is the “Advanced Stacking Actions” from Steven Christenson who maintains a blog and eStore called Star Circle Academy.

I used one of his Actions to create the feature image above. Unlike more run-of-the-mill stacking procedures, Christenson’s nifty Actions can create star trails that look like comets or streaks fading off into the sky at their tail end. It’s a clever bit of Photoshop work achieved by stacking each successive image at slightly lower opacity.

You can use his Actions to create a single composite still image, as above, or to create a set of “intermediate” frames that can be turned into a time-lapse movie with stars turning across the sky and drawing trails behind them. My movie shows several variations.ย Click the Expand button on the movie to have it fill the screen and reveal the sub-titles.

In Clip #1 I stacked the original set of 360 images without any trailing, using the original frames that came from the camera, albeit with each frame processed to enhance contrast and colour.

In Clip #2 I stacked the images using the “Comet Trails” Action, one that produces very short comet-like streaks.

In Clip #3 I used the “Long Streak” Action to produce longer star trails, but the process also creates unusual cloud streaks as well. Rather neat.

In Clip #4 I used the more conventional “Lighten Mode” to create trails that accumulate over the entire sequence and never fade out. The result on this night was pretty wild and excessive, with the twilight and moonlight adding other-worldly colours.

I certainly recommend the Star Circle Academy Photoshop Actions. While there is a basic Test Set available for free, the full Advanced set is well worth the $30.

โ€“ Alan, June 1, 2013 / ยฉ 2013 Alan Dyer

Moonlight on the Hoodoos


Dinosaur Park Nightscape (May 26, 2013) (16mm 5DII)

The stars shine in a bright moonlit sky over the Alberta Badlands.

My feature image above is one of several still frames I took at the end of 4-hour photo shoot last Sunday at Dinosaur Provincial Park. The nearly Full Moon provides the illumination on an eroded landscape originally cut by water from retreating ice age glaciers.

But the volcanic ash layers hold treasures much older, from 70 million years ago. This area contains the world’s richest collection of late Cretaceous fossils of dinosaurs and other flora and fauna from near the end of the dinosaurs’ reign.

The movie below is a 300-frame time lapse of the stars turning behind the hoodoos. It’s a dolly shot, using the Dynamic Perception Stage Zero rail and controller.

The system works very well, but such shots demand a site with a suitable immediate foreground, as well as a good view to the distant sky. It is the parallax motion between foreground and background that makes a dolly move interesting.

I planned this shot to begin at twilight and continue as the sky was darkening, then into the rest of the night with the Moon rising and lighting up the landscape. The moving clouds were perfectly timed and placed!

โ€“ Alan, May 29, 2013 / ยฉ 2013 Alan Dyer

Time-Lapse Techniques โ€” A Dolly Shot


Shooting Rusty Farm Wheels & Stars (May 20, 2013)

Time-lapse shooting has become immensely popular of late, but there’s nothing like a dolly shot to add interest to a scene .

Among the more advanced techniques for shooting time-lapse movies is to place the camera on a motorized track for a cinematic “dolly” shot.

These are easy to do in the daytime as the camera simply needs to slide down a rail at a constant rate. But at night, time-lapse dolly shots become more complex. Exposures are often 15 to 60 seconds even in bright moonlight, as here. During each exposure the camera shouldn’t move. The slide down the track should happen only in the brief time between exposures, typically 2 to 5 seconds.

Accomplishing this “shoot-move-shoot” routine requires a specialized bit of kit. In my case, I use the Stage Zero dolly and MX2 controller from Dynamic Perception.

It works great, and sends the camera down the 6-foot rail at a speed you determine. The controller also operates the camera shutter, ensuring sync between the exposures and dolly motion. You can see the setup in operation below, in a 2-part movie. The first scene shows the dolly and camera in operation over the 2-hour shoot, while the second clip shows the time-lapse sequence the dolly-mounted camera took.


This was one of the easiest time-lapse sequences I’ve shot, as I had to travel no more than 100 feet from my house to do it.

I was after a couple of sequences just to use for demo purposes, and didn’t want to tackle a long shoot far from home on a weeknight.

The bright moonlight on May 20 also meant exposures could be short, so that collecting the 300 frames I typically shoot for a time-lapse could be accomplished in well under 2 hours. Getting to bed before 1 am is a rare treat on a time-lapse night!

โ€” Alan, May 22, 2013 / ยฉ 2013 Alan Dyer

 

Aurora All-Night


Aurora with Blue Curtains #3 (May 17-18, 2013)

The Northern Lights dance through the night, ending with a finale burst of blue.

Here’s the time-lapse movie, below, that I shot Friday, May 17, beginning at 11:30 pm and ending 4 hours later at 3:30 am. The sky was bright with moonlight when I started the sequence, with the aurora especially active over half the sky. The display settledย down to form a slowly pulsing green band behind the old barn, which went into silhouette after the Moon set.

Then, just as the sky was brightening with the first glow of dawn, the aurora kicked up its heels again and danced across the north, shooting beams of blue across the sky.

I ended the sequence as dawn was fading in … and I was fading out! Still, it was a wonderful night to be out under the stars.

The movie compresses 4 hours of aurora shooting into 40 seconds of aurora playback!

I assembled the time-lapse movie ย from 1200 frames, each 11-second exposures at 1 second intervals, with the Canon 60Da at ISO 1600 and 10-22mm lens at f/4.

โ€“ Alan, May 20, 2013 / ยฉ 2013 Alan Dyer

 

Old Barn By Aurora Light


Aurora Behind Old Barn (May 17, 2013)

As the Northern Lights dance they light up an old barn on a moonlit night.

The still frame above is from the movie down below, a 3-hour-long time-lapse taken on May 17, the night of the big aurora display. I shot this with a camera riding along on a motorized dolly track, to provide the panning motion to the scene.

You can see the rig in this image just below, which I took with another camera framing the entireย scene.

Aurora over Old Barn #1 (May 17-18, 2013)

Using the second camera, I was intending to take shots showing a motion-control time-lapse sequence being taken, for illustration in talks and publications.

The aurora quickly forced me to change plans with camera #2. But I let the main motion-control camera continue down its track for the rest of the night, resulting in the movie below. At one point in the movie I briefly appear at right, as I moved the second camera to the south side of the barn to look north to the main area of the display.

 

In the movie, the stars of Virgo and the planet Saturn rise into a sky lit blue by moonlight early in the evening. As the Moon sets, the shadows rise and engulf the barn.

While catching stars rising behind the rustic old building was the original intention of the shot, the Northern Lights added a bonus. Not only do they dance in the sky behind the barn, but the north face of the old grey barn, in shadow from the moonlight, lights up green from the glow of aurora shining in the north.

Very nice. It certainly made for a colourful scene under the skies of southern Alberta.

โ€“ Alan, May 19, 2013 / ยฉ 2103 Alan Dyer

Calgary Lights Up


I’m getting the hang of shooting demanding day-to-night time-lapse movies!

For this clip I shot over 2.5 hours, using a fish-eye lens, to create a sequence suitable for projection in a digital planetarium dome.

But the trick with these day-to-night sequences is getting a smooth transition in exposures, which can range over 12 to 16 f-stops, from short snapshot exposures with the lens stopped all the way down at the start before sunset, to long 8-second exposures with the lens wide open at night, plus the camera’s ISO speed increasing from a slow ISO 100 to a faster ISO 400 or more at select points through the sequence as well.

The secret to doing this is a control box called the Little Bramper, an intervalometer that fires the shutter automatically at set intervals but also gradually ramps the exposure time a tad longer with each successive exposure. This was my third time out with the Bramper, and I more or less got it right this time!

While the Bramper does a great job running the camera, it still takes a lot of manual oversight to control its ramping rate so the exposures don’t get too long and overexpose the scene, or fail to get long enough to track the darkening sky.

At several points in the sequence it is also necessary to quickly (in one exposure cycle) half the exposure time, while at the same time opening up the lens a stop, or doubling the ISO, so that the ever-lengthening exposure doesn’t get too long and collide with the interval between exposures. In this case, shots were taken about 12 seconds apart, so the maximum exposure for each frame couldn’t be much more than 8 to 10 seconds.

The end result of the work is a time-lapse movie that shows the setting Sun, then the lights of Calgary coming on as the sky darkens. Clouds lit by the yellow glow of streetlights move in, then blow away again to reveal a few stars in the urban sky.

โ€” Alan, October 16, 2011 / Movie ยฉ 2011 Alan Dyer

Time-Lapse Test: Adding Motion Control


Here’s the movie I show being taken in my previous blog. This is my first attempt at a motion-control time-lapse.

In this movie the camera shifted position during the 3 hours of shooting by sliding along a rail, with the movement controlled by a little computer box that opened and closed the shutter (in this case for 15 seconds for each frame), then between each exposure it pulsed the motor to shift the camera a centimetre or so down the dolly’s rail.ย 

Pretty nifty! And until this unit, the Stage Zero Dolly, came along this capability would have cost much more money, from some Hollywood cinema supplier.

This was only a test, and I did mess up at one point (where I appear in the frame in the previous blog’s movie) as I tried to adjust the speed in mid-track, resulting in some dead motion for a few frames. So the motion comes to a halt briefly. It will take some learning to know how to set the speed right for the number of frames and exposure times I typically shoot.

But the ramping up in speed at the beginning of this movie is intentional, and is one of the motion control variables you can program in.ย 

The Stage Zero Dolly unit is from Dynamic Perception LLC. Lots of time-lapse shooters are employing it now, for their cinema-like pans and moves. I’ve been inspired by the work of Randy Halverson atย http://dakotalapse.com/ . Amazing stuff โ€” representing a whole new level of time-lapse techniques.ย 

So now I know what I’ll be doing now on moonlit evenings!ย 

โ€” Alan, September 12, 2011 / Movie ยฉ 2011 Alan Dyer

Time-Lapse of a Time-Lapse


I’ve been taking lots of time-lapse movies of late. But this one is a time-lapse movie of my other camera taking a time-lapse movie.

Here you see my Canon 7D camera riding aboard my latest tool (or toy!), a motion-control dolly. The camera takes its series of still images (that will be later stitched together into a movie) while it tracks down a rail, riding on a motorized cart.

The unit is called the Stage Zero Dolly, from Dynamic Perception LLC. It is a nifty device that fires the camera shutter for the exposure time and interval you desire. In between each exposure it also moves the camera a small amount down the track. The result can be seen in the next blog, a time-lapse movie with a changing perspective, giving a cinema-style dolly shot. Except, I took this oneย over 3 hours.

While this scene might look like I took itย during the day, it is the middle of the night (witness the moving stars). The blue sky is due to moonlight, from an almost Full Moon on September 10.

The Stage Zero Dolly takes some work to set up and program right, but the results open up a whole new dimension (literally!) in time-lapse shooting.

โ€” Alan, September 12, 2011 / Movie ยฉ 2011 Alan Dyer

Bow Lake by Moonlight (The Movie)


Here is the time-lapse movie I took last Saturday night, August 20, on a perfect night at Bow Lake in Banff, Alberta.

The sequence starts in bright twilight then darkens to full night with the Milky Way over the ย mountain silhouettes. The peaks then light up as they catch the light of the rising last quarter Moon coming up about 11:30 pm in the east. The moonlight creeps down the mountains to light up the entire valley and the lake. The sky brightens to deep blue again. The sequence ends about 3:30 am.

There was hardly a cloud in the sky all night, unusual for locations near the large icefields that straddleย the continental divide.

I assembled the movie from 454 frames, each 40 seconds in exposure time, and taken 1 second apart.

โ€” Alan, August 24, 2011 / Movie ยฉ 2011 Alan Dyer

Lake Louise by Moonlight โ€” The Movie


Here is the time-lapse movie I took last Saturday night at Lake Louise, Alberta, under the light of the Full Moon. My previous blog featured a still frame from the beginning of this sequence.

The night starts clear, but as often happens, clouds move in, blowing off the cold icefields of the continental divide. It does make for a nice effect in time-lapse, one of few instances in astronomy where some clouds can be useful!

Also notice how the reflection disappears as the lake breaks up into waves briefly, as wind blows in now and then through the night. The Full Moon is rising behind the camera, causing the lake to light up as moonlight illuminates more of the lake’s surface. Shadows move across the mountainsides. Arcturus is the bright star setting at right. The red object at left is a moored canoe, moving about on the lake.

I took this movie over 4 hours from 10:30 pm to 2:30 am, taking 477 frames with the Canon 7D and 10mm lens. For time-lapse movies like this, I process the full-size RAW files in Adobe Camera Raw and Bridge, then use Photoshop’s Image Processor to export them all to smaller size JPGs. From that set, I use Photoshop CS5 Extended’s “Motion” feature to assemble the folder of JPGs into a movie, in this case at 24 frames per second, a little fast perhaps for this sequence, but it’s easy to change if needed. Photoshop then renders that image file out as a Quicktime movie. What you see here is a tiny version of the final HD-sized video.

โ€” Alan, August 16, 2011 / Movie ยฉ 2011 Alan Dyer

Sunset in the City โ€” This is Only a Test!


This is one for the time-lapse geeks!

One of the trickiest subjects for a time-lapse sequence is a smooth and seamless day-to-night transition. Exposure times vary from fractions of a second before sunset to several seconds at night fall.

How to do it? Manually shifting exposures is too much work and prone to error. Putting the camera on Automatic can work but inevitably results in an effect known in the time-lapse world as “flickering.” The camera’s automatically-judged exposures aren’t consistent from frame to frame so the final movie shows minor bright/dark flickering, making it look jerky.

For this test sequence of sunset over the Calgary skyline, I tried a new toy for the first time, as a solution.

The device is called the Little Bramper (for Bulb Ramping). It is a custom-made intervalometer that fires the camera shutter every few seconds (at whatever interval you desire). Nothing new there. But what’s unique is that it can be set to slowly increment the exposure time by as little as 1/1000th of a second from frame to frame, gradually increasing the exposure (“ramping” it) to accommodate the darkening scene. The result is a smooth transition from day to night with no flickering.

This was my first use of the Bramper and it wasn’t without its glitches. The shortest exposure the Bramper can provide (it always controls the camera thru its Bulb setting) is about 1/10th of a second (I had no idea camera shutters can fire as quickly as that even on Bulb).

But at the beginning of a sequence like this, with a bright sky, achieving that exposure (still quite long) means using a small f-stop, a slow ISO speed, or a neutral density filter, or all of the above. But as the sky darkens and exposures lengthen, exposures would become too long to fit within the desired interval between frames (typically no more than 5 to 10 seconds for a smooth sequence). So, to shorten the exposures you then have to open up the lens, switch to a faster ISO, or remove the ND filter, while also commanding the Bramper to quickly reduce its exposure time, all in one exposure cycle (i.e. 5 to 10 seconds) so as not to lose or ruin frames. Takes some coordination and practice (hit the Bramper’s button, adjust the camera, all within 5 seconds), and I didn’t get it right the first couple of times.

But overall, for a first test, the sequence turned out very well. The $80 Little Bramper does the job, though it does take careful monitoring through the sequence, not just to perform the exposure swaps, but to also watch that the ramping rate (adjustable on the fly) matches what the scene is doing and you aren’t under- or over-exposing. It’ll take a little more practice, but the results certainly are worth it.

It’s another neat tool in the time-lapse arsenal.

โ€” Alan, August 10, 2011 / Movie ยฉ 2011 Alan Dyer

Auroral All-Sky Dance


Here is nearly two hours of auroral dancing compressed into 25 seconds.

This was the “all-sky” aurora of August 5/6, 2011, widely seen over North America but perhaps (from early reports) best from the western half, especially Canada, favoured for Northern Lights due to our latitude.

I shot this with the 8mm fish-eye lens and the Canon 5D MkII. The movie consists of 255 frames, each 24 to 30 seconds in exposure duration, taken one second apart. ISO speed was 1600 and aperture f/3.5. The playback frame rate is 10 fps.

This display was quite chaotic, without the graceful rippling curtains present in many displays, but rather huge patches of sky turning off and on. This is typical of an aurora in the declining part of the storm โ€” it had already been raging for several hours by the time it got dark here in Alberta.

Nor was the display very bright, so the longer exposures needed to record it well further blur any fine motion. Nevertheless, you get a good idea of the intense activity this aurora displayed. The magnetosphere was jumping last night!

โ€” Alan, August 6, 2011 / Movie ยฉ 2011 Alan Dyer

Sacred Site: The Movie


Here’s my time-lapse sequence of the hoodoos at Writing-on-Stone Park lighting up as the Moon rises and the Milky Way sets.

The sky starts off dark but lights up as the waning Moon, off frame behind the camera, rises and lights up the foreground and sky. The sequence ends as the sky brightens with the onset of dawn.

Waning moons are great nights for this type of shooting as the changing lighting produces dramatic effects as the landscape lights up at moonrise. The problem is, the Moon doesn’t rise till very late, making for a long night of shooting.

I assembled this sequence from 290 frames, each a 60-second exposure, taken at 1-second intervals over about 4 hours. The camera was the Canon 7D and the lens the 10-22mm Canon EF-S zoom at 10mm. I also shot a matching sequence simultaneously with the 8mm fish-eye and Canon 5D MkII camera, for an all-sky sequence for planetarium use.

โ€” Alan, July 30, 2011 / Movie ยฉ 2011 Alan Dyer